SlideShare a Scribd company logo
1 of 62
Download to read offline
Children Detection System
Group 4#
CHENGLING YANG(RADAR-TX)
JIANBO ZHONG(RADAR-RX)
MENG WEI(COMM-RX)
HE LIU(COMM-TX)
Introduction:
Children’s safety comes first to their parents and school.
Sometimes due to their immaturity, the lack of judgment
on the danger, they would go to the dangerous area
intentionally or unintentionally. To ensure the safety of
children, our system is designed to accomplish following
function:
1. Detect the location if children go too far away from
the school for a set time (such as 10 mins).
2. The child’s location information would send to the
central station in real-time.
1. Project Overview
• System Architecture
Communication channel
Control Center Kindergarten
Safe area
Radar channel
Justification
1.High accuracy
2.Real - time communication
3.High device reliability
4.Easy to implement and operate
5. Less labor
• Block Diagram--Radar
To
n
e
G
e
n
er
at
or
BPF
Driver AmpMixer
BPF BPF
Mixer
Power Amp
Received
Signal
Antenna
RX Antenna
LNA
LNA
Tone
Power
AMP
BPF
OSC
OSC
Circulator
• Top Level Specification--Radar
Parameter Specification
Operation Frequency (GHz) 5
Detection Range (m) >1000
TX Gain (dB) 56.2
RX Gain (dB) 57.8
Radar Cross Section (RCS) (𝑚2
) 1
Antenna Type Dish
Minimum Detectable Signal (dBm) -90
Radar Transmit Power (dBm) 28.2
• Block Diagram--Communication
Tone
Gene
-
radar
BPF BPF
LO
AMP
Mixer
Baseband
Signal
BPF BPF
LO
Mixer
COM-TX
TX Antenna
RX Antenna
LNA
LNA
AMP
COM-RX
• Top Level Specification--Communication
Parameter Specification
Frequency (GHz) 2.4
Antenna gain(TX) (dBi) 20
Antenna gain(RX) (dBi) 20
Noise Figure (dB) <3
Transmitting power(Pt) (dBm) >23
Antenna receiving power(Pr) (dBm) >-90
Antenna type Grid
Communication range (Km) 100
Diagram
2.Radar-TX
TONE
ID=A1
FRQ=0.3 GHz
PWR=-28 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.3 GHz
SPwr: 0.00158489 mW
SPwr: -28 dBm
AMP_B
ID=A2
GAIN=18 dB
P1DB=24 dBm
IP3=38 dBm
IP2=
MEASREF=
OPSAT=
NF=2.4 dB
NOISE=Auto
RFIFRQ=
fc: 0.3 GHz
SPwr: 0.0999969 mW
SPwr: -10.0001 dBm
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-2 dB
P1DB=17 dBm
IP3=24 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=9 dB
NOISE=Auto
fc: 5 GHz
SPwr: 0.0500249 mW
SPwr: -13.0081 dBm
BPFB
ID=F1
LOSS=2.5 dB
N=3
FP1=4.983 GHz
FP2=5.016 GHz
AP=3.0103 dB
NOISE=Auto
fc: 5 GHz
SPwr: 0.0264762 mW
SPwr: -15.7714 dBm
AMP_B
ID=A4
GAIN=30 dB
P1DB=33 dBm
IP3=49 dBm
IP2=
MEASREF=
OPSAT=
NF=5.5 dB
NOISE=Auto
RFIFRQ=
fc: 5 GHz
SPwr: 720.607 mW
SPwr: 28.577 dBm
TONE
ID=A6
FRQ=5.3 GHz
PWR=-10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 5.3 GHz
SPwr: 0.1 mW
SPwr: -10 dBm
TP
ID=TP1
TP
ID=TP2
TP
ID=TP4
TP
ID=TP5 TP
ID=TP6
BPFB
ID=F2
LOSS=1 dB
N=3
FP1=0.251 GHz
FP2=0.349 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.3 GHz
SPwr: 0.0793341 mW
SPwr: -11.0054 dBm
TP
ID=TP3
AMP_B
ID=A5
GAIN=14.5 dB
P1DB=18 dBm
IP3=27 dBm
IP2=
MEASREF=
OPSAT=
NF=3.2 dB
NOISE=Auto
RFIFRQ=
fc: 5 GHz
SPwr: 0.744042 mW
SPwr: -1.28403 dBm
1 2
3
CIRCULATOR
ID=S1
LOSS=0.4 dB
ISOL=18 dB
VSWR=1.25
NOISE=Auto
Z=_Z0 Ohm
fc: 5 GHz
SPwr: 657.202 mW
SPwr: 28.177 dBm
fc: 5 GHz
SPwr: 11.4209 mW
SPwr: 10.577 dBm
TP
ID=TP7
LOAD
ID=S2
Z=_Z0 Ohm
Simulation Result
Radar_Transmit
-40
-20
0
20
40
60
TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A5@2) AMP_B (A4@2) CIRCULATOR (S1@2)
p1
p2
CIRCULATOR.S1@2
56.2 dB
CIRCULATOR.S1@2
28.2 dBm
DB(|P_node(TP.TP1,TP.TP7,0,1,0)|)[1] (dBm)
radar_transmit
DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1]
radar_transmit
p2: Power Gain, Cumulative, dB
Freq = 5 GHz
p1: Signal Node Power, dBm
Freq = 5 GHz
Yield Analysis
Radar_Transmit
-40
-20
0
20
40
60
80
TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A5@2) AMP_B (A4@2) CIRCULATOR (S1@2)
p1
p2
CIRCULATOR.S1@2
16.5 dBm
CIRCULATOR.S1@2
34 dBm
CIRCULATOR.S1@2
44.5 dB
CIRCULATOR.S1@2
62 dB
CIRCULATOR.S1@2
56.2 dB
CIRCULATOR.S1@2
28.2 dBm
DB(|P_node(TP.TP1,TP.TP7,0,1,0)|)[1] (dBm)
radar_transmit
DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1]
radar_transmit
p2: Power Gain, Cumulative, dB
Freq = 5 GHz
p1: Signal Node Power, dBm
Freq = 5 GHz
where, ft = 5 GHz,, c = 3×108 m/s.
The minimum detectable received power (Pmin) is -90 dBm.
Detection Range
where, ft = 5 GHz Pt = 28.2 dBm, G = 30.5 dB, λ = c/ft = 0.06 m, σ = 1 m2.
Power Added Efficiency for TX
where, input RF power is, Pin = -28dBm, output RF power is, Pout = 28.2dBm, and total
DC power consumption is, PDC = PLNA + PDA + PPA + Pmixer = 6517 mW
EIRP=𝑃𝑡 + 𝐺 = 28.2𝑑𝐵𝑚 + 30.5𝑑𝐵 = 58.7𝑑𝐵𝑚 = 28.7𝑑𝐵𝑊
Hand Calculation-Radar TX
𝑃𝐴𝐸 =
𝑃𝑂𝑈𝑇 − 𝑃𝐼𝑁
𝑃 𝐷𝐶
= 10.1%
𝑅max = [
𝑃 𝑇 𝐺2λ2σ
𝑃 𝑚𝑖𝑛(4π)3]1/4
= 1108.75m
Low Noise Amplifier
Band Pass Filter
MIXER
Oscillator
Band Pass Filter
DRIVER AMP
Power Amplifier
CIRCULATOR
ANTENNA
Schematic
3.Communication-RX
AMP_B
ID=A2
GAIN=24 dB
P1DB=23 dBm
IP3=36 dBm
IP2=
MEASREF=
OPSAT=
NF=0.95 dB
NOISE=Auto
RFIFRQ=
fc: 2.4 GHz
SPwr: -51.64 dBm
AMP_B
ID=A4
GAIN=23 dB
P1DB=19 dBm
IP3=33 dBm
IP2=
MEASREF=
OPSAT=
NF=0.7 dB
NOISE=Auto
RFIFRQ=
fc: 0.2 GHz
SPwr: -38.65 dBm
BPFB
ID=F1
LOSS=1.3 dB
N=5
FP1=0.125 GHz
FP2=0.25 GHz
AP=0.01 dB
NOISE=Auto
fc: 0.2 GHz
SPwr: -61.65 dBm
BPFB
ID=F2
LOSS=0.7 dB
N=3
FP1=2.3 GHz
FP2=2.6 GHz
AP=0.1 dB
