SlideShare a Scribd company logo
Distinguishing the regional emergence of United States
summer temperatures between observations
and climate model large ensembles
Zachary M. Labe
Postdoc in Seasonal-to-Decadal Variability and Predictability Division
NOAA GFDL and Princeton University
with…
Nathaniel C. Johnson, NOAA GFDL
Thomas L. Delworth, NOAA GFDL
1 February 2024 – 104th
AMS Annual Meeting
15B.3 – Artificial Intelligence for Environmental Science
@ZLabe
https://zacklabe.com/
NASA/GISS GISTEMPv4
A "warming hole”
Temperature anomalies [ °C ] relative to 1981-2010
Observations from NClimGrid
Climate model data from GFDL SPEAR_MED
United States – Summer
1920 2020
Temperature anomalies [ °C ] relative to 1981-2010
United States – Summer
1920 2020
Dust Bowl – July 1936
Mt. Pinatubo
2022
Eischeid, J. K., Hoerling, M. P., Quan, X. W., Kumar, A., Barsugli, J., Labe,
Z. M., ... & Zhang, X. (2023). Why Has the Summertime Central US
Warming Hole Not Disappeared? Journal of Climate, 36(20), 7319-7336.
https://doi.org/10.1175/JCLI-D-22-0716.1
Persistence is consistent with
unusually high summertime
rainfall over the region
Large ensembles demonstrate
that this rainfall trend can arise
from atmospheric internal
variability alone
Recent trend in tropical Pacific
SST can also reinforce this
pattern
TEMPERATURE
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
TEMPERATURE
TEMPERATURE
Neural network learns nonlinear
combinations of forced climate
patterns to identify the year
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
[e.g., Rader et al. 2022]
Surface Temperature Map Precipitation Map
+
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
Seasonal Maps of T2M, TMAX, TMIN
Input
NOAA GFDL – SPEAR_MED
Fully-Coupled (AM4/LM4/MOM6/SIS2)
Historical + SSP5-8.5
0.5° land/atmosphere, 1.0° ocean
https://www.gfdl.noaa.gov/spear/
Delworth et al. (2020, JAMES)
Seasonal Maps of T2M, TMAX, TMIN
Hidden Layers
Artificial Neural Network
Input
Seasonal Maps of T2M, TMAX, TMIN
Hidden Layers
Output
1921
2100
Artificial Neural Network
Input
Backpropagation
Seasonal Maps of T2M, TMAX, TMIN
Hidden Layers
Output
1921
2100
Artificial Neural Network
Input
Post hoc – XAI methods
Neural Network
Predictions
for SPEAR/Obs
1921 2021 2100
ACTUAL YEARS
PREDICTED
YEARS
NOAA Monthly U.S.
NClimGrid v1.0
1921
2021
2100
Max year predicted in the 1921-1950
baseline for observations
Timing of
Emergence
1921-1950
Skill
1:1 Perfect Prediction
Maximum Temperature Minimum Temperature
June – August – Timing of Emergence (ToE) For Observations Over United States
How is the neural network able to detect the year prior to ~1990?
Temperature anomalies [ °C ] relative to 1981-2010
Machine learning predictions GFDL SPEAR_MED simulation
Machine Learning Explainability Methods – Ad Hoc Feature Attribution
Decrease
likelihood of year
Increase
likelihood of year
Western USA Central USA Eastern USA
Western USA Central USA Eastern USA
Western USA Central USA Eastern USA
1) Is it
aerosols?
Only available from
1921 to 2020
(all forcings)
(all forcings, but no anthropogenic aerosols)
Coherence
Check!
(all forcings)
(a natural-only forcing simulation)
50 km resolution 100 km resolution
2) Is it related to resolution?
SPEAR_MED SPEAR_LO
MAE
(years)
Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989 for different spatial resolutions
3) Is it systematic in CMIP6?
4) So, what is it? The land surface?
TRENDS FROM 1921 TO 1950
SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
Warmer
Colder
Fully-Coupled [Historical]
TRENDS FROM 1921 TO 1950
SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
Warmer
Colder
Fully-Coupled [Historical]
TRENDS FROM 1921 TO 1950
Fully-Coupled [Historical] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
Warmer
Colder
TRENDS IN EVAPORATION
SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
35
Increase
Decrease
Fully-Coupled [Historical]
KEY POINTS
1. Forced temperature changes have emerged in observations during
summer in the United States as detected by an artificial neural network
2. Increasing spatial resolution improves neural network skill for predicting the
year of a given summer temperature map
3. Western United States land surface climate properties contribute to earlier
timing of emergence predictions for the SPEAR climate model
zachary.labe@noaa.gov
Thursday, 1 February 2024
104th American Meteorological Society Annual Meeting
15B.3 – Artificial Intelligence for Environmental Science
Labe, Z.M., N.C. Johnson, and T.L Delworth (2024). Changes in United States summer temperatures
revealed by explainable neural networks, Earth’s Future, DOI: 10.1029/2023EF003981

