SlideShare a Scribd company logo
Data Fabric or Data Mesh?
Copyright © 2020 Oracle and/or its affiliates. 1
Data Fabric or Data Mesh?
Copyright © 2020 Oracle and/or its affiliates. 2
3Copyright © 2020 Oracle and/or its affiliates.
What is a Data Mesh?
4
Microservice
Patterns
Log-based
Integrations
Polyglot Data
Movement
Data Mesh is a data-tier architecture to integrate and
govern enterprise data assets across distributed multi-cloud
environments – two defining characteristics are:
(1) De-centralized data processing; no ETL/Hubs/Lake monoliths
(2) Event-driven; real-time where possible, batch only when necessary
Microservices-centric:
• For the administration, deployment and monitoring of the core
frameworks of data movement and governance
• “Sidecar Proxy” style pattern for Events and Data; Aligns with
Service Mesh frameworks (Kubernetes, Istio, etc)
Immutable event-logs for data integrations:
• Messaging and data store events are globally accessible via
immutable event logs
• Logs may be used to drive Streaming or Batch integrations
Distributed data movement of all types of data
• A data mesh moves data: Relational, NoSQL, JSON, Graph…
• Relational data consistency (ACID) during data movement
• Must work reliably with enterprise OLTP data sets
https://en.wikipedia.org/wiki/ACID
Data
Mesh
Event
Streaming
Immutable
Logs
Data
Replication
Polyglot
Persistence
Edge / 5G
Frameworks
Domain
Driven
Design
Service Mesh
“Sidecars”
Data
Mesh
Evolution towards Real-Time Data Mesh
Copyright © 2020 Oracle and/or its affiliates.
Industry 3.0: Hub and Spoke Transitional: Kappa Hub Mature: Distributed Kappa
This data pattern, popularized by Ralph
Kimball and Bill Inmon, has been the
foundation for enterprise data
management since 1993.
It is transaction consistent, can scale up
nicely for most use cases, and is based on
SQL, lingua-franca for most tools.
By 2010, the Lambda (big data) pattern
was common. In 2014, Jay Kreps (of
LinkedIn) questioned the Lambda
Architecture and spawned Kappa.
The Kappa principles consider batch
processing as a special case of stream
processing. Use a historized event log to
process both real-time as well as batch
processing.
By 2020, IT infrastructure has
dramatically changed – networking,
containers, cloud, compute, IoT etc have
all pushed data to the edge.
A mature Kappa architecture is not a
single instance “hub” but rather a
distributed mesh of data logs, stream
data processing, change events, and time
series data.
Kappa: https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://en.wikipedia.org/wiki/Dimensional_modeling
mesh & microservice controls
5
ETL
ETL
ETL
ETL
Lambda: http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
Monoliths Distributed
Data Mesh Conceptual View – Data Domains
6Copyright © 2020 Oracle and/or its affiliates.
Enterprise Data
Producers:
ERP Apps, DBs,
Middleware etc.
Data Domain
Consumers
People owners of “Data
Products”, collections of
data sets in various
stages of curation
IoT Data
Producers:
Devices & Things
Raw Data
Prepared Data
Canonical Data Data
Domain A
Data
Domain B
f(x)
f(x)
Data
Domain C
Data Mesh
(distributed Kappa, microservices, cloud agnostic)
Domain-Specific Views of Data
Raw Event Consumers
Automated Devices,
Edge Nodes (5G), Scheduled
Routines (eg; ETL etc)
Data Product-Specific
Storage Choices:
• RDBMS
• Data Lake
• Object Store
• Graph, etc.
Raw data, Time Series & Alerting events are pushed
Direct to Database (high fidelity transaction semantics fully preserved)
Consumer-Driven, Event-Centric Data Mesh
Copyright © 2020 Oracle and/or its affiliates.
Enterprise Data
Producers
Detect
Event
Logical
Change
Records
(LCRs)
App
DB
committed!
CDC Replication
Data Domain
Consumers
Data
Objects
Table
Data
Raw Data
/ Alerts
SQL
Consumers
Raw
Data
Prepared
Data
Canonical
Data
Raw Data (LCR)
Schema Events
(DDL)
Prepared
Data Topics
“Master”
Data Topics
JSON, XML,
Avro, Parquet,
CSV
Prepared data events are pushed
Canonical data events
Speed &
Fidelity
Trusted
Views
Ease of
Consumption
LCR/TFs
Applications,
Data Services
Biz Consumers
Analytics &
Data Marts
Data Science
& Streaming
Applications
DBAs for HA,
DR and OLTP
Data Mesh puts the consumer
needs first – they require data
at different latency, fidelity,
trust levels and views
Data Model
