SlideShare a Scribd company logo
De Moivre’s Theorem
De Moivre’s Theorem
    cos  i sin  n  cos n  i sin n
         for all positive integers n
De Moivre’s Theorem
                   cos  i sin  n  cos n  i sin n
                        for all positive integers n
this extends to;
De Moivre’s Theorem
                   cos  i sin  n  cos n  i sin n
                        for all positive integers n
this extends to;
               r cos  i sin  n  r n cos n  i sin n 
De Moivre’s Theorem
                      cos  i sin  n  cos n  i sin n
                            for all positive integers n
this extends to;
                     r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i 
                 5
De Moivre’s Theorem
                      cos  i sin  n  cos n  i sin n
                            for all positive integers n
this extends to;
                     r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i 
                 5
                                       z  12   1
                                                       2


                                          2
De Moivre’s Theorem
                      cos  i sin  n  cos n  i sin n
                            for all positive integers n
this extends to;
                     r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i                                                             1
                 5
                                       z  12   1
                                                       2                          1
                                                                arg z  tan  
                                                                             1 
                                          2
                                                                              
                                                                         
                                                                              4
De Moivre’s Theorem
                       cos  i sin  n  cos n  i sin n
                              for all positive integers n
this extends to;
                      r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i                                                              1
                 5
                                        z  12   1
                                                        2                          1
                                                                 arg z  tan  
                 
                              5
                                                                              1 
          2cis                       2
                     4                                                     
                                                                          
                                                                               4
De Moivre’s Theorem
                       cos  i sin  n  cos n  i sin n
                              for all positive integers n
this extends to;
                      r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i                                                              1
                 5
                                        z  12   1
                                                        2                          1
                                                                 arg z  tan  
                 
                              5
                                                                              1 
          2cis                       2
                     4                                                     
                                                                          
                                                                               4
                      5
          2  cis  
                 5
                        
                    4 
De Moivre’s Theorem
                       cos  i sin  n  cos n  i sin n
                              for all positive integers n
this extends to;
                      r cos  i sin  n  r n cos n  i sin n 
e.g .i  1  i                                                              1
                 5
                                        z  12   1
                                                        2                          1
                                                                 arg z  tan  
                 
                              5
                                                                              1 
          2cis                       2
                     4                                                     
                                                                          
                                                                               4
                      5
          2  cis  
                 5
                        
                    4 
                  3 
          4 2cis 
                  4 
 cos 3  i sin 3 
 4 2                   
           4          4 
 cos 3  i sin 3 
 4 2                   
           4          4 

 4 2 
          1    1 
                 i
          2     2 
 4 2 cos 3  i sin 3 
                          
            4          4 

 4 2 
           1    1 
                  i
           2     2 
 4  4i
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
                 cos 2  i sin 2  cos  i sin  
                                                      2
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
                 cos 2  i sin 2  cos  i sin  
                                                      2


                                  cos 2   2i sin  cos  sin 2 
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
                 cos 2  i sin 2  cos  i sin  
                                                      2


                              cos 2   2i sin  cos  sin 2 
By equating real and imaginary parts
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
                 cos 2  i sin 2  cos  i sin  
                                                      2


                              cos 2   2i sin  cos  sin 2 
By equating real and imaginary parts
    cos 2  cos 2   sin 2 
 4 2 cos 3  i sin 3 
                           
             4          4 

  4 2 
            1    1 
                   i
            2     2 
  4  4i


ii  Express cos 2 and sin 2 in terms of cos and sin 
                 cos 2  i sin 2  cos  i sin  
                                                      2


