SlideShare a Scribd company logo
1 of 114
Download to read offline
USING EXPLAINABLE MACHINE
LEARNING FOR EVALUATING PATTERNS
OF CLIMATE CHANGE
https://zacklabe.com/ @ZLabe
Zachary M. Labe
NOAA GFDL and Princeton University; Atmospheric and Oceanic Science
with Dr. Elizabeth A. Barnes at Colorado State University
22 February 2023
Washington State University Vancouver
Natural Sciences Group
Machine Learning
is not new!
But…
Machine Learning
is not new!
https://doi.org/10.1175/1520-0450(1964)003%3C0513:AADPSF%3E2.0.CO;2
Artificial Intelligence
Machine Learning
Deep Learning
Computer/Data Science
Computer/Data Science
Artificial Intelligence
Machine Learning
Deep Learning
Supervised
Learning
Unsupervised
Learning
Labeled data
Classification
Regression
Unlabeled data
Clustering
Dimension reduction
Do it better
e.g., parameterizations in climate models are not
perfect, use ML to make them more accurate
Do it faster
e.g., code in climate models is very slow (but we
know the right answer) - use ML methods to speed
things up
Do something new
• e.g., go looking for non-linear relationships you
didn’t know were there
Very relevant for
research: may be
slower and worse,
but can still learn
something
WHY SHOULD WE CONSIDER
MACHINE LEARNING?
GROWING DATA
Adapted from: Kotamarthi, R., Hayhoe, K., Mearns, L., Wuebbles, D., Jacobs, J., & Jurado, J.
(2021). Global Climate Models. In Downscaling Techniques for High-Resolution Climate
Projections: From Global Change to Local Impacts (pp. 19-39). Cambridge: Cambridge University
Press. doi:10.1017/9781108601269.003
CLIMATE MODELS
Horizontal Grid
Vertical Levels
Past/Present/Future
Fully-Coupled System
20-40 Petabytes of data
ADAPTED FROM EYRING ET AL. 2016
CMIP6
GROWING TOOLS
Python tools for machine learning
Programming Languages Python – Machine Learning Libraries
https://insights.stackoverflow.com/trends
Machine learning for weather
IDENTIFYING SEVERE THUNDERSTORMS
Molina et al. 2021
Toms et al. 2021
CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION
SATELLITE DETECTION
Lee et al. 2021
DETECTING TORNADOES
McGovern et al. 2019
Machine learning for oceanography
CLASSIFYING ARCTIC OCEAN ACIDIFICATION
Krasting et al. 2022
TRACK AND REVEAL DEEP WATER MASSES
Sonnewald and Lguensat, 2021
ESTIMATING OCEAN SURFACE CURRENTS
Sinha and Abernathey, 2021
Machine learning for climate
FINDING FORECASTS OF OPPORTUNITY
Mayer and Barnes, 2021
PREDICTING CLIMATE MODES OF VARIABILITY
Gordon et al. 2021
TIMING OF CLIMATE CHANGE
Barnes et al. 2019
INPUT
[DATA]
PREDICTION
Machine
Learning
INPUT
[DATA]
PREDICTION
~Statistical
Algorithm~
INPUT
[DATA]
PREDICTION
Machine
Learning
Artificial Intelligence
Machine Learning
Deep Learning
X1
X2
INPUTS
Artificial Neural Networks [ANN]
Linear regression!
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑ = X1W1+ X2W2 + b
INPUTS
NODE
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑
INPUTS
NODE
Linear regression with non-linear
mapping by an “activation function”
Training of the network is merely
determining the weights “w” and
bias/offset “b"
= factivation(X1W1+ X2W2 + b)
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑
INPUTS
NODE
= factivation(X1W1+ X2W2 + b)
ReLU Sigmoid Linear
X1
X2
∑
inputs
HIDDEN LAYERS
X3
∑
∑
∑
OUTPUT
= predictions
Artificial Neural Networks [ANN]
: : ::
INPUTS
Complexity and nonlinearities of the ANN allow it to learn many
different pathways of predictable behavior
Once trained, you have an array of weights and biases which can be
used for prediction on new data
INPUT
[DATA]
PREDICTION
Artificial Neural Networks [ANN]
X
Y
Our data
X
Y
Our data
Just an exercise in curve fitting… (overfitting!)
TEMPERATURE
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
TEMPERATURE
TEMPERATURE
Neural network learns nonlinear
combinations of forced climate
patterns to identify the year
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
[e.g., Rader et al. 2022]
Surface Temperature Map Precipitation Map
+
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
Surface Temperature Map Precipitation Map
+
TEMPERATURE
[e.g., Rader et al. 2022]
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
THE REAL WORLD
(Observations)
What is the annual mean temperature of Earth?
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Anomaly is relative to 1951-1980
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again & again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
But let’s remove
climate change…
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
After removing the
forced response…
anomalies/noise!
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
Plus everything else…
(Natural/internal variability)
What is the annual mean temperature of Earth?
Greenhouse gases fixed to 1920 levels
All forcings (CESM-LE)
Industrial aerosols fixed to 1920 levels
[Deser et al. 2020, JCLI]
Fully-coupled CESM1.1
20 Ensemble Members
Run from 1920-2080
Observations
So what?
Greenhouse gases = warming
Aerosols = ?? (though mostly cooling)
What are the relative responses
between greenhouse gas
and aerosol forcing?
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
Input data from one of the
three single forcing large
ensemble simulations
(AER+, GHG+, ALL)
INPUT LAYER
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
Backpropagation – LRP
WHY
WHY
WHY
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Image Classification LRP
https://heatmapping.org/
NOT PERFECT
Crock
Pot
Neural Network
Backpropagation – LRP
WHY
[Adapted from Adebayo et al., 2020]
