SlideShare a Scribd company logo
Edward
2017-06-14 Cloud Community fes @ Google Cloud Next'17 Tokyo
Yuta Kashino ( )
BakFoo, Inc. CEO
Astro Physics /Observational Cosmology
Zope / Python
Realtime Data Platform for Enterprise / Prototyping
Yuta Kashino ( )
arXiv
stat.ML, stat.TH, cs.CV, cs.CL, cs.LG
math-ph, astro-ph
PyCon2016
@yutakashino
https://www.slideshare.net/yutakashino/pyconjp2016
Edward
Edward
- Dustin Tran (Open AI)
- Blei Lab
- (PPL)
- Stan, PyMC3, Anglican, Church, Venture,Figaro, WebPPL
- 2016 2 PPL
- TensorFlow
- George Edward Pelham Box
Box-Cox Trans., Box-Jenkins, Ljung-Box test box plot Tukey,
3 2 RA Fisher
PPL
Edward
TensorFlow(TF) + (PPL)
TF:
PPL: + +
Python/Numpy
1. TF:
1. TF:
-
- :
1. TF:
1. TF:
-
-
- GPU / TPU
Inception v3 Inception v4
1. TF:
- Keras, Slim
- TensorBoard
1. TF:
- DNN: NN
-
-
…
- =
: DropOut DropOut : Yingzhen
Li, Yarin Gal ICML, 2017
1. TF:
-
=
- TF
-
Edward
2.
2.
x:
edward
x⇤
s P(x | ↵)
✓⇤
⇠ Beta(✓ | 1, 1)
2.
- ( )
Edward
p(x, ✓) = Beta(✓ | 1, 1)
50Y
n=1
Bernoulli(xn | ✓),
2.
-
log_prob()
-
mean()
-
sample()
3.
3.
Edward TF
3.
256 28*28
4.
4.
X, Z Z
- (Variational Bayes)
- (MCMC)
p(z | x) =
p(x, z)
R
p(x, z)dz
.
4.
4.
p(z|x) KL q(z)
ELBO
4.
Edward KLqp
5. Box’s loop
5. Box’s loop
George Edward Pelham Box
Blei 2014
5. Box’s loop
Edward
- Edward = TensorFlow + +
- TensorFlow
-
- TF GPU, TPU, TensorBoard, Keras
-
- Box’s Loop
- Python
Refrence
•D. Tran, A. Kucukelbir, A. Dieng, M. Rudolph, D. Liang, and D.M.
Blei. Edward: A library for probabilistic modeling, inference,
and criticism.(arXiv preprint arXiv:1610.09787)
•D. Tran, M.D. Hoffman, R.A. Saurous, E. Brevdo, K. Murphy, and
D.M. Blei. Deep probabilistic programming.(arXiv preprint
arXiv:1701.03757)
•Box, G. E. (1976). Science and statistics. (Journal of the
American Statistical Association, 71(356), 791–799.)
•D.M. Blei. Build, Compute, Critique, Repeat: Data Analysis with
Latent Variable Models. (Annual Review of Statistics and Its
Application Volume 1, 2014)
Questions
kashino@bakfoo.com
@yutakashino
BakFoo, Inc.
NHK NMAPS: +
BakFoo, Inc.
PyConJP 2015
Python
BakFoo, Inc.
BakFoo, Inc.
: SNS +

More Related Content

What's hot

Python kansai2019
Python kansai2019Python kansai2019
Python kansai2019
Yuta Kashino
 
Authors
AuthorsAuthors
Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud
Jianfeng Zhang
 
3. basic data structures(2)
3. basic data structures(2)3. basic data structures(2)
3. basic data structures(2)
Hongjun Jang
 
Zeppelin, TensorFlow, Deep Learning 맛보기
Zeppelin, TensorFlow, Deep Learning 맛보기Zeppelin, TensorFlow, Deep Learning 맛보기
Zeppelin, TensorFlow, Deep Learning 맛보기
Taejun Kim
 