More Related Content

Similar to Distinguishing the regional emergence of United States summer temperatures between observations and climate model large ensembles

Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Zachary Labe
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figuresZachary Labe
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Zachary Labe
 
Surface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSurface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSérgio Sacani
 
Arctic climate Change: observed and modelled temperature and sea-ice variability
Arctic climate Change: observed and modelled temperature and sea-ice variabilityArctic climate Change: observed and modelled temperature and sea-ice variability
Arctic climate Change: observed and modelled temperature and sea-ice variabilitySimoneBoccuccia
 
A Pinatubo Climate Modeling Investigation
A Pinatubo Climate Modeling InvestigationA Pinatubo Climate Modeling Investigation
A Pinatubo Climate Modeling InvestigationJody Sullivan
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Zachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...Sérgio Sacani
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Zachary Labe
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningZachary Labe
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticZachary Labe
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through dataZachary Labe
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.pptgrssieee
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AIZachary Labe
 
Large-scale Volcanism and the Heat Death of Terrestrial Worlds
Large-scale Volcanism and the Heat Death of Terrestrial WorldsLarge-scale Volcanism and the Heat Death of Terrestrial Worlds
Large-scale Volcanism and the Heat Death of Terrestrial WorldsSérgio Sacani
 
Paleo-constraints on future tropical Pacific climate
Paleo-constraints on future tropical Pacific climatePaleo-constraints on future tropical Pacific climate
Paleo-constraints on future tropical Pacific climateKim Cobb
 
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...TundeAyorinde
 

Similar to Distinguishing the regional emergence of United States summer temperatures between observations and climate model large ensembles (20)

Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figures
 
Annual watercycle
Annual watercycleAnnual watercycle
Annual watercycle
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...
 
Surface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSurface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_spring
 
Arctic climate Change: observed and modelled temperature and sea-ice variability
Arctic climate Change: observed and modelled temperature and sea-ice variabilityArctic climate Change: observed and modelled temperature and sea-ice variability
Arctic climate Change: observed and modelled temperature and sea-ice variability
 
A Pinatubo Climate Modeling Investigation
A Pinatubo Climate Modeling InvestigationA Pinatubo Climate Modeling Investigation
A Pinatubo Climate Modeling Investigation
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiterʼs...
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learning
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the Arctic
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through data
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AI
 
Large-scale Volcanism and the Heat Death of Terrestrial Worlds
Large-scale Volcanism and the Heat Death of Terrestrial WorldsLarge-scale Volcanism and the Heat Death of Terrestrial Worlds
Large-scale Volcanism and the Heat Death of Terrestrial Worlds
 
Paleo-constraints on future tropical Pacific climate
Paleo-constraints on future tropical Pacific climatePaleo-constraints on future tropical Pacific climate
Paleo-constraints on future tropical Pacific climate
 
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...
Application+of+deep+learning+to+estimate+stratospheric+gravity+wave+potential...
 

More from Zachary Labe

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate scienceZachary Labe
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate changeZachary Labe
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesZachary Labe
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateZachary Labe
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesZachary Labe
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureZachary Labe
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureZachary Labe
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Zachary Labe
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesZachary Labe
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionZachary Labe
 
Telling data-driven climate stories
Telling data-driven climate storiesTelling data-driven climate stories
Telling data-driven climate storiesZachary Labe
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Zachary Labe
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeZachary Labe
 
Arctic climate through the lens of data visualization
Arctic climate through the lens of data visualizationArctic climate through the lens of data visualization
Arctic climate through the lens of data visualizationZachary Labe
 

More from Zachary Labe (20)

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkages
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate science
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate change
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing Climate
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkages
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and future
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and future
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualization
 
Sea Ice Anomalies
Sea Ice AnomaliesSea Ice Anomalies
Sea Ice Anomalies
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciences
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detection
 
Telling data-driven climate stories
Telling data-driven climate storiesTelling data-driven climate stories
Telling data-driven climate stories
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate change
 
Arctic climate through the lens of data visualization
Arctic climate through the lens of data visualizationArctic climate through the lens of data visualization
Arctic climate through the lens of data visualization
 

Recently uploaded

The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...Health Advances
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversitySteffi Friedrichs
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONChetanK57
 
SAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesSAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesrodneykiptoo8
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfbinhminhvu04
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxmuralinath2
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...Scintica Instrumentation
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Sérgio Sacani
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Sérgio Sacani
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationanitaento25
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalMd Hasan Tareq
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsMichel Dumontier
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyNoelManyise1
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSELF-EXPLANATORY
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...muralinath2
 
Transport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSETransport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSEjordanparish425
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Sérgio Sacani
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayAADYARAJPANDEY1
 
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptxGLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptxSultanMuhammadGhauri
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionpablovgd
 

Recently uploaded (20)

The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
SAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesSAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniques
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of Bengal
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Transport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSETransport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSE
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptxGLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 