Object Model
System
Of Record
(SoR)
User
Action
App APIs and
system log events
7
Direct to Database (high fidelity transaction semantics fully preserved)
Distributed by Design, Microservices Based
Copyright © 2020 Oracle and/or its affiliates.
Data Domain
Producers
Detect
Event
Logical
Change
Records
(LCRs)
App
DB
committed!
Data Domain
Consumers
Data
Objects
Table
Data
Raw Data
/ Alerts
SQL
Consumers
Data Model
Object Model
System
Of Record
(SoR)
User
Action
CDC Replication
Microservices
Edge Compute
or Cloud for
Raw Data
Events
Prepare
Technical Data
Views
LCRs
Business
Data Views
Raw data, Time Series & Alerting events are pushed
Prepared data events are pushed
Canonical data
Events
(ephemeral or persisted)
Stream
Process
Events
(persisted)
Stream
Process
Events
(persisted)
Applications,
Data Services
Biz Consumers
Analytics &
Data Marts
Data Science
& Streaming
Applications
DBAs for HA,
DR and OLTP
8
Single Pane of Glass for Real-Time Data Mesh
Copyright © 2020 Oracle and/or its affiliates.
connect
DB2/z
Data
Objects
Table
Data
Raw Data
/ Alerts
SQL
Consumers
Applications,
Data Services
Biz Consumers
Analytics &
Data Marts
Data Science
& Streaming
Applications
DBAs for HA,
DR and OLTP
Real-Time Stream
Data Processing
Raw
Data
DBAs &
Data Engineers
Data Owners &
Data Products
9
Data Consumer DrivenEvent Centric Pipelines
Deploys in a Mesh
Across Containers, Public Clouds and 5G Edge Devices
Oracle Focus on Operational Data
10Copyright © 2020 Oracle and/or its affiliates.
DATA
DATA
Oracle data mesh/fabric solution strength in Operational and Analytic use cases
Oracle is only DI vendor that customers trust for 99.99999% up-time SLAs
Business
Applications
Systems of Record
Data Stores
Analytic
Services
Analytic
Data Stores
OLTP Replication, Migrations,
High Availability, Recovery
Data Warehouse, Data Mart,
Data Lake, NoSQL, etc.
Stream Processing/CEP for Event Driven Architectures
Copyright © 2020 Oracle and/or its affiliates.
There has been a widespread
awakening to the benefits of Event
Drive Architecture (EDA) for
increasing the scalability and agility of
business systems. […] Stream
analytics is based on the mathematics
of complex-event processing (CEP).
CEP is a computing technique in
which incoming data about what is
happening (event data) is processed
as it arrives (data in motion or
recently in motion) to generate
higher level, more useful, summary
information (complex events).
W. Roy Schulte (of Gartner), March 2020:
EDA is Suddenly Popular Will Stream Analytics be Next?
Event Stream Analytics (& CEP)
Data & Microservice Events
Event/Data
Pipelines
Time-Series
Analysis
Geospatial
Analysis
Real-time
AI/ML
Continious
ETL
Use Cases:
How it Works Today: GoldenGate for Big Data
Copyright © 2020 Oracle and/or its affiliates.
Data Domain
Consumers
Data
Objects
Table
Data
Raw Data
/ Alerts
SQL
Consumers
Applications,
Data Services
Biz Consumers
Analytics &
Data Marts
Data Science
& Streaming
Applications
DBAs for HA,
DR and OLTP
BYOS (Bring Your Own Spark)
* distributed, may run on any combination of containers and clouds
12
Data Engineer Data AnalystDBA/GG Ops
Capture Pipeline Analyze DeliverIngest
GoldenGate Microservices Applications Stream Analytics Application
BYOM
(Bring Your
Own Messaging)All Data Events
& Transactions
DEMO
SCENARIO
Today’s Demo: Retail / Inventory Analysis
Training
Data
Customer
Data
Merchandising
Data
Orders
Data
Data Preparation
Data Science
Data
Flow
Obj
Store
Prepared
Bulk Data
Prepared
Event Data
Autonomous Data Warehouse
Real Time
Analytics
Mobile / SMS
Alerts
Data / Micro
Services
Data
Visualization
ML
Model
Data Catalog
Weather
Data
Analytics Cloud
Real-time Inventory Alerts, Data
Integration, and Predictive Stocking
Self-Service Data Preparation, Data
Integration and Data Visualization
Data Governance, Search and Access
Today’s Demo: Retail / Inventory Analysis
Training
Data
Customer
Data
Merchandising
Data
Orders
Data
Data Preparation
Data Science
Data
Flow
Obj
Store
Prepared
Bulk Data
Prepared
Event Data
Autonomous Data Warehouse
Real Time
Analytics
Mobile / SMS
Alerts
Data / Micro
Services
Data
Visualization
ML
Model
OCI Data Catalog
Weather
Data
Analytics Cloud
DEMO
Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |
Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