                              cos 2   2i sin  cos  sin 2 
By equating real and imaginary parts
    cos 2  cos 2   sin 2             sin 2  2 sin  cos
Finding Roots
Finding Roots
 If z n  x  iy
    z n  rcis
Finding Roots
 If z n  x  iy
    z n  rcis
                 2k   
     z  n rcis              k  0,1,, n  1
                 n      
Finding Roots
                     If z n  x  iy
                        z n  rcis
                                     2k   
                         z  n rcis              k  0,1,, n  1
                                     n      
e.g .i  z 2  4i
Finding Roots
                     If z n  x  iy
                         z n  rcis
                                       2k   
                          z  n rcis              k  0,1,, n  1
                                      n 
                                              
e.g .i  z 2  4i
                     
          z 2  4cis
                     2
Finding Roots
                    If z n  x  iy
                        z n  rcis
                                      2k   
                         z  n rcis              k  0,1,, n  1
                                     n 
                                             
e.g .i  z 2  4i
                     
          z 2  4cis
                      2
                     2k   
                           2
           z  2cis              k  0,1
                         2 
                             
                             
Finding Roots
                    If z n  x  iy
                        z n  rcis
                                      2k   
                         z  n rcis              k  0,1,, n  1
                                     n 
                                             
e.g .i  z 2  4i
                     
          z 2  4cis
                      2
                     2k   
                           2
           z  2cis              k  0,1
                         2 
                             
                             
                           5
           z  2cis ,2cis
                     4       4
Finding Roots
                    If z n  x  iy
                        z n  rcis
                                      2k   
                         z  n rcis              k  0,1,, n  1
                                     n 
                                             
e.g .i  z 2  4i
                     
                                             z  2
                                                    1   1   1        1 
          z 2  4cis                                    i ,2       i
                      2                            2    2       2    2 
                     2k   
                           2
           z  2cis              k  0,1
                         2 
                             
                             
                           5
           z  2cis ,2cis
                     4       4
Finding Roots
                    If z n  x  iy
                        z n  rcis
                                      2k   
                         z  n rcis              k  0,1,, n  1
                                     n 
                                             
e.g .i  z 2  4i
                     
                                             z  2
                                                    1   1   1        1 
          z 2  4cis                                    i ,2       i
                      2                            2    2       2    2 
                     2k                 z  2  2i, 2  2i
                           2
           z  2cis              k  0,1
                         2 
                             
                             
                           5
           z  2cis ,2cis
                     4       4
ii  x 4  8  0
ii  x 4  8  0
         x4  8
ii  x 4  8  0
         x4  8
         x 4  8cis 0
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                          3
           x  8cis 0, 8cis , 8cis , 8cis
                4       4         4     4
                           2                2
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                          3
           x  8cis 0, 8cis , 8cis , 8cis
                4       4         4     4
                               2            2
           x  4 8, 4 8i, 4 8, 4 8i
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                                3
            x  8cis 0, 8cis , 8cis , 8cis
                4       4         4      4
                                  2               2
             x  4 8, 4 8i, 4 8, 4 8i
                                        1           1
iii  If z  cos  i sin  , find z  n and z  n
                                      n        n

                                        z           z
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                                3
            x  8cis 0, 8cis , 8cis , 8cis
                4       4         4      4
                                  2               2
             x  4 8, 4 8i, 4 8, 4 8i
                                        1           1
iii  If z  cos  i sin  , find z  n and z  n
                                      n        n

                                        z           z
 z  cos n  i sin n
   n
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                                3
             x  8cis 0, 8cis , 8cis , 8cis
                4       4         4      4
                                  2               2
              x  4 8, 4 8i, 4 8, 4 8i
                                          1         1
iii  If z  cos  i sin  , find z  n and z  n
                                       n       n

                                          z         z
 z  cos n  i sin n
   n

  1
       z n  cos n   i sin  n 
 zn
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis          k  0,1,2,3
                     4  
                                                3
             x  8cis 0, 8cis , 8cis , 8cis
                4       4         4      4
                                  2               2
              x  4 8, 4 8i, 4 8, 4 8i
                                          1         1
iii  If z  cos  i sin  , find z  n and z  n
                                       n       n