Tree Top
Tree TopTree Top
Tree Top
eventRT
 
RasterFrames + STAC
RasterFrames + STACRasterFrames + STAC
RasterFrames + STAC
Simeon Fitch
 
PyHEP 2019: Python Histogramming Packages
PyHEP 2019: Python Histogramming PackagesPyHEP 2019: Python Histogramming Packages
PyHEP 2019: Python Histogramming Packages
Henry Schreiner
 
IRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and HistIRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and Hist
Henry Schreiner
 
AIC x PyLadies TW Python Data Vis - 2: Plot packages
AIC x PyLadies TW Python Data Vis - 2: Plot packagesAIC x PyLadies TW Python Data Vis - 2: Plot packages
AIC x PyLadies TW Python Data Vis - 2: Plot packages
Yi-Chih Tsai
 
Data visualization using case study
Data visualization using case studyData visualization using case study
Data visualization using case study
Rupak Roy
 
CHEP 2019: Recent developments in histogram libraries
CHEP 2019: Recent developments in histogram librariesCHEP 2019: Recent developments in histogram libraries
CHEP 2019: Recent developments in histogram libraries
Henry Schreiner
 
SciPy 2010 Review
SciPy 2010 ReviewSciPy 2010 Review
SciPy 2010 Review
Enthought, Inc.
 
Making AI efficient
Making AI efficientMaking AI efficient
Making AI efficient
Dr Janet Bastiman
 
Latas bussines
Latas bussinesLatas bussines
Latas bussines
543835
 
IRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram RoadmapIRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram Roadmap
Henry Schreiner
 
Practical Magic with Incanter
Practical Magic with IncanterPractical Magic with Incanter
Practical Magic with Incanter
Data Science London
 
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
Provectus
 
ACAT 2017: GooFit 2.0
ACAT 2017: GooFit 2.0ACAT 2017: GooFit 2.0
ACAT 2017: GooFit 2.0
Henry Schreiner
 

What's hot (19)

Python kansai2019
Python kansai2019Python kansai2019
Python kansai2019
 
Authors
AuthorsAuthors
Authors
 
Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud
 
3. basic data structures(2)
3. basic data structures(2)3. basic data structures(2)
3. basic data structures(2)
 
Zeppelin, TensorFlow, Deep Learning 맛보기
Zeppelin, TensorFlow, Deep Learning 맛보기Zeppelin, TensorFlow, Deep Learning 맛보기
Zeppelin, TensorFlow, Deep Learning 맛보기
 
Tree Top
Tree TopTree Top
Tree Top
 
RasterFrames + STAC
RasterFrames + STACRasterFrames + STAC
RasterFrames + STAC
 
PyHEP 2019: Python Histogramming Packages
PyHEP 2019: Python Histogramming PackagesPyHEP 2019: Python Histogramming Packages
PyHEP 2019: Python Histogramming Packages
 
IRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and HistIRIS-HEP: Boost-histogram and Hist
IRIS-HEP: Boost-histogram and Hist
 
AIC x PyLadies TW Python Data Vis - 2: Plot packages
AIC x PyLadies TW Python Data Vis - 2: Plot packagesAIC x PyLadies TW Python Data Vis - 2: Plot packages
AIC x PyLadies TW Python Data Vis - 2: Plot packages
 
Data visualization using case study
Data visualization using case studyData visualization using case study
Data visualization using case study
 
CHEP 2019: Recent developments in histogram libraries
CHEP 2019: Recent developments in histogram librariesCHEP 2019: Recent developments in histogram libraries
CHEP 2019: Recent developments in histogram libraries
 
SciPy 2010 Review
SciPy 2010 ReviewSciPy 2010 Review
SciPy 2010 Review
 
Making AI efficient
Making AI efficientMaking AI efficient
Making AI efficient
 
Latas bussines
Latas bussinesLatas bussines
Latas bussines
 
IRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram RoadmapIRIS-HEP Retreat: Boost-Histogram Roadmap
IRIS-HEP Retreat: Boost-Histogram Roadmap
 
Practical Magic with Incanter
Practical Magic with IncanterPractical Magic with Incanter
Practical Magic with Incanter
 
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
Константин Макарычев (Sofware Engineer): ИСПОЛЬЗОВАНИЕ SPARK ДЛЯ МАШИННОГО ОБ...
 