NOISE=Auto
fc: 2.4 GHz
SPwr: -52.3478 dBm
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-8 dB
P1DB=20 dBm
IP3=35 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10.5 dB
NOISE=Auto
fc: 0.2 GHz
SPwr: -60.3478 dBm
TONE
ID=A1
FRQ=2.4 GHz
PWR=-75.64 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 2.4 GHz
SPwr: -75.64 dBm
TONE
ID=A6
FRQ=2.6 GHz
PWR=10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 2.6 GHz
SPwr: 10 dBm
TP
ID=TP1
TP
ID=TP2
TP
ID=TP3
TP
ID=TP4
TP
ID=TP5
TP
ID=TP6
Yield Analysis_Power Gain
communication RX results_C_GP
0
10
20
30
40
50
AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p1
AMP_B.A4@2
27.17 dB
AMP_B.A4@2
46.79 dB
AMP_B.A4@2
36.99 dB
DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1]
RX
p1: Power Gain, Cumulative, dB
Freq = 0.2 GHz
Yield Analysis_OIP3
communication RX results_C_NF
0
0.5
1
1.5
2
2.5
3
AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p1
AMP_B.A4@2
1.842 dB
AMP_B.A4@2
2.827 dB
AMP_B.A4@2
2.153 dB
DB(C_NF(TP.TP1,TP.TP6,0,1,0,0))[1]
RX
p1: Cascaded Noise Figure, Signal, Cumulative, dB
Freq = 0.2 GHz
communication RX results_C_IP3
10
20
30
40
50
AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p1
AMP_B.A4@2
27.35 dBm
AMP_B.A4@2
39.26 dBm
AMP_B.A4@2
32.78 dBm
DB(C_IP3(TP.TP1,TP.TP6,1,1,0,0))[1] (dBm)
RX
p1: Cascaded OIP3, dBm
Freq = 0.2 GHz
Yield Analysis_NF
communication RX results_C_NF
0
0.5
1
1.5
2
2.5
3
AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p1
AMP_B.A4@2
1.842 dB
AMP_B.A4@2
2.827 dB
AMP_B.A4@2
2.153 dB
DB(C_NF(TP.TP1,TP.TP6,0,1,0,0))[1]
RX
p1: Cascaded Noise Figure, Signal, Cumulative, dB
Freq = 0.2 GHz
• Hand Calculation
𝜆 =
𝑐
𝑓
= 0.125𝑚, 𝑅target = 100𝐾𝑚, 𝐺𝑡 = 20𝑑𝐵𝑖, 𝐺𝑟 = 20𝑑𝐵𝑖,𝑃𝑡 = 24.4𝑑𝐵𝑚
10log10
𝜆2
(4𝜋𝑅)2
= −140.4𝑑𝐵
𝑁𝐹 = 2.15𝑑𝐵
Received power at nominal condition (R=100km):
𝑃𝑟 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10
𝜆2
(4𝜋𝑅)2 = −75.64𝑑𝐵𝑚
-90dBm=𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10(𝜆/4πR)2
So from equation above we can get
𝑅 𝑚𝑎𝑥= 552.3km
Antenna
 Key Features
Low price
Reasonable Frequency Range
Low-Noise Amplifier
 Key Features
Reasonable Gain, Low NF
 Key Features
Low Insertion Loss
Key Electrical Specifications
Model BPF-WiMAX 2.3-2.6/5-1x2
Centre Frequency Stated with 2.3-2.6Ghz
Pass Range Width 30Mhz
Insertion Loss ≤0.8dB, typ. 0.7dB
Mixer
 Key Features
Reasonable RF and IF Frequency Range
Low conversion loss
Mixer
 Key Features
Low Phase Noise
Reasonable Frequency Range
Oscillator
Bandpass Filter
 Key Features
Low Insertion Loss
Reasonable Pass band
Key Electrical Specifications
Frequency Range 0.125 – 0.25GHz
Insertion Loss 1.3 dB
Low Noise Amplifier
 Key Features
High IP3
Low Noise Figure
4.Project Summary
• Compliance Matrix-Radar
Parameter Theoretical Value Actual Value Compliant
Operation Frequency
(GHz)
5 5 YES
Detection Range (m) 1000 1108.75 YES
Radar Cross Section
(RCS) (m2)
1 1 YES
Antenna type (size)
DISH DISH YES
Output power (dBm)
28.2 28.2 YES
Minimum Detectable
Signal (dBm)
-90 -90 YES
Antenna gain (dB) 30.5 30.5 YES
• Compliance Matrix-Communication
Parameter Theoretical Value Actual Value Compliant
Up link frequency
(GHz)
2.4 2.4 YES
Antenna gain(TX) (dBi) 20 20 YES
Antenna gain(RX) (dBi) 20 20 YES
Noise Figure (dB)
<3 2.153 YES
Transmitting power(Pt)
(dBm)
>23 24.4 YES
Receiving power(RX)
(dBm)
>-90 -75.6 YES
Antenna type Grid Grid YES
• DC power Consumption
Item Name Power Item Name Power
Radar-TX
LNA 1.04W
Radar-RX
LNA 1.2W
Oscillator 0.255W Oscillator 0.255W
Mixer 0.027W Mixer 0.027W
Power Amp 4.65W Power Amp 0.75W
Driver Amp 0.8W - -
Antenna 100W Antenna 100W
Comm-TX
IF Amplifier 270mW
Comm-RX
RF Amplifier 350mW
Oscillator 60mW Oscillator 60mW
Mixer 200mW Mixer 200mW
RF Amplifier 350mW IF Amplifier 270mW
Antenna 100W Antenna 100W
• 110V AC , Radar
• 5V DC to component
DC Power Source
Health , Environment & Consumer Issues
Because this system is working for kindergarten, healthy issue comes very
important to us.
Health: ANSI/IEEE Standard C95.1-1992 sets the safe radiation power density limit
as 10mw/cm2.
Due to the function : 𝑃 =
𝐸𝐼𝑅𝑃
4𝜋𝑅2 = 1.5 m𝑊/𝑐𝑚2
Which is reasonable distance.
Environment : No pollution..
System Minimum Safety Distance (m)
Radar Channel 1.21
Communication Channel (2.4GHz) 0.45
Sub-system Categories Price(USD)
Radar System TX 198
RX 198
ANT 244
Communication System TX 176
RX 173
ANT 98
Total - 1087
Financial Issues
Schedule
Start Date Finish Date
Build the system diagram 10/1/2016 10/10/2016
Design & simulation 10/11/2016 10/20/2016
Radar module design 10/21/2016 10/31/2016
Comm module design 11/1/2016 11/10/2016
Business Analysis 11/11/2016 11/15/2016
Integration system 11/16/2016 11/20/2016
Fabrication and Test 11/21/2016 11/30/2016
Q&A
Thank you
Appendix
TONE
ID=A1
FRQ=5 GHz
PWR=-88.2 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 5 GHz
SPwr: 1.51356e-9 mW
SPwr: -88.2 dBm
BPFB
ID=F1
LOSS=2.5 dB
N=3
FP1=4.983 GHz
FP2=5.016 GHz
AP=3.0103 dB
NOISE=Auto
fc: 5 GHz
SPwr: 5.0544e-7 mW
SPwr: -62.9633 dBm
AMP_B
ID=A2
GAIN=28 dB
P1DB=10 dBm
IP3=20 dBm
IP2=
MEASREF=
OPSAT=
NF=1 dB
NOISE=Auto
RFIFRQ=
fc: 5 GHz
SPwr: 9.54993e-7 mW
SPwr: -60.2 dBm
IN OUT
LO
MIXER_B
ID=A4
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-2 dB
P1DB=17 dBm