                                          z         z
 z  cos n  i sin n
   n

  1
       z n  cos n   i sin  n 
 zn
              cos n  i sin n
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis             k  0,1,2,3
                     4  
                                                      3
             x  8cis 0, 8cis , 8cis , 8cis
                4       4          4        4
                                  2                     2
              x  4 8, 4 8i, 4 8, 4 8i
                                            1             1
iii  If z  cos  i sin  , find z  n and z  n
                                       n             n

                                            z             z
 z  cos n  i sin n
   n

  1
       z n  cos n   i sin  n 
 zn
              cos n  i sin n         cos is even function  cos x   cos x 
                                                                                    
                                         sin is odd function  sin  x    sin x 
ii  x 4  8  0
         x4  8
         x 4  8cis 0
                4    2k 
           x  8cis             k  0,1,2,3
                     4  
                                                      3
             x  8cis 0, 8cis , 8cis , 8cis
                4       4          4        4
                                  2                     2
              x  4 8, 4 8i, 4 8, 4 8i
                                            1             1
iii  If z  cos  i sin  , find z  n and z  n
                                       n             n

                                            z             z
 z  cos n  i sin n
   n

  1
       z n  cos n   i sin  n 
 zn
              cos n  i sin n         cos is even function  cos x   cos x 
                                                                                    
                                         sin is odd function  sin  x    sin x 
               1
           z  n  2 cos n
            n

              z
ii  x 4  8  0
         x4  8
         x 4  8cis 0
               4     2k 
           x  8cis             k  0,1,2,3
                     4  
                                                      3
             x  8cis 0, 8cis , 8cis , 8cis
                4       4          4        4
                                  2                     2
              x  4 8, 4 8i, 4 8, 4 8i
                                            1             1
iii  If z  cos  i sin  , find z  n and z  n
                                       n             n

                                            z             z
 z  cos n  i sin n
   n

  1
       z n  cos n   i sin  n 
 zn
              cos n  i sin n         cos is even function  cos x   cos x 
                                                                                    
                                         sin is odd function  sin  x    sin x 
                   1                                    1
             z  n  2 cos n
               n
                                                  z  n  2i sin n
                                                   n

                   z                                    z
iv  Express cos3  in terms of cos n
iv  Express cos3  in terms of cos n
                          3

    2 cos 3      1
                 z 
                    z
iv  Express cos3  in terms of cos n
                          3

    2 cos 3      1
                 z 
                    z
                         3 1
      8 cos   z  3 z   3
           3       3

                         z z
iv  Express cos3  in terms of cos n
                          3

    2 cos 3      1
                 z 
                    z
                            3 1
      8 cos   z  3 z   3
           3       3

                            z z
               z 3  1   3 z  1 
                                     
                       z3         z
iv  Express cos3  in terms of cos n
                          3

    2 cos 3      1
                 z 
                    z
                            3 1
      8 cos   z  3 z   3
           3       3

                            z z
               z 3  1   3 z  1 
                                     
                       z3         z
               2 cos 3  6 cos
iv  Express cos3  in terms of cos n
                          3

    2 cos 3      1
                 z 
                    z
                            3 1
      8 cos   z  3 z   3
           3       3

                            z z
               z 3  1   3 z  1 
                                     
                       z3         z
               2 cos 3  6 cos
               1        3
      cos3   cos 3  cos
               4        4
Alternative for finding x  iy
Alternative for finding x  iy

                 If   x  iy  a  ib
Alternative for finding x  iy

                 If   x  iy  a  ib
                           x  x  iy
                  then a 
                               2
Alternative for finding x  iy

                 If   x  iy  a  ib
                           x  x  iy       y
                  then a               b
                               2           2a
Alternative for finding x  iy