EXPLAINABLE AI (XAI) IS
NOT PERFECT
THERE ARE MANY
METHODS
A bird!
XAI
[Adapted from Adebayo et al., 2020]
THERE ARE MANY
METHODS
EXPLAINABLE AI (XAI) IS
NOT PERFECT
Visualizing something we already know…
ENSO
Neural
Network
[0] La Niña [1] El Niño
[Toms et al. 2020, JAMES]
Input a map of sea surface temperatures
Visualizing something we already know…
Input maps of sea surface
temperatures (SST) to
identify El Niño or La Niña
Use ‘LRP’ to see how the
neural network is making
its decision
[Toms et al. 2020, JAMES]
Layer-wise Relevance Propagation
Composite SST Observations
LRP [Relevance]
SST Anomaly [°C]
0.00 0.75
0.0 1.5
-1.5
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
Warming
Cooling
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
Warming
Cooling
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
Warming
Cooling
CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS
SLOPES
PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
WHY IS THERE
GREATER SKILL
FOR GHG+?
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
+
Higher LRP values indicate greater relevance
for the ANN’s prediction
AVERAGED OVER 1960-2039
Aerosol-driven
Greenhouse gas-driven
All forcings
Low High
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
Distribution shifted right = more relevant region
KEY POINTS FROM EXAMPLE #1
1. Using explainable AI methods with artificial neural networks (ANN)
reveals climate patterns in large ensemble simulations
2. A metric is proposed for quantifying the uncertainty of an ANN
visualization method that extracts signals from different external
forcings
3. Predictions from an ANN trained using a large ensemble without
time-evolving aerosols show the highest correlation with actual
observations
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
5-year
lowess smoothing
NASA/GISS/GISTEMPv4
“Hiatus”
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in research
Global Warming
Hiatus?
…in the media, etc.
Are slowdowns (“hiatus”) in decadal
warming predictable?
• Statistical construct?
• Lack of surface temperature observations in the Arctic?
• Phase transition of the Interdecadal Pacific Oscillation (IPO)?
• Influence of volcanoes and other aerosol forcing?
• Weaker solar forcing?
• Lower equilibrium climate sensitivity (ECS)?
• Other combinations of internal variability?
FUTURE
WARMING
Select one ensemble
member and calculate
the annual mean
global mean surface
temperature (GMST)
2-m TEMPERATURE
ANOMALY
[Labe and Barnes, 2022; GRL]
Calculate 10-year
moving (linear) trends
2-m TEMPERATURE
ANOMALY
[Labe and Barnes, 2022; GRL]
Plot the slope of the
linear trends
START OF 10-YEAR
TEMPERATURE TREND
2-m TEMPERATURE
ANOMALY
[Labe and Barnes, 2022; GRL]
Calculate a threshold
for defining a slowdown
in decadal warming
[Labe and Barnes, 2022; GRL]
Repeat this exercise for
each ensemble
member in CESM2-LE
[Labe and Barnes, 2022; GRL]
Compare warming
slowdowns with
reanalysis (ERA5)
[Labe and Barnes, 2022; GRL]
[Labe and Barnes, 2022; GRL]
OCEAN HEAT CONTENT – 100 M
Start with anomalous ocean heat…
[Labe and Barnes, 2022; GRL]
OCEAN HEAT CONTENT – 100 M
INPUT LAYER
Start with anomalous ocean heat…
[Labe and Barnes, 2022; GRL]
OCEAN HEAT CONTENT – 100 M
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
YES
SLOWDOWN
NO
SLOWDOWN
Will a slowdown begin?
[Labe and Barnes, 2022; GRL]
OCEAN HEAT CONTENT – 100 M
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
YES
SLOWDOWN
NO
SLOWDOWN
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
LAYER-WISE RELEVANCE PROPAGATION
Will a slowdown begin?
[Labe and Barnes, 2022; GRL]
So how well does the neural network do?
[Labe and Barnes, 2022; GRL]
Low High Colder Warmer
[Labe and Barnes, 2022; GRL]
Low High Colder Warmer
[Labe and Barnes, 2022; GRL]
Low High Colder Warmer
[Labe and Barnes, 2022; GRL]
What about observations?
Future (2012-)
so-called “hiatus”
Comparing
observations to
the IPO
[Labe and Barnes, 2022; GRL]
What about observations?
Future (2012-)
so-called “hiatus”
2021
Looking ahead
to the near-
future…
?
2022
Early 2000s
slowdown
What about observations?
Colder Warmer
[2003, 2004] [2016, 2017]
[Labe and Barnes, 2022; GRL]
LRP Relevance
KEY POINTS FROM EXAMPLE #2
1.Artificial neural network predicts the onset of slowdowns in
decadal warming trends of global mean temperature
2.Explainable AI reveals the neural network is leveraging
tropical patterns of ocean heat content anomalies
3.Transitions in the phase of the Interdecadal Pacific Oscillation
are frequently associated with warming slowdown trends in
CESM2-LE
Labe, Z.M. and E.A. Barnes (2022), Predicting slowdowns in decadal climate warming trends with
explainable neural networks. Geophysical Research Letters, DOI:10.1029/2022GL098173
INPUT
[DATA]
PREDICTION
Machine
Learning
Explainable AI
Learn new
climate science!
MACHINE LEARNING IS JUST
ANOTHER TOOL TO ADD TO OUR
WORKFLOW.
1)
MACHINE LEARNING IS
NO LONGER A BLACK BOX.
2)
WE CAN LEARN NEW SCIENCE
FROM EXPLAINABLE AI.
3)
KEY POINTS
1. Machine learning is just another tool to consider for our scientific workflow
2. We can use explainable AI (XAI) methods to peer into the black box of machine learning
3. We can learn new science by using XAI methods in conjunction with existing statistical tools
Zachary Labe
zachary.labe@noaa.gov
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
Labe, Z.M. and E.A. Barnes (2022), Predicting slowdowns in decadal climate warming trends with
explainable neural networks. Geophysical Research Letters, DOI:10.1029/2022GL098173