IP3=24 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=9 dB
NOISE=Auto
fc: 0.3 GHz
SPwr: 3.18911e-7 mW
SPwr: -64.9633 dBm
TONE
ID=A5
FRQ=5.3 GHz
PWR=-10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 5.3 GHz
SPwr: 0.1 mW
SPwr: -10 dBm
TP
ID=TP1 TP
ID=TP2
BPFB
ID=F2
LOSS=1 dB
N=3
FP1=0.251 GHz
FP2=0.349 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.3 GHz
SPwr: 2.53013e-7 mW
SPwr: -65.9686 dBm
AMP_B
ID=A6
GAIN=36 dB
P1DB=8 dBm
IP3=18 dBm
IP2=
MEASREF=
OPSAT=
NF=1.3 dB
NOISE=Auto
RFIFRQ=
fc: 0.3 GHz
SPwr: 0.00100723 mW
SPwr: -29.9687 dBm
TP
ID=TP3
TP
ID=TP4
TP
ID=TP5
TP
ID=TP6
1 2
3
CIRCULATOR
ID=S1
LOSS=0.4 dB
ISOL=18 dB
VSWR=1.25
NOISE=Auto
Z=_Z0 Ohm
fc: 0.3 GHz
SPwr: 0.000918606 mW
SPwr: -30.3687 dBm
fc: 0.3 GHz
SPwr: 1.59635e-5 mW
SPwr: -47.9687 dBm
TP
ID=TP7
LOAD
ID=S2
Z=_Z0 Ohm
1.Radar-RX
Simulation Results
Radar_Receive
0
10
20
30
40
50
60
AMP_B (A2@2) BPFB (F1@2) MIXER_B (A4@2) BPFB (F2@2) AMP_B (A6@2) CIRCULATOR (S1@2)
p3
p2
p1
CIRCULATOR.S1@2
17.6 dBm
CIRCULATOR.S1@2
1.087 dB
CIRCULATOR.S1@2
57.83 dB
DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1]
radar_receive
DB(C_NF(TP.TP1,TP.TP7,0,1,0,0))[1]
radar_receive
DB(C_IP3(TP.TP1,TP.TP7,1,1,0,0))[1] (dBm)
radar_receive
p1: Power Gain, Cumulative, dB
Freq = 0.3 GHz
p2: Cascaded OIP3, dBm
Freq = 0.3 GHz
p3: Cascaded Noise Figure, Signal, Cumulative, dB
Freq = 0.3 GHz
Yield analysis
Radar_Receive
0
20
40
60
80
AMP_B (A2@2) BPFB (F1@2) MIXER_B (A4@2) BPFB (F2@2) AMP_B (A6@2) CIRCULATOR (S1@2)
p3
p2
p1
CIRCULATOR.S1@2
0.8362 dB
CIRCULATOR.S1@2
1.801 dB
CIRCULATOR.S1@2
14 dBm
CIRCULATOR.S1@2
21.14 dBm
CIRCULATOR.S1@2
45.33 dB
CIRCULATOR.S1@2
70.62 dB
CIRCULATOR.S1@2
17.6 dBm
CIRCULATOR.S1@2
1.087 dB
CIRCULATOR.S1@2
57.83 dB
DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1]
radar_receive
DB(C_NF(TP.TP1,TP.TP7,0,1,0,0))[1]
radar_receive
DB(C_IP3(TP.TP1,TP.TP7,1,1,0,0))[1] (dBm)
radar_receive
p1: Power Gain, Cumulative, dB
Freq = 0.3 GHz
p2: Cascaded OIP3, dBm
Freq = 0.3 GHz
p3: Cascaded Noise Figure, Signal, Cumulative, dB
Freq = 0.3 GHz
Hand Calculation-Radar RX
When R=1000m (designed range ) , 𝑃𝑟 is the
input power.
𝑃𝑟=
𝑃𝑡G2λ2б
(4π)3R4=1.15e-9=-88.2dBm
where, ft = 5 GHz, Pt = 28.2 dBm, G = 30.5 dB, λ = c/ft = 0.06 m, σ = 1 m2.
RX LNA
Band Pass Filter
Mixer
Band Pass Filter
Power Amplifier
2.Communication-TX
schematic
AMP_B
ID=A2
GAIN=23 dB
P1DB=19 dBm
IP3=33 dBm
IP2=
MEASREF=
OPSAT=
NF=0.7 dB
NOISE=Auto
RFIFRQ=
fc: 0.2 GHz
SPwr: 14.8132 dBm
AMP_B
ID=A4
GAIN=24 dB
P1DB=23 dBm
IP3=36 dBm
IP2=
MEASREF=
OPSAT=
NF=0.95 dB
NOISE=Auto
RFIFRQ=
fc: 2.4 GHz
SPwr: 23.9118 dBm
BPFB
ID=F1
LOSS=0.7 dB
N=3
FP1=2.3 GHz
FP2=2.6 GHz
AP=0.1 dB
NOISE=Auto
fc: 2.4 GHz
SPwr: 4.70687 dBm
BPFB
ID=F2
LOSS=1.3 dB
N=5
FP1=0.125 GHz
FP2=0.25 GHz
AP=0.1 dB
NOISE=Auto
fc: 0.2 GHz
SPwr: 13.5104 dBm
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-8 dB
P1DB=20 dBm
IP3=35 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10.5 dB
NOISE=Auto
fc: 2.4 GHz
SPwr: 5.41462 dBm
TONE
ID=A1
FRQ=0.2 GHz
PWR=-8 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.2 GHz
SPwr: -8 dBm
TONE
ID=A6
FRQ=2.6 GHz
PWR=10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 2.6 GHz
SPwr: 10 dBm
TP
ID=TP1
TP
ID=TP2
TP
ID=TP3
TP
ID=TP4
TP
ID=TP5
TP
ID=TP6
Nominal Analysis_Power Gain & IP_Node
communication TX nominal results
-10
0
10
20
30
40
TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p2
p3
AMP_B.A4@2
32.4 dB
AMP_B.A4@2
24.4 dBm
DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1]
TX
DB(|P_node(TP.TP1,TP.TP6,0,1,0)|)[1] (dBm)
TX p3: Power Gain, Cumulative, dB
Freq = 2.4 GHz
p2: Signal Node Power, dBm
Freq = 2.4 GHz
communication TX results
-10
0
10
20
30
40
TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2)
p2
p3
AMP_B.A4@2
32.77 dB AMP_B.A4@2
27.59 dB
AMP_B.A4@2
24.77 dBm
AMP_B.A4@2
19.66 dBm
AMP_B.A4@2
32.4 dB
AMP_B.A4@2
24.4 dBm
DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1]
TX
DB(|P_node(TP.TP1,TP.TP6,0,1,0)|)[1] (dBm)
TX p3: Power Gain, Cumulative, dB
Freq = 2.4 GHz
p2: Signal Node Power, dBm
Freq = 2.4 GHz
Yield Analysis
Low Noise Amplifier
Key Features
High IP3
Low Noise Figure
Bandpass Filter
 Key Features
Low Insertion Loss
Reasonable Passband
Key Electrical Specifications
Frequency Range 0.125 – 0.25GHz
Insertion Loss 1.3 dB
Mixer
 Key Features
Reasonable RF and IF Frequency Range
Low conversion loss
 Key Features
Low Phase Noise
Reasonable Frequency Range
 Key Features
Low Insertion Loss
Key Electrical Specifications
Model BPF-WiMAX 2.3-2.6/5-1x2
Centre Frequency Stated with 2.3-2.6Ghz
Pass Range Width 30Mhz
Insertion Loss ≤0.8dB, typ. 0.7dB
Amplifier
 Key Features
Reasonable Gain
 Communication TX Maximum Range Analysis
• -90dBm=𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10(𝜆/4πR)2
• So from equation above we can get
• 𝑅 𝑚𝑎𝑥= 552.3km
 Communication TX EIRP
𝑃𝑡 + 𝐺𝑡=24.4+20=44.4dBm=27.54W
Communication TX Hand Calculation
 Communication TX Power Analysis
PLNA = 3V×90mA = 0.27W
PMIXER = 5V×40mA = 0.2W
PAmp = 5V×70mA = 0.35W
Total DC power consumption is, PDC = PMIXER+PLNA+PAmp = 0.82W
Overall Power Added Efficiency is,
Communication TX PAE Hand Calculation
𝑃𝐴𝐸 =
𝑃𝑡 − 𝑃𝑖𝑛
𝑃𝑑𝑐
∗ 100% =
275.423𝑚𝑊 − 0.1585𝑚𝑊
820𝑚𝑊
∗ 100% = 33.57%