Distinguishing the regional emergence of United States summer temperatures between observations and climate model large ensembles

  • 1. Distinguishing the regional emergence of United States summer temperatures between observations and climate model large ensembles Zachary M. Labe Postdoc in Seasonal-to-Decadal Variability and Predictability Division NOAA GFDL and Princeton University with… Nathaniel C. Johnson, NOAA GFDL Thomas L. Delworth, NOAA GFDL 1 February 2024 – 104th AMS Annual Meeting 15B.3 – Artificial Intelligence for Environmental Science @ZLabe https://zacklabe.com/
  • 3.
  • 5. Temperature anomalies [ °C ] relative to 1981-2010 Observations from NClimGrid Climate model data from GFDL SPEAR_MED United States – Summer 1920 2020
  • 6. Temperature anomalies [ °C ] relative to 1981-2010 United States – Summer 1920 2020 Dust Bowl – July 1936 Mt. Pinatubo 2022
  • 7. Eischeid, J. K., Hoerling, M. P., Quan, X. W., Kumar, A., Barsugli, J., Labe, Z. M., ... & Zhang, X. (2023). Why Has the Summertime Central US Warming Hole Not Disappeared? Journal of Climate, 36(20), 7319-7336. https://doi.org/10.1175/JCLI-D-22-0716.1 Persistence is consistent with unusually high summertime rainfall over the region Large ensembles demonstrate that this rainfall trend can arise from atmospheric internal variability alone Recent trend in tropical Pacific SST can also reinforce this pattern
  • 9. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 10. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 11. We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS] TEMPERATURE
  • 12. TEMPERATURE Neural network learns nonlinear combinations of forced climate patterns to identify the year We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 13. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS [e.g., Rader et al. 2022] Surface Temperature Map Precipitation Map + TEMPERATURE We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 14. Seasonal Maps of T2M, TMAX, TMIN Input NOAA GFDL – SPEAR_MED Fully-Coupled (AM4/LM4/MOM6/SIS2) Historical + SSP5-8.5 0.5° land/atmosphere, 1.0° ocean https://www.gfdl.noaa.gov/spear/ Delworth et al. (2020, JAMES)
  • 15. Seasonal Maps of T2M, TMAX, TMIN Hidden Layers Artificial Neural Network Input
  • 16. Seasonal Maps of T2M, TMAX, TMIN Hidden Layers Output 1921 2100 Artificial Neural Network Input
  • 17. Backpropagation Seasonal Maps of T2M, TMAX, TMIN Hidden Layers Output 1921 2100 Artificial Neural Network Input Post hoc – XAI methods
  • 19. 1921 2021 2100 ACTUAL YEARS PREDICTED YEARS NOAA Monthly U.S. NClimGrid v1.0 1921 2021 2100
  • 20. Max year predicted in the 1921-1950 baseline for observations Timing of Emergence 1921-1950 Skill 1:1 Perfect Prediction
  • 22. June – August – Timing of Emergence (ToE) For Observations Over United States
  • 23. How is the neural network able to detect the year prior to ~1990? Temperature anomalies [ °C ] relative to 1981-2010 Machine learning predictions GFDL SPEAR_MED simulation
  • 24. Machine Learning Explainability Methods – Ad Hoc Feature Attribution Decrease likelihood of year Increase likelihood of year
  • 25. Western USA Central USA Eastern USA
  • 26. Western USA Central USA Eastern USA
  • 27. Western USA Central USA Eastern USA
  • 28. 1) Is it aerosols? Only available from 1921 to 2020 (all forcings) (all forcings, but no anthropogenic aerosols)
  • 30. 50 km resolution 100 km resolution 2) Is it related to resolution? SPEAR_MED SPEAR_LO MAE (years) Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989 for different spatial resolutions
  • 31. 3) Is it systematic in CMIP6?
  • 32. 4) So, what is it? The land surface?
  • 33. TRENDS FROM 1921 TO 1950 SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings Warmer Colder Fully-Coupled [Historical]
  • 34. TRENDS FROM 1921 TO 1950 SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings Warmer Colder Fully-Coupled [Historical]
  • 35. TRENDS FROM 1921 TO 1950 Fully-Coupled [Historical] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings Warmer Colder
  • 36. TRENDS IN EVAPORATION SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings 35 Increase Decrease Fully-Coupled [Historical]
  • 37. KEY POINTS 1. Forced temperature changes have emerged in observations during summer in the United States as detected by an artificial neural network 2. Increasing spatial resolution improves neural network skill for predicting the year of a given summer temperature map 3. Western United States land surface climate properties contribute to earlier timing of emergence predictions for the SPEAR climate model zachary.labe@noaa.gov Thursday, 1 February 2024 104th American Meteorological Society Annual Meeting 15B.3 – Artificial Intelligence for Environmental Science Labe, Z.M., N.C. Johnson, and T.L Delworth (2024). Changes in United States summer temperatures revealed by explainable neural networks, Earth’s Future, DOI: 10.1029/2023EF003981