More Related Content

What's hot

Seminario Introducción a los SIG y Desarrollo de Aplicaciones
Seminario Introducción a los SIG y Desarrollo de AplicacionesSeminario Introducción a los SIG y Desarrollo de Aplicaciones
Seminario Introducción a los SIG y Desarrollo de AplicacionesEsri
 
Remote Sensing - Fundamentals
Remote Sensing - FundamentalsRemote Sensing - Fundamentals
Remote Sensing - FundamentalsAjay Singh Lodhi
 
Drone flight data processing
Drone flight data processingDrone flight data processing
Drone flight data processingDany Laksono
 
The Role of Lidar Intensity Data in Interpreting Archaeological Landscapes
The Role of Lidar Intensity Data in Interpreting Archaeological LandscapesThe Role of Lidar Intensity Data in Interpreting Archaeological Landscapes
The Role of Lidar Intensity Data in Interpreting Archaeological LandscapesKeith Challis
 
Chapter 3: Remote sensing Technology
Chapter 3: Remote sensing TechnologyChapter 3: Remote sensing Technology
Chapter 3: Remote sensing TechnologyShankar Gangaju
 
Hyperspectral remote sensing of vegetation
Hyperspectral remote sensing of vegetationHyperspectral remote sensing of vegetation
Hyperspectral remote sensing of vegetationSakthivel R
 