ACAT 2017: GooFit 2.0
ACAT 2017: GooFit 2.0ACAT 2017: GooFit 2.0
ACAT 2017: GooFit 2.0
 

Viewers also liked

(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
Masahiro Suzuki
 
データ解析のための統計モデリング入門10章前半
データ解析のための統計モデリング入門10章前半データ解析のための統計モデリング入門10章前半
データ解析のための統計モデリング入門10章前半
Shinya Akiba
 
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)Nagayoshi Yamashita
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
Takahiro Kubo
 
20171024NL研報告スライド
20171024NL研報告スライド20171024NL研報告スライド
20171024NL研報告スライド
Masatoshi TSUCHIYA
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)Hidekazu Oiwa
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
Deep Learning JP
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
Deep Learning JP
 
もしその単語がなかったら
もしその単語がなかったらもしその単語がなかったら
もしその単語がなかったら
Hiroshi Nakagawa
 
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Yahoo!デベロッパーネットワーク
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
nocchi_airport
 
SwiftでRiemann球面を扱う
SwiftでRiemann球面を扱うSwiftでRiemann球面を扱う
SwiftでRiemann球面を扱う
hayato iida
 
はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~
宏喜 佐野
 
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
Deep Learning JP
 
10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)
Takanori Ogata
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Takeshi Mikami
 
Agile overview
Agile overviewAgile overview
Agile overview
Tsuyoshi Ushio
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
The Japan DataScientist Society
 
30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト
Satoru Yamamoto
 
Newman アルゴリズムによるソーシャルグラフのクラスタリング
Newman アルゴリズムによるソーシャルグラフのクラスタリングNewman アルゴリズムによるソーシャルグラフのクラスタリング
Newman アルゴリズムによるソーシャルグラフのクラスタリング
Atsushi KOMIYA
 

Viewers also liked (20)

(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 
データ解析のための統計モデリング入門10章前半
データ解析のための統計モデリング入門10章前半データ解析のための統計モデリング入門10章前半
データ解析のための統計モデリング入門10章前半
 
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)
研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
 
20171024NL研報告スライド
20171024NL研報告スライド20171024NL研報告スライド
20171024NL研報告スライド
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
 
もしその単語がなかったら
もしその単語がなかったらもしその単語がなかったら
もしその単語がなかったら
 
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
 
SwiftでRiemann球面を扱う
SwiftでRiemann球面を扱うSwiftでRiemann球面を扱う
SwiftでRiemann球面を扱う
 
はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~
 
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
 
10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」
 
Agile overview
Agile overviewAgile overview
Agile overview
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
 
30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト30分でわかる『R』によるデータ分析|データアーティスト
30分でわかる『R』によるデータ分析|データアーティスト
 
Newman アルゴリズムによるソーシャルグラフのクラスタリング
Newman アルゴリズムによるソーシャルグラフのクラスタリングNewman アルゴリズムによるソーシャルグラフのクラスタリング
Newman アルゴリズムによるソーシャルグラフのクラスタリング
 

Similar to 確率的プログラミングライブラリEdward

1203 ipython pycon
1203 ipython pycon1203 ipython pycon
1203 ipython pycon
kkumar9034
 
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
Rob Emanuele
 
2P-Kt: logic programming with objects & functions in Kotlin
2P-Kt: logic programming with objects & functions in Kotlin2P-Kt: logic programming with objects & functions in Kotlin
2P-Kt: logic programming with objects & functions in Kotlin
Giovanni Ciatto
 
シリコンバレーに行ってきた!
シリコンバレーに行ってきた!シリコンバレーに行ってきた!
シリコンバレーに行ってきた!
Shun Nakamura
 
Python in Astronomy
Python in AstronomyPython in Astronomy
Python in Astronomy
haleyone
 