More Related Content

What's hot

Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
DATAVERSITY
 
Apache Kafka® and the Data Mesh
Apache Kafka® and the Data MeshApache Kafka® and the Data Mesh
Apache Kafka® and the Data Mesh
ConfluentInc1
 
Enabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data VirtualizationEnabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data Virtualization
Denodo
 
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
Dr. Arif Wider
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Building the Data Lake with Azure Data Factory and Data Lake Analytics
Building the Data Lake with Azure Data Factory and Data Lake AnalyticsBuilding the Data Lake with Azure Data Factory and Data Lake Analytics
Building the Data Lake with Azure Data Factory and Data Lake Analytics
Khalid Salama
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks Delta
Databricks
 
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
Amazon Web Services
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
James Serra
 
Data mesh
Data meshData mesh
Data mesh
ManojKumarR41
 
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
HostedbyConfluent
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
Databricks
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
Databricks
 
Lakehouse in Azure
Lakehouse in AzureLakehouse in Azure
Lakehouse in Azure
Sergio Zenatti Filho
 
Data Mesh
Data MeshData Mesh
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
HostedbyConfluent
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 

What's hot (20)

Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
 
Apache Kafka® and the Data Mesh
Apache Kafka® and the Data MeshApache Kafka® and the Data Mesh
Apache Kafka® and the Data Mesh
 
Enabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data VirtualizationEnabling a Data Mesh Architecture with Data Virtualization
Enabling a Data Mesh Architecture with Data Virtualization
 
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
Data Mesh in Practice - How Europe's Leading Online Platform for Fashion Goes...
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Building the Data Lake with Azure Data Factory and Data Lake Analytics
Building the Data Lake with Azure Data Factory and Data Lake AnalyticsBuilding the Data Lake with Azure Data Factory and Data Lake Analytics
Building the Data Lake with Azure Data Factory and Data Lake Analytics
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks Delta
 
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
Snowflake: Your Data. No Limits (Session sponsored by Snowflake) - AWS Summit...
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
 