GeoServer, an introduction for beginners
GeoServer, an introduction for beginnersGeoServer, an introduction for beginners
GeoServer, an introduction for beginnersGeoSolutions
 
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEWTH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEWgrssieee
 
Introduction to Data Assimilation
Introduction to Data Assimilation Introduction to Data Assimilation
Introduction to Data Assimilation Devanil Choudhury
 
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and Displacement
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and DisplacementTraining and hands-on SNAP Sentinel-1 IW SLC Interferogram and Displacement
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and DisplacementEmmanuel Mathot
 
Model builder in ARC GIS
Model builder in ARC GISModel builder in ARC GIS
Model builder in ARC GISKU Leuven
 
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISSOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISuzma shaikh
 
Electro magnetic radiation principles.pdf
Electro magnetic radiation principles.pdfElectro magnetic radiation principles.pdf
Electro magnetic radiation principles.pdfssusera1eccd
 
Reconnaissance satellite or Spy Satellite
Reconnaissance satellite or Spy Satellite Reconnaissance satellite or Spy Satellite
Reconnaissance satellite or Spy Satellite Shakir Memon
 

What's hot (20)

Seminario Introducción a los SIG y Desarrollo de Aplicaciones
Seminario Introducción a los SIG y Desarrollo de AplicacionesSeminario Introducción a los SIG y Desarrollo de Aplicaciones
Seminario Introducción a los SIG y Desarrollo de Aplicaciones
 
Remote sensing agriculture
Remote sensing agricultureRemote sensing agriculture
Remote sensing agriculture
 
Anti-spam techniques
Anti-spam techniquesAnti-spam techniques
Anti-spam techniques
 
Remote Sensing - Fundamentals
Remote Sensing - FundamentalsRemote Sensing - Fundamentals
Remote Sensing - Fundamentals
 
Drone flight data processing
Drone flight data processingDrone flight data processing
Drone flight data processing
 
The Role of Lidar Intensity Data in Interpreting Archaeological Landscapes
The Role of Lidar Intensity Data in Interpreting Archaeological LandscapesThe Role of Lidar Intensity Data in Interpreting Archaeological Landscapes
The Role of Lidar Intensity Data in Interpreting Archaeological Landscapes
 
Chapter 3: Remote sensing Technology
Chapter 3: Remote sensing TechnologyChapter 3: Remote sensing Technology
Chapter 3: Remote sensing Technology
 
Geodatabases
GeodatabasesGeodatabases
Geodatabases
 
Remote sensing
Remote sensing   Remote sensing
Remote sensing
 
Hyperspectral remote sensing of vegetation
Hyperspectral remote sensing of vegetationHyperspectral remote sensing of vegetation
Hyperspectral remote sensing of vegetation
 
Remote sensing
Remote sensing Remote sensing
Remote sensing
 
GeoServer, an introduction for beginners
GeoServer, an introduction for beginnersGeoServer, an introduction for beginners
GeoServer, an introduction for beginners
 
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEWTH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
 
Introduction to Data Assimilation
Introduction to Data Assimilation Introduction to Data Assimilation
Introduction to Data Assimilation
 
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and Displacement
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and DisplacementTraining and hands-on SNAP Sentinel-1 IW SLC Interferogram and Displacement
Training and hands-on SNAP Sentinel-1 IW SLC Interferogram and Displacement
 
History of GIS.pdf
History of GIS.pdfHistory of GIS.pdf
History of GIS.pdf
 
Model builder in ARC GIS
Model builder in ARC GISModel builder in ARC GIS
Model builder in ARC GIS
 
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISSOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
 
Electro magnetic radiation principles.pdf
Electro magnetic radiation principles.pdfElectro magnetic radiation principles.pdf
Electro magnetic radiation principles.pdf
 
Reconnaissance satellite or Spy Satellite
Reconnaissance satellite or Spy Satellite Reconnaissance satellite or Spy Satellite
Reconnaissance satellite or Spy Satellite
 

Similar to Using explainable machine learning for evaluating patterns of climate change

Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsZachary Labe
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxZachary Labe
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningZachary Labe
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AIZachary Labe
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateZachary Labe
 
Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksZachary Labe
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesZachary Labe
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticZachary Labe
 
Explainable AI for identifying regional climate change patterns
Explainable AI for identifying regional climate change patternsExplainable AI for identifying regional climate change patterns
Explainable AI for identifying regional climate change patternsZachary Labe
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Zachary Labe
 
Using explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsUsing explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsZachary Labe
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Zachary Labe
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Zachary Labe
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionZachary Labe
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityZachary Labe
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United StatesZachary Labe
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Zachary Labe
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Zachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AIZachary Labe
 

Similar to Using explainable machine learning for evaluating patterns of climate change (20)

Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projections
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black box
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learning
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AI
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climate
 
Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networks
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensembles
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the Arctic
 
Explainable AI for identifying regional climate change patterns
Explainable AI for identifying regional climate change patternsExplainable AI for identifying regional climate change patterns
Explainable AI for identifying regional climate change patterns
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...
 