PyCon JP 2011 Lightning Talk No.10
PyCon JP 2011 Lightning Talk No.10PyCon JP 2011 Lightning Talk No.10
PyCon JP 2011 Lightning Talk No.10
Yoji TAKEUCHI
 
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
PyData
 
Pg big fast ugly acid
Pg big fast ugly acidPg big fast ugly acid
Pg big fast ugly acid
Federico Campoli
 
Ganga: an interface to the LHC computing grid
Ganga: an interface to the LHC computing gridGanga: an interface to the LHC computing grid
Ganga: an interface to the LHC computing grid
Matt Williams
 
Python in the Atmospheric sciences
Python in the Atmospheric sciencesPython in the Atmospheric sciences
Python in the Atmospheric sciences
Scott Collis
 
Python @ PiTech - March 2009
Python @ PiTech - March 2009Python @ PiTech - March 2009
Python @ PiTech - March 2009
tudorprodan
 
LLPlanets Lightning Talk Presentation No.8
LLPlanets Lightning Talk Presentation No.8LLPlanets Lightning Talk Presentation No.8
LLPlanets Lightning Talk Presentation No.8
Yoji TAKEUCHI
 
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICANATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
NIKHIL NAWATHE
 
Collaborations in the Extreme: 
The rise of open code development in the scie...
Collaborations in the Extreme: 
The rise of open code development in the scie...Collaborations in the Extreme: 
The rise of open code development in the scie...
Collaborations in the Extreme: 
The rise of open code development in the scie...
Kelle Cruz
 
PyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtimePyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtime
National Cheng Kung University
 
Creating a Science-Driven Big Data Superhighway
Creating a Science-Driven Big Data SuperhighwayCreating a Science-Driven Big Data Superhighway
Creating a Science-Driven Big Data Superhighway
Larry Smarr
 
Scientific Applications with Python
Scientific Applications with PythonScientific Applications with Python
Scientific Applications with Python
Enthought, Inc.
 
Spark Streaming Intro @KTech
Spark Streaming Intro @KTechSpark Streaming Intro @KTech
Spark Streaming Intro @KTech
Oleg Korolenko
 
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
Kamila Stępniowska
 

Similar to 確率的プログラミングライブラリEdward (19)

1203 ipython pycon
1203 ipython pycon1203 ipython pycon
1203 ipython pycon
 
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
Analyzing Larger RasterData in a Jupyter Notebook with GeoPySpark on AWS - FO...
 
2P-Kt: logic programming with objects & functions in Kotlin
2P-Kt: logic programming with objects & functions in Kotlin2P-Kt: logic programming with objects & functions in Kotlin
2P-Kt: logic programming with objects & functions in Kotlin
 
シリコンバレーに行ってきた!
シリコンバレーに行ってきた!シリコンバレーに行ってきた!
シリコンバレーに行ってきた!
 
Python in Astronomy
Python in AstronomyPython in Astronomy
Python in Astronomy
 
PyCon JP 2011 Lightning Talk No.10
PyCon JP 2011 Lightning Talk No.10PyCon JP 2011 Lightning Talk No.10
PyCon JP 2011 Lightning Talk No.10
 
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
IPython: A Modern Vision of Interactive Computing (PyData SV 2013)
 
Pg big fast ugly acid
Pg big fast ugly acidPg big fast ugly acid
Pg big fast ugly acid
 
Ganga: an interface to the LHC computing grid
Ganga: an interface to the LHC computing gridGanga: an interface to the LHC computing grid
Ganga: an interface to the LHC computing grid
 
Python in the Atmospheric sciences
Python in the Atmospheric sciencesPython in the Atmospheric sciences
Python in the Atmospheric sciences
 
Python @ PiTech - March 2009
Python @ PiTech - March 2009Python @ PiTech - March 2009
Python @ PiTech - March 2009
 
LLPlanets Lightning Talk Presentation No.8
LLPlanets Lightning Talk Presentation No.8LLPlanets Lightning Talk Presentation No.8
LLPlanets Lightning Talk Presentation No.8
 
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICANATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
NATURAL OBJECT ORIENTED PROGRAMMING USING ELICA
 
Collaborations in the Extreme: 
The rise of open code development in the scie...
Collaborations in the Extreme: 
The rise of open code development in the scie...Collaborations in the Extreme: 
The rise of open code development in the scie...
Collaborations in the Extreme: 
The rise of open code development in the scie...
 
PyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtimePyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtime
 
Creating a Science-Driven Big Data Superhighway
Creating a Science-Driven Big Data SuperhighwayCreating a Science-Driven Big Data Superhighway
Creating a Science-Driven Big Data Superhighway
 
Scientific Applications with Python
Scientific Applications with PythonScientific Applications with Python
Scientific Applications with Python
 
Spark Streaming Intro @KTech
Spark Streaming Intro @KTechSpark Streaming Intro @KTech
Spark Streaming Intro @KTech
 
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
How You Can Use Open Source Materials to Learn Python & Data Science - EuroPy...
 

More from Yuta Kashino

Mlse20190208
Mlse20190208Mlse20190208
Mlse20190208
Yuta Kashino
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
Yuta Kashino
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
Yuta Kashino
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
Yuta Kashino
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
Yuta Kashino
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
Yuta Kashino
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
Yuta Kashino
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
Yuta Kashino
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
Yuta Kashino
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
Yuta Kashino
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
Yuta Kashino
 
Gunosy2015-08-05
Gunosy2015-08-05Gunosy2015-08-05
Gunosy2015-08-05
Yuta Kashino
 
Gunosy2015 07-07
Gunosy2015 07-07Gunosy2015 07-07
Gunosy2015 07-07
Yuta Kashino
 
Gunosy2015-06-03
Gunosy2015-06-03Gunosy2015-06-03
Gunosy2015-06-03
Yuta Kashino
 
PyDataTokyo201-05-22
PyDataTokyo201-05-22PyDataTokyo201-05-22
PyDataTokyo201-05-22
Yuta Kashino
 
Gunosy go2015 06-02
Gunosy go2015 06-02Gunosy go2015 06-02
Gunosy go2015 06-02Yuta Kashino
 
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
Yuta Kashino
 
Opendata@tokyowebmining
Opendata@tokyowebminingOpendata@tokyowebmining
Opendata@tokyowebmining
Yuta Kashino
 

More from Yuta Kashino (18)

Mlse20190208
Mlse20190208Mlse20190208
Mlse20190208
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
 
Gunosy2015-08-05
Gunosy2015-08-05Gunosy2015-08-05
Gunosy2015-08-05
 
Gunosy2015 07-07
Gunosy2015 07-07Gunosy2015 07-07
Gunosy2015 07-07
 
Gunosy2015-06-03
Gunosy2015-06-03Gunosy2015-06-03
Gunosy2015-06-03
 
PyDataTokyo201-05-22
PyDataTokyo201-05-22PyDataTokyo201-05-22
PyDataTokyo201-05-22
 
Gunosy go2015 06-02
Gunosy go2015 06-02Gunosy go2015 06-02
Gunosy go2015 06-02
 
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
FLAME: Probabilistic Model Combining Aspect Based Opinion Mining and Collabor...
 
Opendata@tokyowebmining
Opendata@tokyowebminingOpendata@tokyowebmining
Opendata@tokyowebmining
 

Recently uploaded

Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...
Paul Brebner
 
Stork Product Overview: An AI-Powered Autonomous Delivery Fleet
Stork Product Overview: An AI-Powered Autonomous Delivery FleetStork Product Overview: An AI-Powered Autonomous Delivery Fleet
Stork Product Overview: An AI-Powered Autonomous Delivery Fleet
Vince Scalabrino
 
The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024
Yara Milbes
 
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptxOperational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
sandeepmenon62
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
kalichargn70th171
 
What is Continuous Testing in DevOps - A Definitive Guide.pdf
What is Continuous Testing in DevOps - A Definitive Guide.pdfWhat is Continuous Testing in DevOps - A Definitive Guide.pdf
What is Continuous Testing in DevOps - A Definitive Guide.pdf
kalichargn70th171
 