More Related Content

What's hot

Komunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowychKomunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowychAgnieszka Kuba
 
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel Design
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel DesignMitigation of Noise in OFDM Based Plc System Using Filter Kernel Design
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel DesignIJERA Editor
 
An Introduction to Eye Diagram, Phase Noise and Jitter
An Introduction to Eye Diagram, Phase Noise and JitterAn Introduction to Eye Diagram, Phase Noise and Jitter
An Introduction to Eye Diagram, Phase Noise and JitterDr. Mohieddin Moradi
 
CONTOH Flux test cctv utp test report
CONTOH Flux test cctv utp test   reportCONTOH Flux test cctv utp test   report
CONTOH Flux test cctv utp test reportIr Azmi
 
Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication SystemIzah Asmadi
 
Digital communication
Digital communicationDigital communication
Digital communicationmeashi
 
Dtmf Detection
Dtmf DetectionDtmf Detection
Dtmf Detectionbiometria
 
365 digital basics before
365 digital basics before365 digital basics before
365 digital basics beforeJeff Francis
 
Noise in Communication by Attaullah Shafiq
Noise in Communication by Attaullah ShafiqNoise in Communication by Attaullah Shafiq
Noise in Communication by Attaullah ShafiqHafiz Muhammad Attaullah
 
OBI in RFoG systems public
OBI in RFoG systems publicOBI in RFoG systems public
OBI in RFoG systems publicVasile Jerca
 
Transmission of digital signals
Transmission of digital signalsTransmission of digital signals
Transmission of digital signalsSachin Artani
 
Development of a Multipurpose Audio Transmission System on the Internet
Development of a Multipurpose Audio Transmission System on the InternetDevelopment of a Multipurpose Audio Transmission System on the Internet
Development of a Multipurpose Audio Transmission System on the InternetTakashi Kishida
 
Telecommunications: Speech and Audio
Telecommunications: Speech and AudioTelecommunications: Speech and Audio
Telecommunications: Speech and AudioNapier University
 
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...TELKOMNIKA JOURNAL
 
Dss
Dss Dss
Dss nil65
 

What's hot (20)

Komunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowychKomunikacja bezprzewodowa w obszarach przemysłowych
Komunikacja bezprzewodowa w obszarach przemysłowych
 
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel Design
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel DesignMitigation of Noise in OFDM Based Plc System Using Filter Kernel Design
Mitigation of Noise in OFDM Based Plc System Using Filter Kernel Design
 
ofdm
ofdmofdm
ofdm
 
Wcdma planning
Wcdma planningWcdma planning
Wcdma planning
 
An Introduction to Eye Diagram, Phase Noise and Jitter
An Introduction to Eye Diagram, Phase Noise and JitterAn Introduction to Eye Diagram, Phase Noise and Jitter
An Introduction to Eye Diagram, Phase Noise and Jitter
 
CONTOH Flux test cctv utp test report
CONTOH Flux test cctv utp test   reportCONTOH Flux test cctv utp test   report
CONTOH Flux test cctv utp test report
 
Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication System
 
Digital communication
Digital communicationDigital communication
Digital communication
 
Dtmf Detection
Dtmf DetectionDtmf Detection
Dtmf Detection
 
365 digital basics before
365 digital basics before365 digital basics before
365 digital basics before
 
Noise in Communication by Attaullah Shafiq
Noise in Communication by Attaullah ShafiqNoise in Communication by Attaullah Shafiq
Noise in Communication by Attaullah Shafiq
 
OBI in RFoG systems public
OBI in RFoG systems publicOBI in RFoG systems public
OBI in RFoG systems public
 
Chapter 1 dep3273
Chapter 1 dep3273Chapter 1 dep3273
Chapter 1 dep3273
 
Transmission of digital signals
Transmission of digital signalsTransmission of digital signals
Transmission of digital signals
 
00699b
00699b00699b
00699b
 
Development of a Multipurpose Audio Transmission System on the Internet
Development of a Multipurpose Audio Transmission System on the InternetDevelopment of a Multipurpose Audio Transmission System on the Internet
Development of a Multipurpose Audio Transmission System on the Internet
 
Telecommunications: Speech and Audio
Telecommunications: Speech and AudioTelecommunications: Speech and Audio
Telecommunications: Speech and Audio
 
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...
A Radial Line Slot Array (RLSA) Antenna with the Specifications of 16 dBi Out...
 