                  If    x  iy  a  ib
                            x  x  iy        y
                   then a                b
                                2            2a

e.g . Find  12  16i
Alternative for finding x  iy

                   If   x  iy  a  ib
                            x  x  iy        y
                   then a                b
                                2            2a

e.g . Find  12  16i

      12  16i  12 2  16 2
                20
Alternative for finding x  iy

                   If   x  iy  a  ib
                            x  x  iy        y
                   then a                b
                                2            2a

e.g . Find  12  16i

      12  16i  12 2  16 2
                20
       12  20
  a
          2
      8
   
      2
   2
Alternative for finding x  iy

                   If   x  iy  a  ib
                            x  x  iy        y
                   then a                b
                                2            2a

e.g . Find  12  16i

      12  16i  12 2  16 2
                20
       12  20            16
  a                    b
          2                 4
      8                   4
   
      2
   2
Alternative for finding x  iy

                   If   x  iy  a  ib
                            x  x  iy                 y
                   then a                         b
                                2                     2a

e.g . Find  12  16i

      12  16i  12 2  16 2
                20
       12  20            16
  a                    b
          2                 4
      8                   4
   
      2
                                            12  16i  2  4i 
   2
Exercise 4D; evens

  Exercise 4E; 1 to 4 ac

Exercise 4F; 1 to 4, 5ab, 10

More Related Content

More from Nigel Simmons

12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 

X2 T01 05 de moivres theorem (2010)