Secure-by-Design Using Hardware and Software Protection for FDA Compliance
Secure-by-Design Using Hardware and Software Protection for FDA ComplianceSecure-by-Design Using Hardware and Software Protection for FDA Compliance
Secure-by-Design Using Hardware and Software Protection for FDA Compliance
ICS
 
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
kgyxske
 
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
OnePlan Solutions
 
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
kalichargn70th171
 
Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)
alowpalsadig
 
42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert
vaishalijagtap12
 
Alluxio Webinar | 10x Faster Trino Queries on Your Data Platform
Alluxio Webinar | 10x Faster Trino Queries on Your Data PlatformAlluxio Webinar | 10x Faster Trino Queries on Your Data Platform
Alluxio Webinar | 10x Faster Trino Queries on Your Data Platform
Alluxio, Inc.
 
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
campbellclarkson
 
Flutter vs. React Native: A Detailed Comparison for App Development in 2024
Flutter vs. React Native: A Detailed Comparison for App Development in 2024Flutter vs. React Native: A Detailed Comparison for App Development in 2024
Flutter vs. React Native: A Detailed Comparison for App Development in 2024
dhavalvaghelanectarb
 
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
widenerjobeyrl638
 
14 th Edition of International conference on computer vision
14 th Edition of International conference on computer vision14 th Edition of International conference on computer vision
14 th Edition of International conference on computer vision
ShulagnaSarkar2
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
safelyiotech
 
Orca: Nocode Graphical Editor for Container Orchestration
Orca: Nocode Graphical Editor for Container OrchestrationOrca: Nocode Graphical Editor for Container Orchestration
Orca: Nocode Graphical Editor for Container Orchestration
Pedro J. Molina
 

Recently uploaded (20)

bgiolcb
bgiolcbbgiolcb
bgiolcb
 
Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...
 
Stork Product Overview: An AI-Powered Autonomous Delivery Fleet
Stork Product Overview: An AI-Powered Autonomous Delivery FleetStork Product Overview: An AI-Powered Autonomous Delivery Fleet
Stork Product Overview: An AI-Powered Autonomous Delivery Fleet
 
The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024
 
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptxOperational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
Operational ease MuleSoft and Salesforce Service Cloud Solution v1.0.pptx
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
 
What is Continuous Testing in DevOps - A Definitive Guide.pdf
What is Continuous Testing in DevOps - A Definitive Guide.pdfWhat is Continuous Testing in DevOps - A Definitive Guide.pdf
What is Continuous Testing in DevOps - A Definitive Guide.pdf
 
Secure-by-Design Using Hardware and Software Protection for FDA Compliance
Secure-by-Design Using Hardware and Software Protection for FDA ComplianceSecure-by-Design Using Hardware and Software Protection for FDA Compliance
Secure-by-Design Using Hardware and Software Protection for FDA Compliance
 
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
 
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
 
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
 
Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)
 
42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert
 
Alluxio Webinar | 10x Faster Trino Queries on Your Data Platform
Alluxio Webinar | 10x Faster Trino Queries on Your Data PlatformAlluxio Webinar | 10x Faster Trino Queries on Your Data Platform
Alluxio Webinar | 10x Faster Trino Queries on Your Data Platform
 
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
🏎️Tech Transformation: DevOps Insights from the Experts 👩‍💻
 
Flutter vs. React Native: A Detailed Comparison for App Development in 2024
Flutter vs. React Native: A Detailed Comparison for App Development in 2024Flutter vs. React Native: A Detailed Comparison for App Development in 2024
Flutter vs. React Native: A Detailed Comparison for App Development in 2024
 
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
 
14 th Edition of International conference on computer vision
14 th Edition of International conference on computer vision14 th Edition of International conference on computer vision
14 th Edition of International conference on computer vision
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
 
Orca: Nocode Graphical Editor for Container Orchestration
Orca: Nocode Graphical Editor for Container OrchestrationOrca: Nocode Graphical Editor for Container Orchestration
Orca: Nocode Graphical Editor for Container Orchestration
 

確率的プログラミングライブラリEdward