Logsv2
Logsv2Logsv2
Logsv2
 
Dss
Dss Dss
Dss
 

Viewers also liked (16)

Resume (in)
Resume (in)Resume (in)
Resume (in)
 
Hnc2302
Hnc2302Hnc2302
Hnc2302
 
Chien chat noel
Chien chat noelChien chat noel
Chien chat noel
 
Proyecto de ofimatica III
Proyecto de ofimatica IIIProyecto de ofimatica III
Proyecto de ofimatica III
 
Actividad tema 2
Actividad tema 2Actividad tema 2
Actividad tema 2
 
Dutroux
DutrouxDutroux
Dutroux
 
Omkarcv
OmkarcvOmkarcv
Omkarcv
 
CV HANA
CV HANACV HANA
CV HANA
 
Act1panc
Act1pancAct1panc
Act1panc
 
Abdul ajid 11140963 12
Abdul ajid 11140963 12Abdul ajid 11140963 12
Abdul ajid 11140963 12
 
Brachial plexus summary
Brachial plexus summaryBrachial plexus summary
Brachial plexus summary
 
Destiny patterson final eng 212
Destiny patterson final eng 212Destiny patterson final eng 212
Destiny patterson final eng 212
 
Richard Martinez #1 PDF
Richard Martinez #1 PDFRichard Martinez #1 PDF
Richard Martinez #1 PDF
 
Ip estatica y dinamica 505
Ip estatica y dinamica 505Ip estatica y dinamica 505
Ip estatica y dinamica 505
 
CV -MESHACK
CV -MESHACKCV -MESHACK
CV -MESHACK
 
Disney fait de son vivant
Disney  fait de son vivantDisney  fait de son vivant
Disney fait de son vivant
 

Similar to RF—project

Active Filter Design Using PSpice
Active Filter Design Using PSpiceActive Filter Design Using PSpice
Active Filter Design Using PSpiceTsuyoshi Horigome
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringBharat Biyani
 
Rf propagation in a nutshell
Rf propagation in a nutshellRf propagation in a nutshell
Rf propagation in a nutshellIzah Asmadi
 
Design of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsDesign of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsRFIC-IUMA
 
Receiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-OffsReceiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-OffsHamidKiabi
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09imranbashir
 
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias ReisCPqD
 
Automated Parking Enforcement Systems
Automated Parking Enforcement SystemsAutomated Parking Enforcement Systems
Automated Parking Enforcement SystemsSachin Kumar Asokan
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radarAmit Rastogi
 
IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2) IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2) wence00
 
IBS TRAINING(new).pptx
IBS TRAINING(new).pptxIBS TRAINING(new).pptx
IBS TRAINING(new).pptxHussienEndris1
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End ArchitectureSHIV DUTT
 

Similar to RF—project (20)

system project
system projectsystem project
system project
 
Rf sys ppt tx and rx 1
Rf sys ppt tx and rx 1Rf sys ppt tx and rx 1
Rf sys ppt tx and rx 1
 
frls2.ppt
frls2.pptfrls2.ppt
frls2.ppt
 
Active Filter Design Using PSpice
Active Filter Design Using PSpiceActive Filter Design Using PSpice
Active Filter Design Using PSpice
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
 
Rf2008 test 1
Rf2008 test 1Rf2008 test 1
Rf2008 test 1
 
Rf propagation in a nutshell
Rf propagation in a nutshellRf propagation in a nutshell
Rf propagation in a nutshell
 
AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
000665
000665000665
000665
 
Design of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsDesign of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB Communications
 
Receiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-OffsReceiver sensitivity Design Trade-Offs
Receiver sensitivity Design Trade-Offs
 
11750882_01.PDF
11750882_01.PDF11750882_01.PDF
11750882_01.PDF
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
 
Comms Poster
Comms PosterComms Poster
Comms Poster
 
Automated Parking Enforcement Systems
Automated Parking Enforcement SystemsAutomated Parking Enforcement Systems
Automated Parking Enforcement Systems
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2) IEEE_RFIC 2007 (2)
IEEE_RFIC 2007 (2)
 
IBS TRAINING(new).pptx
IBS TRAINING(new).pptxIBS TRAINING(new).pptx
IBS TRAINING(new).pptx
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 