Data mesh
Data meshData mesh
Data mesh
 
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
 
Lakehouse in Azure
Lakehouse in AzureLakehouse in Azure
Lakehouse in Azure
 
Data Mesh
Data MeshData Mesh
Data Mesh
 
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
How to Build the Data Mesh Foundation: A Principled Approach | Zhamak Dehghan...
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
 

Similar to Webinar Data Mesh - Part 3

Webinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafkaWebinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafka
Jeffrey T. Pollock
 
Flash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lonFlash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lon
Jeffrey T. Pollock
 
Microservices Patterns with GoldenGate
Microservices Patterns with GoldenGateMicroservices Patterns with GoldenGate
Microservices Patterns with GoldenGate
Jeffrey T. Pollock
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)
Denodo
 
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Denodo
 
Data Virtualization. An Introduction (ASEAN)
Data Virtualization. An Introduction (ASEAN)Data Virtualization. An Introduction (ASEAN)
Data Virtualization. An Introduction (ASEAN)
Denodo
 
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
Denodo
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo
 
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
Igor De Souza
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
Dell Digital Transformation Through AI and Data Analytics Webinar
Dell Digital Transformation Through AI and  Data Analytics WebinarDell Digital Transformation Through AI and  Data Analytics Webinar
Dell Digital Transformation Through AI and Data Analytics Webinar
Bill Wong
 
ACDKOCHI19 - Next Generation Data Analytics Platform on AWS
ACDKOCHI19 - Next Generation Data Analytics Platform on AWSACDKOCHI19 - Next Generation Data Analytics Platform on AWS
ACDKOCHI19 - Next Generation Data Analytics Platform on AWS
AWS User Group Kochi
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Introduction Big Data
Introduction Big DataIntroduction Big Data
Introduction Big Data
Frank Kienle
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Building big data solutions on azure
Building big data solutions on azureBuilding big data solutions on azure
Building big data solutions on azure
Eyal Ben Ivri
 
Enabling Next Gen Analytics with Azure Data Lake and StreamSets
Enabling Next Gen Analytics with Azure Data Lake and StreamSetsEnabling Next Gen Analytics with Azure Data Lake and StreamSets
Enabling Next Gen Analytics with Azure Data Lake and StreamSets
Streamsets Inc.
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
Comprehensive Guide for Microsoft Fabric to Master Data Analytics
Comprehensive Guide for Microsoft Fabric to Master Data AnalyticsComprehensive Guide for Microsoft Fabric to Master Data Analytics
Comprehensive Guide for Microsoft Fabric to Master Data Analytics
Sparity1
 

Similar to Webinar Data Mesh - Part 3 (20)

Webinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafkaWebinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafka
 
Flash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lonFlash session -streaming--ses1243-lon
Flash session -streaming--ses1243-lon
 
Microservices Patterns with GoldenGate
Microservices Patterns with GoldenGateMicroservices Patterns with GoldenGate
Microservices Patterns with GoldenGate
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)
 
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
Self Service Analytics and a Modern Data Architecture with Data Virtualizatio...
 
Data Virtualization. An Introduction (ASEAN)
Data Virtualization. An Introduction (ASEAN)Data Virtualization. An Introduction (ASEAN)
Data Virtualization. An Introduction (ASEAN)
 
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
 
Virtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & BénéficesVirtualisation de données : Enjeux, Usages & Bénéfices
Virtualisation de données : Enjeux, Usages & Bénéfices
 
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
Data Engineer, Patterns & Architecture The future: Deep-dive into Microservic...
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
 
Dell Digital Transformation Through AI and Data Analytics Webinar
Dell Digital Transformation Through AI and  Data Analytics WebinarDell Digital Transformation Through AI and  Data Analytics Webinar
Dell Digital Transformation Through AI and Data Analytics Webinar
 
ACDKOCHI19 - Next Generation Data Analytics Platform on AWS
ACDKOCHI19 - Next Generation Data Analytics Platform on AWSACDKOCHI19 - Next Generation Data Analytics Platform on AWS
ACDKOCHI19 - Next Generation Data Analytics Platform on AWS
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
 