Using explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsUsing explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projections
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detection
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variability
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United States
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AI
 

More from Zachary Labe

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate scienceZachary Labe
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate changeZachary Labe
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesZachary Labe
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Zachary Labe
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateZachary Labe
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesZachary Labe
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through dataZachary Labe
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureZachary Labe
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureZachary Labe
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Zachary Labe
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figuresZachary Labe
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesZachary Labe
 

More from Zachary Labe (20)

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkages
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate science
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate change
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing Climate
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkages
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through data
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and future
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and future
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figures
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualization
 
Sea Ice Anomalies
Sea Ice AnomaliesSea Ice Anomalies
Sea Ice Anomalies
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciences
 

Recently uploaded

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 

Recently uploaded (20)

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 

Using explainable machine learning for evaluating patterns of climate change

  • 1. USING EXPLAINABLE MACHINE LEARNING FOR EVALUATING PATTERNS OF CLIMATE CHANGE https://zacklabe.com/ @ZLabe Zachary M. Labe NOAA GFDL and Princeton University; Atmospheric and Oceanic Science with Dr. Elizabeth A. Barnes at Colorado State University 22 February 2023 Washington State University Vancouver Natural Sciences Group
  • 5. Artificial Intelligence Machine Learning Deep Learning Computer/Data Science
  • 6. Computer/Data Science Artificial Intelligence Machine Learning Deep Learning Supervised Learning Unsupervised Learning Labeled data Classification Regression Unlabeled data Clustering Dimension reduction
  • 7. Do it better e.g., parameterizations in climate models are not perfect, use ML to make them more accurate Do it faster e.g., code in climate models is very slow (but we know the right answer) - use ML methods to speed things up Do something new • e.g., go looking for non-linear relationships you didn’t know were there Very relevant for research: may be slower and worse, but can still learn something WHY SHOULD WE CONSIDER MACHINE LEARNING?
  • 9.
  • 10. Adapted from: Kotamarthi, R., Hayhoe, K., Mearns, L., Wuebbles, D., Jacobs, J., & Jurado, J. (2021). Global Climate Models. In Downscaling Techniques for High-Resolution Climate Projections: From Global Change to Local Impacts (pp. 19-39). Cambridge: Cambridge University Press. doi:10.1017/9781108601269.003 CLIMATE MODELS Horizontal Grid Vertical Levels Past/Present/Future Fully-Coupled System 20-40 Petabytes of data
  • 11. ADAPTED FROM EYRING ET AL. 2016 CMIP6
  • 13.
  • 14. Python tools for machine learning
  • 15. Programming Languages Python – Machine Learning Libraries https://insights.stackoverflow.com/trends
  • 16. Machine learning for weather IDENTIFYING SEVERE THUNDERSTORMS Molina et al. 2021 Toms et al. 2021 CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION SATELLITE DETECTION Lee et al. 2021 DETECTING TORNADOES McGovern et al. 2019
  • 17. Machine learning for oceanography CLASSIFYING ARCTIC OCEAN ACIDIFICATION Krasting et al. 2022 TRACK AND REVEAL DEEP WATER MASSES Sonnewald and Lguensat, 2021 ESTIMATING OCEAN SURFACE CURRENTS Sinha and Abernathey, 2021
  • 18. Machine learning for climate FINDING FORECASTS OF OPPORTUNITY Mayer and Barnes, 2021 PREDICTING CLIMATE MODES OF VARIABILITY Gordon et al. 2021 TIMING OF CLIMATE CHANGE Barnes et al. 2019
  • 24. Linear regression! Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ = X1W1+ X2W2 + b INPUTS NODE