RF—project

  • 1. Children Detection System Group 4# CHENGLING YANG(RADAR-TX) JIANBO ZHONG(RADAR-RX) MENG WEI(COMM-RX) HE LIU(COMM-TX)
  • 2. Introduction: Children’s safety comes first to their parents and school. Sometimes due to their immaturity, the lack of judgment on the danger, they would go to the dangerous area intentionally or unintentionally. To ensure the safety of children, our system is designed to accomplish following function: 1. Detect the location if children go too far away from the school for a set time (such as 10 mins). 2. The child’s location information would send to the central station in real-time. 1. Project Overview
  • 3. • System Architecture Communication channel Control Center Kindergarten Safe area Radar channel
  • 4. Justification 1.High accuracy 2.Real - time communication 3.High device reliability 4.Easy to implement and operate 5. Less labor
  • 5. • Block Diagram--Radar To n e G e n er at or BPF Driver AmpMixer BPF BPF Mixer Power Amp Received Signal Antenna RX Antenna LNA LNA Tone Power AMP BPF OSC OSC Circulator
  • 6. • Top Level Specification--Radar Parameter Specification Operation Frequency (GHz) 5 Detection Range (m) >1000 TX Gain (dB) 56.2 RX Gain (dB) 57.8 Radar Cross Section (RCS) (𝑚2 ) 1 Antenna Type Dish Minimum Detectable Signal (dBm) -90 Radar Transmit Power (dBm) 28.2
  • 7. • Block Diagram--Communication Tone Gene - radar BPF BPF LO AMP Mixer Baseband Signal BPF BPF LO Mixer COM-TX TX Antenna RX Antenna LNA LNA AMP COM-RX
  • 8. • Top Level Specification--Communication Parameter Specification Frequency (GHz) 2.4 Antenna gain(TX) (dBi) 20 Antenna gain(RX) (dBi) 20 Noise Figure (dB) <3 Transmitting power(Pt) (dBm) >23 Antenna receiving power(Pr) (dBm) >-90 Antenna type Grid Communication range (Km) 100
  • 9. Diagram 2.Radar-TX TONE ID=A1 FRQ=0.3 GHz PWR=-28 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.3 GHz SPwr: 0.00158489 mW SPwr: -28 dBm AMP_B ID=A2 GAIN=18 dB P1DB=24 dBm IP3=38 dBm IP2= MEASREF= OPSAT= NF=2.4 dB NOISE=Auto RFIFRQ= fc: 0.3 GHz SPwr: 0.0999969 mW SPwr: -10.0001 dBm IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-2 dB P1DB=17 dBm IP3=24 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=9 dB NOISE=Auto fc: 5 GHz SPwr: 0.0500249 mW SPwr: -13.0081 dBm BPFB ID=F1 LOSS=2.5 dB N=3 FP1=4.983 GHz FP2=5.016 GHz AP=3.0103 dB NOISE=Auto fc: 5 GHz SPwr: 0.0264762 mW SPwr: -15.7714 dBm AMP_B ID=A4 GAIN=30 dB P1DB=33 dBm IP3=49 dBm IP2= MEASREF= OPSAT= NF=5.5 dB NOISE=Auto RFIFRQ= fc: 5 GHz SPwr: 720.607 mW SPwr: 28.577 dBm TONE ID=A6 FRQ=5.3 GHz PWR=-10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 5.3 GHz SPwr: 0.1 mW SPwr: -10 dBm TP ID=TP1 TP ID=TP2 TP ID=TP4 TP ID=TP5 TP ID=TP6 BPFB ID=F2 LOSS=1 dB N=3 FP1=0.251 GHz FP2=0.349 GHz AP=3.0103 dB NOISE=Auto fc: 0.3 GHz SPwr: 0.0793341 mW SPwr: -11.0054 dBm TP ID=TP3 AMP_B ID=A5 GAIN=14.5 dB P1DB=18 dBm IP3=27 dBm IP2= MEASREF= OPSAT= NF=3.2 dB NOISE=Auto RFIFRQ= fc: 5 GHz SPwr: 0.744042 mW SPwr: -1.28403 dBm 1 2 3 CIRCULATOR ID=S1 LOSS=0.4 dB ISOL=18 dB VSWR=1.25 NOISE=Auto Z=_Z0 Ohm fc: 5 GHz SPwr: 657.202 mW SPwr: 28.177 dBm fc: 5 GHz SPwr: 11.4209 mW SPwr: 10.577 dBm TP ID=TP7 LOAD ID=S2 Z=_Z0 Ohm
  • 10. Simulation Result Radar_Transmit -40 -20 0 20 40 60 TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A5@2) AMP_B (A4@2) CIRCULATOR (S1@2) p1 p2 CIRCULATOR.S1@2 56.2 dB CIRCULATOR.S1@2 28.2 dBm DB(|P_node(TP.TP1,TP.TP7,0,1,0)|)[1] (dBm) radar_transmit DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1] radar_transmit p2: Power Gain, Cumulative, dB Freq = 5 GHz p1: Signal Node Power, dBm Freq = 5 GHz
  • 11. Yield Analysis Radar_Transmit -40 -20 0 20 40 60 80 TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A5@2) AMP_B (A4@2) CIRCULATOR (S1@2) p1 p2 CIRCULATOR.S1@2 16.5 dBm CIRCULATOR.S1@2 34 dBm CIRCULATOR.S1@2 44.5 dB CIRCULATOR.S1@2 62 dB CIRCULATOR.S1@2 56.2 dB CIRCULATOR.S1@2 28.2 dBm DB(|P_node(TP.TP1,TP.TP7,0,1,0)|)[1] (dBm) radar_transmit DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1] radar_transmit p2: Power Gain, Cumulative, dB Freq = 5 GHz p1: Signal Node Power, dBm Freq = 5 GHz
  • 12. where, ft = 5 GHz,, c = 3×108 m/s. The minimum detectable received power (Pmin) is -90 dBm. Detection Range where, ft = 5 GHz Pt = 28.2 dBm, G = 30.5 dB, λ = c/ft = 0.06 m, σ = 1 m2. Power Added Efficiency for TX where, input RF power is, Pin = -28dBm, output RF power is, Pout = 28.2dBm, and total DC power consumption is, PDC = PLNA + PDA + PPA + Pmixer = 6517 mW EIRP=𝑃𝑡 + 𝐺 = 28.2𝑑𝐵𝑚 + 30.5𝑑𝐵 = 58.7𝑑𝐵𝑚 = 28.7𝑑𝐵𝑊 Hand Calculation-Radar TX 𝑃𝐴𝐸 = 𝑃𝑂𝑈𝑇 − 𝑃𝐼𝑁 𝑃 𝐷𝐶 = 10.1% 𝑅max = [ 𝑃 𝑇 𝐺2λ2σ 𝑃 𝑚𝑖𝑛(4π)3]1/4 = 1108.75m
  • 15. MIXER
  • 22. Schematic 3.Communication-RX AMP_B ID=A2 GAIN=24 dB P1DB=23 dBm IP3=36 dBm IP2= MEASREF= OPSAT= NF=0.95 dB NOISE=Auto RFIFRQ= fc: 2.4 GHz SPwr: -51.64 dBm AMP_B ID=A4 GAIN=23 dB P1DB=19 dBm IP3=33 dBm IP2= MEASREF= OPSAT= NF=0.7 dB NOISE=Auto RFIFRQ= fc: 0.2 GHz SPwr: -38.65 dBm BPFB ID=F1 LOSS=1.3 dB N=5 FP1=0.125 GHz FP2=0.25 GHz AP=0.01 dB NOISE=Auto fc: 0.2 GHz SPwr: -61.65 dBm BPFB ID=F2 LOSS=0.7 dB N=3 FP1=2.3 GHz FP2=2.6 GHz AP=0.1 dB NOISE=Auto fc: 2.4 GHz SPwr: -52.3478 dBm IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-8 dB P1DB=20 dBm IP3=35 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10.5 dB NOISE=Auto fc: 0.2 GHz SPwr: -60.3478 dBm TONE ID=A1 FRQ=2.4 GHz PWR=-75.64 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 2.4 GHz SPwr: -75.64 dBm TONE ID=A6 FRQ=2.6 GHz PWR=10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 2.6 GHz SPwr: 10 dBm TP ID=TP1 TP ID=TP2 TP ID=TP3 TP ID=TP4 TP ID=TP5 TP ID=TP6