Introduction Big Data
Introduction Big DataIntroduction Big Data
Introduction Big Data
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
 
Building big data solutions on azure
Building big data solutions on azureBuilding big data solutions on azure
Building big data solutions on azure
 
Enabling Next Gen Analytics with Azure Data Lake and StreamSets
Enabling Next Gen Analytics with Azure Data Lake and StreamSetsEnabling Next Gen Analytics with Azure Data Lake and StreamSets
Enabling Next Gen Analytics with Azure Data Lake and StreamSets
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
 
Comprehensive Guide for Microsoft Fabric to Master Data Analytics
Comprehensive Guide for Microsoft Fabric to Master Data AnalyticsComprehensive Guide for Microsoft Fabric to Master Data Analytics
Comprehensive Guide for Microsoft Fabric to Master Data Analytics
 

More from Jeffrey T. Pollock

2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration
Jeffrey T. Pollock
 
Flash session -goldengate--lht1053-lon
Flash session -goldengate--lht1053-lonFlash session -goldengate--lht1053-lon
Flash session -goldengate--lht1053-lon
Jeffrey T. Pollock
 
Version Control Training - First Lego League
Version Control Training - First Lego LeagueVersion Control Training - First Lego League
Version Control Training - First Lego League
Jeffrey T. Pollock
 
Oracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer IntroductionOracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer Introduction
Jeffrey T. Pollock
 
GoldenGate and Stream Processing with Special Guest Rakuten
GoldenGate and Stream Processing with Special Guest RakutenGoldenGate and Stream Processing with Special Guest Rakuten
GoldenGate and Stream Processing with Special Guest Rakuten
Jeffrey T. Pollock
 
Stream based Data Integration
Stream based Data IntegrationStream based Data Integration
Stream based Data Integration
Jeffrey T. Pollock
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
Jeffrey T. Pollock
 
Oracle Data Integration - Overview
Oracle Data Integration - OverviewOracle Data Integration - Overview
Oracle Data Integration - Overview
Jeffrey T. Pollock
 
Oracle Data Integration CON9737 at OpenWorld
Oracle Data Integration CON9737 at OpenWorldOracle Data Integration CON9737 at OpenWorld
Oracle Data Integration CON9737 at OpenWorld
Jeffrey T. Pollock
 
CDO - Chief Data Officer Momentum and Trends
CDO - Chief Data Officer Momentum and TrendsCDO - Chief Data Officer Momentum and Trends
CDO - Chief Data Officer Momentum and Trends
Jeffrey T. Pollock
 
Big Data at Oracle - Strata 2015 San Jose
Big Data at Oracle - Strata 2015 San JoseBig Data at Oracle - Strata 2015 San Jose
Big Data at Oracle - Strata 2015 San Jose
Jeffrey T. Pollock
 
One Slide Overview: ORCL Big Data Integration and Governance
One Slide Overview: ORCL Big Data Integration and GovernanceOne Slide Overview: ORCL Big Data Integration and Governance
One Slide Overview: ORCL Big Data Integration and Governance
Jeffrey T. Pollock
 
Oracle Big Data Governance Webcast Charts
Oracle Big Data Governance Webcast ChartsOracle Big Data Governance Webcast Charts
Oracle Big Data Governance Webcast Charts
Jeffrey T. Pollock
 
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
Jeffrey T. Pollock
 
Tapping into the Big Data Reservoir (CON7934)
Tapping into the Big Data Reservoir (CON7934)Tapping into the Big Data Reservoir (CON7934)
Tapping into the Big Data Reservoir (CON7934)
Jeffrey T. Pollock
 
Brief lessons from the greatest product managers
Brief lessons from the greatest product managersBrief lessons from the greatest product managers
Brief lessons from the greatest product managers
Jeffrey T. Pollock
 
Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!
Jeffrey T. Pollock
 
Accelerate Return on Data
Accelerate Return on DataAccelerate Return on Data
Accelerate Return on Data
Jeffrey T. Pollock
 
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
Jeffrey T. Pollock
 
2009.10.22 S308460 Cloud Data Services
2009.10.22 S308460  Cloud Data Services2009.10.22 S308460  Cloud Data Services
2009.10.22 S308460 Cloud Data Services
Jeffrey T. Pollock
 

More from Jeffrey T. Pollock (20)

2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration
 
Flash session -goldengate--lht1053-lon
Flash session -goldengate--lht1053-lonFlash session -goldengate--lht1053-lon
Flash session -goldengate--lht1053-lon
 
Version Control Training - First Lego League
Version Control Training - First Lego LeagueVersion Control Training - First Lego League
Version Control Training - First Lego League
 
Oracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer IntroductionOracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer Introduction
 
GoldenGate and Stream Processing with Special Guest Rakuten
GoldenGate and Stream Processing with Special Guest RakutenGoldenGate and Stream Processing with Special Guest Rakuten
GoldenGate and Stream Processing with Special Guest Rakuten
 
Stream based Data Integration
Stream based Data IntegrationStream based Data Integration
Stream based Data Integration
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
 
Oracle Data Integration - Overview
Oracle Data Integration - OverviewOracle Data Integration - Overview
Oracle Data Integration - Overview
 
Oracle Data Integration CON9737 at OpenWorld
Oracle Data Integration CON9737 at OpenWorldOracle Data Integration CON9737 at OpenWorld
Oracle Data Integration CON9737 at OpenWorld
 
CDO - Chief Data Officer Momentum and Trends
CDO - Chief Data Officer Momentum and TrendsCDO - Chief Data Officer Momentum and Trends
CDO - Chief Data Officer Momentum and Trends
 
Big Data at Oracle - Strata 2015 San Jose
Big Data at Oracle - Strata 2015 San JoseBig Data at Oracle - Strata 2015 San Jose
Big Data at Oracle - Strata 2015 San Jose
 
One Slide Overview: ORCL Big Data Integration and Governance
One Slide Overview: ORCL Big Data Integration and GovernanceOne Slide Overview: ORCL Big Data Integration and Governance
One Slide Overview: ORCL Big Data Integration and Governance
 
Oracle Big Data Governance Webcast Charts
Oracle Big Data Governance Webcast ChartsOracle Big Data Governance Webcast Charts
Oracle Big Data Governance Webcast Charts
 
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
Unlocking Big Data Silos in the Enterprise or the Cloud (Con7877)
 
Tapping into the Big Data Reservoir (CON7934)
Tapping into the Big Data Reservoir (CON7934)Tapping into the Big Data Reservoir (CON7934)
Tapping into the Big Data Reservoir (CON7934)
 
Brief lessons from the greatest product managers
Brief lessons from the greatest product managersBrief lessons from the greatest product managers
Brief lessons from the greatest product managers
 
Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!
 
Accelerate Return on Data
Accelerate Return on DataAccelerate Return on Data
Accelerate Return on Data
 
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
2010.03.16 Pollock.Edw2010.Modern D Ifor Warehousing
 
2009.10.22 S308460 Cloud Data Services
2009.10.22 S308460  Cloud Data Services2009.10.22 S308460  Cloud Data Services
2009.10.22 S308460 Cloud Data Services
 

Recently uploaded

ALGIT - Assembly Line for Green IT - Numbers, Data, Facts
ALGIT - Assembly Line for Green IT - Numbers, Data, FactsALGIT - Assembly Line for Green IT - Numbers, Data, Facts
ALGIT - Assembly Line for Green IT - Numbers, Data, Facts
Green Software Development
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
kalichargn70th171
 