  • 25. Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ INPUTS NODE Linear regression with non-linear mapping by an “activation function” Training of the network is merely determining the weights “w” and bias/offset “b" = factivation(X1W1+ X2W2 + b)
  • 26. Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ INPUTS NODE = factivation(X1W1+ X2W2 + b) ReLU Sigmoid Linear
  • 28. Complexity and nonlinearities of the ANN allow it to learn many different pathways of predictable behavior Once trained, you have an array of weights and biases which can be used for prediction on new data INPUT [DATA] PREDICTION Artificial Neural Networks [ANN]
  • 30. X Y Our data Just an exercise in curve fitting… (overfitting!)
  • 32. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 33. We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS] TEMPERATURE
  • 34. TEMPERATURE Neural network learns nonlinear combinations of forced climate patterns to identify the year We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 35. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS [e.g., Rader et al. 2022] Surface Temperature Map Precipitation Map + TEMPERATURE We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 36. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS Surface Temperature Map Precipitation Map + TEMPERATURE [e.g., Rader et al. 2022] We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 37. THE REAL WORLD (Observations) What is the annual mean temperature of Earth?
  • 38. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Anomaly is relative to 1951-1980
  • 39. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model
  • 40. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again
  • 41. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again & again
  • 42. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES
  • 43. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change)
  • 44. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) But let’s remove climate change…
  • 45. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) After removing the forced response… anomalies/noise!
  • 46. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo)
  • 47. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo) Plus everything else… (Natural/internal variability)
  • 48. What is the annual mean temperature of Earth?
  • 49. Greenhouse gases fixed to 1920 levels All forcings (CESM-LE) Industrial aerosols fixed to 1920 levels [Deser et al. 2020, JCLI] Fully-coupled CESM1.1 20 Ensemble Members Run from 1920-2080 Observations
  • 50. So what? Greenhouse gases = warming Aerosols = ?? (though mostly cooling) What are the relative responses between greenhouse gas and aerosol forcing?
  • 51. Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN) Input data from one of the three single forcing large ensemble simulations (AER+, GHG+, ALL)
  • 52. INPUT LAYER Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 53. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” ARTIFICIAL NEURAL NETWORK (ANN)
  • 54. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN)
  • 55. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 56. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 57. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 58. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network Backpropagation – LRP WHY WHY WHY
  • 59. LAYER-WISE RELEVANCE PROPAGATION (LRP) Image Classification LRP https://heatmapping.org/ NOT PERFECT Crock Pot Neural Network Backpropagation – LRP WHY
  • 60. [Adapted from Adebayo et al., 2020] EXPLAINABLE AI (XAI) IS NOT PERFECT THERE ARE MANY METHODS A bird! XAI
  • 61. [Adapted from Adebayo et al., 2020] THERE ARE MANY METHODS EXPLAINABLE AI (XAI) IS NOT PERFECT
  • 62. Visualizing something we already know… ENSO
  • 63. Neural Network [0] La Niña [1] El Niño [Toms et al. 2020, JAMES] Input a map of sea surface temperatures
  • 64. Visualizing something we already know… Input maps of sea surface temperatures (SST) to identify El Niño or La Niña Use ‘LRP’ to see how the neural network is making its decision [Toms et al. 2020, JAMES] Layer-wise Relevance Propagation Composite SST Observations LRP [Relevance] SST Anomaly [°C] 0.00 0.75 0.0 1.5 -1.5
  • 65. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 66. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA Warming Cooling
  • 67. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA Warming Cooling
  • 68. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA Warming Cooling
  • 69. CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 70. OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 71. OBSERVATIONS SLOPES PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 72. HOW DID THE ANN MAKE ITS PREDICTIONS?