  • 23. Yield Analysis_Power Gain communication RX results_C_GP 0 10 20 30 40 50 AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p1 AMP_B.A4@2 27.17 dB AMP_B.A4@2 46.79 dB AMP_B.A4@2 36.99 dB DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1] RX p1: Power Gain, Cumulative, dB Freq = 0.2 GHz
  • 24. Yield Analysis_OIP3 communication RX results_C_NF 0 0.5 1 1.5 2 2.5 3 AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p1 AMP_B.A4@2 1.842 dB AMP_B.A4@2 2.827 dB AMP_B.A4@2 2.153 dB DB(C_NF(TP.TP1,TP.TP6,0,1,0,0))[1] RX p1: Cascaded Noise Figure, Signal, Cumulative, dB Freq = 0.2 GHz communication RX results_C_IP3 10 20 30 40 50 AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p1 AMP_B.A4@2 27.35 dBm AMP_B.A4@2 39.26 dBm AMP_B.A4@2 32.78 dBm DB(C_IP3(TP.TP1,TP.TP6,1,1,0,0))[1] (dBm) RX p1: Cascaded OIP3, dBm Freq = 0.2 GHz
  • 25. Yield Analysis_NF communication RX results_C_NF 0 0.5 1 1.5 2 2.5 3 AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p1 AMP_B.A4@2 1.842 dB AMP_B.A4@2 2.827 dB AMP_B.A4@2 2.153 dB DB(C_NF(TP.TP1,TP.TP6,0,1,0,0))[1] RX p1: Cascaded Noise Figure, Signal, Cumulative, dB Freq = 0.2 GHz
  • 26. • Hand Calculation 𝜆 = 𝑐 𝑓 = 0.125𝑚, 𝑅target = 100𝐾𝑚, 𝐺𝑡 = 20𝑑𝐵𝑖, 𝐺𝑟 = 20𝑑𝐵𝑖,𝑃𝑡 = 24.4𝑑𝐵𝑚 10log10 𝜆2 (4𝜋𝑅)2 = −140.4𝑑𝐵 𝑁𝐹 = 2.15𝑑𝐵 Received power at nominal condition (R=100km): 𝑃𝑟 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10 𝜆2 (4𝜋𝑅)2 = −75.64𝑑𝐵𝑚 -90dBm=𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10(𝜆/4πR)2 So from equation above we can get 𝑅 𝑚𝑎𝑥= 552.3km
  • 27. Antenna  Key Features Low price Reasonable Frequency Range
  • 28. Low-Noise Amplifier  Key Features Reasonable Gain, Low NF
  • 29.  Key Features Low Insertion Loss Key Electrical Specifications Model BPF-WiMAX 2.3-2.6/5-1x2 Centre Frequency Stated with 2.3-2.6Ghz Pass Range Width 30Mhz Insertion Loss ≤0.8dB, typ. 0.7dB
  • 30. Mixer  Key Features Reasonable RF and IF Frequency Range Low conversion loss Mixer
  • 31.  Key Features Low Phase Noise Reasonable Frequency Range Oscillator
  • 32. Bandpass Filter  Key Features Low Insertion Loss Reasonable Pass band Key Electrical Specifications Frequency Range 0.125 – 0.25GHz Insertion Loss 1.3 dB
  • 33. Low Noise Amplifier  Key Features High IP3 Low Noise Figure
  • 34. 4.Project Summary • Compliance Matrix-Radar Parameter Theoretical Value Actual Value Compliant Operation Frequency (GHz) 5 5 YES Detection Range (m) 1000 1108.75 YES Radar Cross Section (RCS) (m2) 1 1 YES Antenna type (size) DISH DISH YES Output power (dBm) 28.2 28.2 YES Minimum Detectable Signal (dBm) -90 -90 YES Antenna gain (dB) 30.5 30.5 YES
  • 35. • Compliance Matrix-Communication Parameter Theoretical Value Actual Value Compliant Up link frequency (GHz) 2.4 2.4 YES Antenna gain(TX) (dBi) 20 20 YES Antenna gain(RX) (dBi) 20 20 YES Noise Figure (dB) <3 2.153 YES Transmitting power(Pt) (dBm) >23 24.4 YES Receiving power(RX) (dBm) >-90 -75.6 YES Antenna type Grid Grid YES
  • 36. • DC power Consumption Item Name Power Item Name Power Radar-TX LNA 1.04W Radar-RX LNA 1.2W Oscillator 0.255W Oscillator 0.255W Mixer 0.027W Mixer 0.027W Power Amp 4.65W Power Amp 0.75W Driver Amp 0.8W - - Antenna 100W Antenna 100W Comm-TX IF Amplifier 270mW Comm-RX RF Amplifier 350mW Oscillator 60mW Oscillator 60mW Mixer 200mW Mixer 200mW RF Amplifier 350mW IF Amplifier 270mW Antenna 100W Antenna 100W
  • 37. • 110V AC , Radar • 5V DC to component DC Power Source
  • 38. Health , Environment & Consumer Issues Because this system is working for kindergarten, healthy issue comes very important to us. Health: ANSI/IEEE Standard C95.1-1992 sets the safe radiation power density limit as 10mw/cm2. Due to the function : 𝑃 = 𝐸𝐼𝑅𝑃 4𝜋𝑅2 = 1.5 m𝑊/𝑐𝑚2 Which is reasonable distance. Environment : No pollution.. System Minimum Safety Distance (m) Radar Channel 1.21 Communication Channel (2.4GHz) 0.45
  • 39. Sub-system Categories Price(USD) Radar System TX 198 RX 198 ANT 244 Communication System TX 176 RX 173 ANT 98 Total - 1087 Financial Issues
  • 40. Schedule Start Date Finish Date Build the system diagram 10/1/2016 10/10/2016 Design & simulation 10/11/2016 10/20/2016 Radar module design 10/21/2016 10/31/2016 Comm module design 11/1/2016 11/10/2016 Business Analysis 11/11/2016 11/15/2016 Integration system 11/16/2016 11/20/2016 Fabrication and Test 11/21/2016 11/30/2016