  • 2. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n
  • 3. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to;
  • 4. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n 
  • 5. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i  5
  • 6. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i  5 z  12   1 2  2
  • 7. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i    1 5 z  12   1 2 1 arg z  tan    1   2   4
  • 8. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i    1 5 z  12   1 2 1 arg z  tan       5  1    2cis    2   4    4
  • 9. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i    1 5 z  12   1 2 1 arg z  tan       5  1    2cis    2   4    4 5   2  cis   5    4 
  • 10. De Moivre’s Theorem cos  i sin  n  cos n  i sin n for all positive integers n this extends to; r cos  i sin  n  r n cos n  i sin n  e.g .i  1  i    1 5 z  12   1 2 1 arg z  tan       5  1    2cis    2   4    4 5   2  cis   5    4   3   4 2cis   4 
  • 11.  cos 3  i sin 3   4 2   4 4 
  • 12.  cos 3  i sin 3   4 2   4 4   4 2  1 1    i  2 2 
  • 13.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i
  • 14.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin 
  • 15.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin  cos 2  i sin 2  cos  i sin   2
  • 16.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin  cos 2  i sin 2  cos  i sin   2  cos 2   2i sin  cos  sin 2 
  • 17.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin  cos 2  i sin 2  cos  i sin   2  cos 2   2i sin  cos  sin 2  By equating real and imaginary parts
  • 18.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin  cos 2  i sin 2  cos  i sin   2  cos 2   2i sin  cos  sin 2  By equating real and imaginary parts cos 2  cos 2   sin 2 
  • 19.  4 2 cos 3  i sin 3    4 4   4 2  1 1    i  2 2   4  4i ii  Express cos 2 and sin 2 in terms of cos and sin  cos 2  i sin 2  cos  i sin   2  cos 2   2i sin  cos  sin 2  By equating real and imaginary parts cos 2  cos 2   sin 2  sin 2  2 sin  cos
  • 21. Finding Roots If z n  x  iy z n  rcis
  • 22. Finding Roots If z n  x  iy z n  rcis  2k    z  n rcis  k  0,1,, n  1  n  
  • 23. Finding Roots If z n  x  iy z n  rcis  2k    z  n rcis  k  0,1,, n  1  n   e.g .i  z 2  4i
  • 24. Finding Roots If z n  x  iy z n  rcis 2k    z  n rcis  k  0,1,, n  1  n    e.g .i  z 2  4i  z 2  4cis 2
  • 25. Finding Roots If z n  x  iy z n  rcis 2k    z  n rcis  k  0,1,, n  1  n    e.g .i  z 2  4i  z 2  4cis 2  2k     2 z  2cis  k  0,1 2     
  • 26. Finding Roots If z n  x  iy z n  rcis 2k    z  n rcis  k  0,1,, n  1  n    e.g .i  z 2  4i  z 2  4cis 2  2k     2 z  2cis  k  0,1 2       5 z  2cis ,2cis 4 4
  • 27. Finding Roots If z n  x  iy z n  rcis 2k    z  n rcis  k  0,1,, n  1  n    e.g .i  z 2  4i  z  2 1 1   1 1  z 2  4cis   i ,2   i 2  2 2   2 2   2k     2 z  2cis  k  0,1 2       5 z  2cis ,2cis 4 4
  • 28. Finding Roots If z n  x  iy z n  rcis 2k    z  n rcis  k  0,1,, n  1  n    e.g .i  z 2  4i  z  2 1 1   1 1  z 2  4cis   i ,2   i 2  2 2   2 2   2k    z  2  2i, 2  2i  2 z  2cis  k  0,1 2       5 z  2cis ,2cis 4 4
  • 29. ii  x 4  8  0
  • 30. ii  x 4  8  0 x4  8
  • 31. ii  x 4  8  0 x4  8 x 4  8cis 0
  • 32. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4  
  • 33. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2
  • 34. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i
  • 35. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z
  • 36. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n
  • 37. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n 1  z n  cos n   i sin  n  zn
  • 38. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n 1  z n  cos n   i sin  n  zn  cos n  i sin n
  • 39. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x 
  • 40. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n n z
  • 41. ii  x 4  8  0 x4  8 x 4  8cis 0 4  2k  x  8cis  k  0,1,2,3  4    3 x  8cis 0, 8cis , 8cis , 8cis 4 4 4 4 2 2 x  4 8, 4 8i, 4 8, 4 8i 1 1 iii  If z  cos  i sin  , find z  n and z  n n n z z z  cos n  i sin n n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 1 z  n  2 cos n n z  n  2i sin n n z z
  • 42. iv  Express cos3  in terms of cos n
  • 43. iv  Express cos3  in terms of cos n 3 2 cos 3  1 z   z
  • 44. iv  Express cos3  in terms of cos n 3 2 cos 3  1 z   z 3 1 8 cos   z  3 z   3 3 3 z z
  • 45. iv  Express cos3  in terms of cos n 3 2 cos 3  1 z   z 3 1 8 cos   z  3 z   3 3 3 z z  z 3  1   3 z  1      z3   z
  • 46. iv  Express cos3  in terms of cos n 3 2 cos 3  1 z   z 3 1 8 cos   z  3 z   3 3 3 z z  z 3  1   3 z  1      z3   z  2 cos 3  6 cos
  • 47. iv  Express cos3  in terms of cos n 3 2 cos 3  1 z   z 3 1 8 cos   z  3 z   3 3 3 z z  z 3  1   3 z  1      z3   z  2 cos 3  6 cos 1 3  cos3   cos 3  cos 4 4
  • 49. Alternative for finding x  iy If x  iy  a  ib
  • 50. Alternative for finding x  iy If x  iy  a  ib x  x  iy then a  2
  • 51. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a
  • 52. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a e.g . Find  12  16i
  • 53. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a e.g . Find  12  16i  12  16i  12 2  16 2  20
  • 54. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a e.g . Find  12  16i  12  16i  12 2  16 2  20  12  20 a 2 8  2 2
  • 55. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a e.g . Find  12  16i  12  16i  12 2  16 2  20  12  20 16 a b 2 4 8 4  2 2
  • 56. Alternative for finding x  iy If x  iy  a  ib x  x  iy y then a  b 2 2a e.g . Find  12  16i  12  16i  12 2  16 2  20  12  20 16 a b 2 4 8 4  2   12  16i  2  4i  2
  • 57. Exercise 4D; evens Exercise 4E; 1 to 4 ac Exercise 4F; 1 to 4, 5ab, 10