Quarter 3 SLRP grade 9.. gshajsbhhaheabh
Quarter 3 SLRP grade 9.. gshajsbhhaheabhQuarter 3 SLRP grade 9.. gshajsbhhaheabh
Quarter 3 SLRP grade 9.. gshajsbhhaheabh
aisafed42
 
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptxMigration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
ervikas4
 
Webinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for EmbeddedWebinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for Embedded
ICS
 
Modelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - AmsterdamModelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - Amsterdam
Alberto Brandolini
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
dakas1
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
kalichargn70th171
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
Patrick Weigel
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
Drona Infotech
 
All you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVMAll you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVM
Alina Yurenko
 
Project Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdfProject Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdf
Karya Keeper
 
Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
Grant Fritchey
 
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLESINTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
anfaltahir1010
 
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom KittEnhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Peter Caitens
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
Sven Peters
 
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdfBaha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid
 
What’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete RoadmapWhat’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete Roadmap
Envertis Software Solutions
 
Preparing Non - Technical Founders for Engaging a Tech Agency
Preparing Non - Technical Founders for Engaging  a  Tech AgencyPreparing Non - Technical Founders for Engaging  a  Tech Agency
Preparing Non - Technical Founders for Engaging a Tech Agency
ISH Technologies
 
GreenCode-A-VSCode-Plugin--Dario-Jurisic
GreenCode-A-VSCode-Plugin--Dario-JurisicGreenCode-A-VSCode-Plugin--Dario-Jurisic
GreenCode-A-VSCode-Plugin--Dario-Jurisic
Green Software Development
 

Recently uploaded (20)

ALGIT - Assembly Line for Green IT - Numbers, Data, Facts
ALGIT - Assembly Line for Green IT - Numbers, Data, FactsALGIT - Assembly Line for Green IT - Numbers, Data, Facts
ALGIT - Assembly Line for Green IT - Numbers, Data, Facts
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
 
Quarter 3 SLRP grade 9.. gshajsbhhaheabh
Quarter 3 SLRP grade 9.. gshajsbhhaheabhQuarter 3 SLRP grade 9.. gshajsbhhaheabh
Quarter 3 SLRP grade 9.. gshajsbhhaheabh
 
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptxMigration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
 
Webinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for EmbeddedWebinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for Embedded
 
Modelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - AmsterdamModelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - Amsterdam
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
 
All you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVMAll you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVM
 
Project Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdfProject Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdf
 
Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
 
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLESINTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
 
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom KittEnhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
 
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdfBaha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
 
What’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete RoadmapWhat’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete Roadmap
 
Preparing Non - Technical Founders for Engaging a Tech Agency
Preparing Non - Technical Founders for Engaging  a  Tech AgencyPreparing Non - Technical Founders for Engaging  a  Tech Agency
Preparing Non - Technical Founders for Engaging a Tech Agency
 
GreenCode-A-VSCode-Plugin--Dario-Jurisic
GreenCode-A-VSCode-Plugin--Dario-JurisicGreenCode-A-VSCode-Plugin--Dario-Jurisic
GreenCode-A-VSCode-Plugin--Dario-Jurisic
 