  • 43. TONE ID=A1 FRQ=5 GHz PWR=-88.2 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 5 GHz SPwr: 1.51356e-9 mW SPwr: -88.2 dBm BPFB ID=F1 LOSS=2.5 dB N=3 FP1=4.983 GHz FP2=5.016 GHz AP=3.0103 dB NOISE=Auto fc: 5 GHz SPwr: 5.0544e-7 mW SPwr: -62.9633 dBm AMP_B ID=A2 GAIN=28 dB P1DB=10 dBm IP3=20 dBm IP2= MEASREF= OPSAT= NF=1 dB NOISE=Auto RFIFRQ= fc: 5 GHz SPwr: 9.54993e-7 mW SPwr: -60.2 dBm IN OUT LO MIXER_B ID=A4 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-2 dB P1DB=17 dBm IP3=24 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=9 dB NOISE=Auto fc: 0.3 GHz SPwr: 3.18911e-7 mW SPwr: -64.9633 dBm TONE ID=A5 FRQ=5.3 GHz PWR=-10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 5.3 GHz SPwr: 0.1 mW SPwr: -10 dBm TP ID=TP1 TP ID=TP2 BPFB ID=F2 LOSS=1 dB N=3 FP1=0.251 GHz FP2=0.349 GHz AP=3.0103 dB NOISE=Auto fc: 0.3 GHz SPwr: 2.53013e-7 mW SPwr: -65.9686 dBm AMP_B ID=A6 GAIN=36 dB P1DB=8 dBm IP3=18 dBm IP2= MEASREF= OPSAT= NF=1.3 dB NOISE=Auto RFIFRQ= fc: 0.3 GHz SPwr: 0.00100723 mW SPwr: -29.9687 dBm TP ID=TP3 TP ID=TP4 TP ID=TP5 TP ID=TP6 1 2 3 CIRCULATOR ID=S1 LOSS=0.4 dB ISOL=18 dB VSWR=1.25 NOISE=Auto Z=_Z0 Ohm fc: 0.3 GHz SPwr: 0.000918606 mW SPwr: -30.3687 dBm fc: 0.3 GHz SPwr: 1.59635e-5 mW SPwr: -47.9687 dBm TP ID=TP7 LOAD ID=S2 Z=_Z0 Ohm 1.Radar-RX
  • 44. Simulation Results Radar_Receive 0 10 20 30 40 50 60 AMP_B (A2@2) BPFB (F1@2) MIXER_B (A4@2) BPFB (F2@2) AMP_B (A6@2) CIRCULATOR (S1@2) p3 p2 p1 CIRCULATOR.S1@2 17.6 dBm CIRCULATOR.S1@2 1.087 dB CIRCULATOR.S1@2 57.83 dB DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1] radar_receive DB(C_NF(TP.TP1,TP.TP7,0,1,0,0))[1] radar_receive DB(C_IP3(TP.TP1,TP.TP7,1,1,0,0))[1] (dBm) radar_receive p1: Power Gain, Cumulative, dB Freq = 0.3 GHz p2: Cascaded OIP3, dBm Freq = 0.3 GHz p3: Cascaded Noise Figure, Signal, Cumulative, dB Freq = 0.3 GHz
  • 45. Yield analysis Radar_Receive 0 20 40 60 80 AMP_B (A2@2) BPFB (F1@2) MIXER_B (A4@2) BPFB (F2@2) AMP_B (A6@2) CIRCULATOR (S1@2) p3 p2 p1 CIRCULATOR.S1@2 0.8362 dB CIRCULATOR.S1@2 1.801 dB CIRCULATOR.S1@2 14 dBm CIRCULATOR.S1@2 21.14 dBm CIRCULATOR.S1@2 45.33 dB CIRCULATOR.S1@2 70.62 dB CIRCULATOR.S1@2 17.6 dBm CIRCULATOR.S1@2 1.087 dB CIRCULATOR.S1@2 57.83 dB DB(C_GP(TP.TP1,TP.TP7,1,0,0))[1] radar_receive DB(C_NF(TP.TP1,TP.TP7,0,1,0,0))[1] radar_receive DB(C_IP3(TP.TP1,TP.TP7,1,1,0,0))[1] (dBm) radar_receive p1: Power Gain, Cumulative, dB Freq = 0.3 GHz p2: Cascaded OIP3, dBm Freq = 0.3 GHz p3: Cascaded Noise Figure, Signal, Cumulative, dB Freq = 0.3 GHz
  • 46. Hand Calculation-Radar RX When R=1000m (designed range ) , 𝑃𝑟 is the input power. 𝑃𝑟= 𝑃𝑡G2λ2б (4π)3R4=1.15e-9=-88.2dBm where, ft = 5 GHz, Pt = 28.2 dBm, G = 30.5 dB, λ = c/ft = 0.06 m, σ = 1 m2.
  • 49. Mixer
  • 52. 2.Communication-TX schematic AMP_B ID=A2 GAIN=23 dB P1DB=19 dBm IP3=33 dBm IP2= MEASREF= OPSAT= NF=0.7 dB NOISE=Auto RFIFRQ= fc: 0.2 GHz SPwr: 14.8132 dBm AMP_B ID=A4 GAIN=24 dB P1DB=23 dBm IP3=36 dBm IP2= MEASREF= OPSAT= NF=0.95 dB NOISE=Auto RFIFRQ= fc: 2.4 GHz SPwr: 23.9118 dBm BPFB ID=F1 LOSS=0.7 dB N=3 FP1=2.3 GHz FP2=2.6 GHz AP=0.1 dB NOISE=Auto fc: 2.4 GHz SPwr: 4.70687 dBm BPFB ID=F2 LOSS=1.3 dB N=5 FP1=0.125 GHz FP2=0.25 GHz AP=0.1 dB NOISE=Auto fc: 0.2 GHz SPwr: 13.5104 dBm IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-8 dB P1DB=20 dBm IP3=35 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10.5 dB NOISE=Auto fc: 2.4 GHz SPwr: 5.41462 dBm TONE ID=A1 FRQ=0.2 GHz PWR=-8 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.2 GHz SPwr: -8 dBm TONE ID=A6 FRQ=2.6 GHz PWR=10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 2.6 GHz SPwr: 10 dBm TP ID=TP1 TP ID=TP2 TP ID=TP3 TP ID=TP4 TP ID=TP5 TP ID=TP6
  • 53. Nominal Analysis_Power Gain & IP_Node communication TX nominal results -10 0 10 20 30 40 TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p2 p3 AMP_B.A4@2 32.4 dB AMP_B.A4@2 24.4 dBm DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1] TX DB(|P_node(TP.TP1,TP.TP6,0,1,0)|)[1] (dBm) TX p3: Power Gain, Cumulative, dB Freq = 2.4 GHz p2: Signal Node Power, dBm Freq = 2.4 GHz
  • 54. communication TX results -10 0 10 20 30 40 TONE (A1@1) AMP_B (A2@2) BPFB (F2@2) MIXER_B (A3@2) BPFB (F1@2) AMP_B (A4@2) p2 p3 AMP_B.A4@2 32.77 dB AMP_B.A4@2 27.59 dB AMP_B.A4@2 24.77 dBm AMP_B.A4@2 19.66 dBm AMP_B.A4@2 32.4 dB AMP_B.A4@2 24.4 dBm DB(C_GP(TP.TP1,TP.TP6,1,0,0))[1] TX DB(|P_node(TP.TP1,TP.TP6,0,1,0)|)[1] (dBm) TX p3: Power Gain, Cumulative, dB Freq = 2.4 GHz p2: Signal Node Power, dBm Freq = 2.4 GHz Yield Analysis
  • 55. Low Noise Amplifier Key Features High IP3 Low Noise Figure
  • 56. Bandpass Filter  Key Features Low Insertion Loss Reasonable Passband Key Electrical Specifications Frequency Range 0.125 – 0.25GHz Insertion Loss 1.3 dB
  • 57. Mixer  Key Features Reasonable RF and IF Frequency Range Low conversion loss
  • 58.  Key Features Low Phase Noise Reasonable Frequency Range
  • 59.  Key Features Low Insertion Loss Key Electrical Specifications Model BPF-WiMAX 2.3-2.6/5-1x2 Centre Frequency Stated with 2.3-2.6Ghz Pass Range Width 30Mhz Insertion Loss ≤0.8dB, typ. 0.7dB
  • 61.  Communication TX Maximum Range Analysis • -90dBm=𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 10log10(𝜆/4πR)2 • So from equation above we can get • 𝑅 𝑚𝑎𝑥= 552.3km  Communication TX EIRP 𝑃𝑡 + 𝐺𝑡=24.4+20=44.4dBm=27.54W Communication TX Hand Calculation
  • 62.  Communication TX Power Analysis PLNA = 3V×90mA = 0.27W PMIXER = 5V×40mA = 0.2W PAmp = 5V×70mA = 0.35W Total DC power consumption is, PDC = PMIXER+PLNA+PAmp = 0.82W Overall Power Added Efficiency is, Communication TX PAE Hand Calculation 𝑃𝐴𝐸 = 𝑃𝑡 − 𝑃𝑖𝑛 𝑃𝑑𝑐 ∗ 100% = 275.423𝑚𝑊 − 0.1585𝑚𝑊 820𝑚𝑊 ∗ 100% = 33.57%