  • 73. HOW DID THE ANN MAKE ITS PREDICTIONS? WHY IS THERE GREATER SKILL FOR GHG+?
  • 74. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 75. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High +
  • 76. Higher LRP values indicate greater relevance for the ANN’s prediction AVERAGED OVER 1960-2039 Aerosol-driven Greenhouse gas-driven All forcings Low High [Labe and Barnes 2021, JAMES]
  • 77. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 78. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES] Distribution shifted right = more relevant region
  • 79. KEY POINTS FROM EXAMPLE #1 1. Using explainable AI methods with artificial neural networks (ANN) reveals climate patterns in large ensemble simulations 2. A metric is proposed for quantifying the uncertainty of an ANN visualization method that extracts signals from different external forcings 3. Predictions from an ANN trained using a large ensemble without time-evolving aerosols show the highest correlation with actual observations Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
  • 80.
  • 90. Are slowdowns (“hiatus”) in decadal warming predictable? • Statistical construct? • Lack of surface temperature observations in the Arctic? • Phase transition of the Interdecadal Pacific Oscillation (IPO)? • Influence of volcanoes and other aerosol forcing? • Weaker solar forcing? • Lower equilibrium climate sensitivity (ECS)? • Other combinations of internal variability? FUTURE WARMING
  • 91. Select one ensemble member and calculate the annual mean global mean surface temperature (GMST) 2-m TEMPERATURE ANOMALY [Labe and Barnes, 2022; GRL]
  • 92. Calculate 10-year moving (linear) trends 2-m TEMPERATURE ANOMALY [Labe and Barnes, 2022; GRL]
  • 93. Plot the slope of the linear trends START OF 10-YEAR TEMPERATURE TREND 2-m TEMPERATURE ANOMALY [Labe and Barnes, 2022; GRL]
  • 94. Calculate a threshold for defining a slowdown in decadal warming [Labe and Barnes, 2022; GRL]
  • 95. Repeat this exercise for each ensemble member in CESM2-LE [Labe and Barnes, 2022; GRL]
  • 96. Compare warming slowdowns with reanalysis (ERA5) [Labe and Barnes, 2022; GRL]
  • 97. [Labe and Barnes, 2022; GRL]
  • 98. OCEAN HEAT CONTENT – 100 M Start with anomalous ocean heat… [Labe and Barnes, 2022; GRL]
  • 99. OCEAN HEAT CONTENT – 100 M INPUT LAYER Start with anomalous ocean heat… [Labe and Barnes, 2022; GRL]
  • 100. OCEAN HEAT CONTENT – 100 M INPUT LAYER HIDDEN LAYERS OUTPUT LAYER YES SLOWDOWN NO SLOWDOWN Will a slowdown begin? [Labe and Barnes, 2022; GRL]
  • 101. OCEAN HEAT CONTENT – 100 M INPUT LAYER HIDDEN LAYERS OUTPUT LAYER YES SLOWDOWN NO SLOWDOWN BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI LAYER-WISE RELEVANCE PROPAGATION Will a slowdown begin? [Labe and Barnes, 2022; GRL]
  • 102. So how well does the neural network do? [Labe and Barnes, 2022; GRL]
  • 103. Low High Colder Warmer [Labe and Barnes, 2022; GRL]
  • 104. Low High Colder Warmer [Labe and Barnes, 2022; GRL]
  • 105. Low High Colder Warmer [Labe and Barnes, 2022; GRL]
  • 106. What about observations? Future (2012-) so-called “hiatus” Comparing observations to the IPO [Labe and Barnes, 2022; GRL]
  • 107. What about observations? Future (2012-) so-called “hiatus” 2021 Looking ahead to the near- future… ? 2022 Early 2000s slowdown
  • 108. What about observations? Colder Warmer [2003, 2004] [2016, 2017] [Labe and Barnes, 2022; GRL] LRP Relevance
  • 109. KEY POINTS FROM EXAMPLE #2 1.Artificial neural network predicts the onset of slowdowns in decadal warming trends of global mean temperature 2.Explainable AI reveals the neural network is leveraging tropical patterns of ocean heat content anomalies 3.Transitions in the phase of the Interdecadal Pacific Oscillation are frequently associated with warming slowdown trends in CESM2-LE Labe, Z.M. and E.A. Barnes (2022), Predicting slowdowns in decadal climate warming trends with explainable neural networks. Geophysical Research Letters, DOI:10.1029/2022GL098173
  • 111. MACHINE LEARNING IS JUST ANOTHER TOOL TO ADD TO OUR WORKFLOW. 1)
  • 112. MACHINE LEARNING IS NO LONGER A BLACK BOX. 2)
  • 113. WE CAN LEARN NEW SCIENCE FROM EXPLAINABLE AI. 3)
  • 114. KEY POINTS 1. Machine learning is just another tool to consider for our scientific workflow 2. We can use explainable AI (XAI) methods to peer into the black box of machine learning 3. We can learn new science by using XAI methods in conjunction with existing statistical tools Zachary Labe zachary.labe@noaa.gov Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464 Labe, Z.M. and E.A. Barnes (2022), Predicting slowdowns in decadal climate warming trends with explainable neural networks. Geophysical Research Letters, DOI:10.1029/2022GL098173