Webinar Data Mesh - Part 3

  • 1. Data Fabric or Data Mesh? Copyright © 2020 Oracle and/or its affiliates. 1
  • 2. Data Fabric or Data Mesh? Copyright © 2020 Oracle and/or its affiliates. 2
  • 3. 3Copyright © 2020 Oracle and/or its affiliates.
  • 4. What is a Data Mesh? 4 Microservice Patterns Log-based Integrations Polyglot Data Movement Data Mesh is a data-tier architecture to integrate and govern enterprise data assets across distributed multi-cloud environments – two defining characteristics are: (1) De-centralized data processing; no ETL/Hubs/Lake monoliths (2) Event-driven; real-time where possible, batch only when necessary Microservices-centric: • For the administration, deployment and monitoring of the core frameworks of data movement and governance • “Sidecar Proxy” style pattern for Events and Data; Aligns with Service Mesh frameworks (Kubernetes, Istio, etc) Immutable event-logs for data integrations: • Messaging and data store events are globally accessible via immutable event logs • Logs may be used to drive Streaming or Batch integrations Distributed data movement of all types of data • A data mesh moves data: Relational, NoSQL, JSON, Graph… • Relational data consistency (ACID) during data movement • Must work reliably with enterprise OLTP data sets https://en.wikipedia.org/wiki/ACID Data Mesh Event Streaming Immutable Logs Data Replication Polyglot Persistence Edge / 5G Frameworks Domain Driven Design Service Mesh “Sidecars” Data Mesh
  • 5. Evolution towards Real-Time Data Mesh Copyright © 2020 Oracle and/or its affiliates. Industry 3.0: Hub and Spoke Transitional: Kappa Hub Mature: Distributed Kappa This data pattern, popularized by Ralph Kimball and Bill Inmon, has been the foundation for enterprise data management since 1993. It is transaction consistent, can scale up nicely for most use cases, and is based on SQL, lingua-franca for most tools. By 2010, the Lambda (big data) pattern was common. In 2014, Jay Kreps (of LinkedIn) questioned the Lambda Architecture and spawned Kappa. The Kappa principles consider batch processing as a special case of stream processing. Use a historized event log to process both real-time as well as batch processing. By 2020, IT infrastructure has dramatically changed – networking, containers, cloud, compute, IoT etc have all pushed data to the edge. A mature Kappa architecture is not a single instance “hub” but rather a distributed mesh of data logs, stream data processing, change events, and time series data. Kappa: https://www.oreilly.com/radar/questioning-the-lambda-architecture/ https://en.wikipedia.org/wiki/Dimensional_modeling mesh & microservice controls 5 ETL ETL ETL ETL Lambda: http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html Monoliths Distributed
  • 6. Data Mesh Conceptual View – Data Domains 6Copyright © 2020 Oracle and/or its affiliates. Enterprise Data Producers: ERP Apps, DBs, Middleware etc. Data Domain Consumers People owners of “Data Products”, collections of data sets in various stages of curation IoT Data Producers: Devices & Things Raw Data Prepared Data Canonical Data Data Domain A Data Domain B f(x) f(x) Data Domain C Data Mesh (distributed Kappa, microservices, cloud agnostic) Domain-Specific Views of Data Raw Event Consumers Automated Devices, Edge Nodes (5G), Scheduled Routines (eg; ETL etc) Data Product-Specific Storage Choices: • RDBMS • Data Lake • Object Store • Graph, etc.
  • 7. Raw data, Time Series & Alerting events are pushed Direct to Database (high fidelity transaction semantics fully preserved) Consumer-Driven, Event-Centric Data Mesh Copyright © 2020 Oracle and/or its affiliates. Enterprise Data Producers Detect Event Logical Change Records (LCRs) App DB committed! CDC Replication Data Domain Consumers Data Objects Table Data Raw Data / Alerts SQL Consumers Raw Data Prepared Data Canonical Data Raw Data (LCR) Schema Events (DDL) Prepared Data Topics “Master” Data Topics JSON, XML, Avro, Parquet, CSV Prepared data events are pushed Canonical data events Speed & Fidelity Trusted Views Ease of Consumption LCR/TFs Applications, Data Services Biz Consumers Analytics & Data Marts Data Science & Streaming Applications DBAs for HA, DR and OLTP Data Mesh puts the consumer needs first – they require data at different latency, fidelity, trust levels and views Data Model Object Model System Of Record (SoR) User Action App APIs and system log events 7
  • 8. Direct to Database (high fidelity transaction semantics fully preserved) Distributed by Design, Microservices Based Copyright © 2020 Oracle and/or its affiliates. Data Domain Producers Detect Event Logical Change Records (LCRs) App DB committed! Data Domain Consumers Data Objects Table Data Raw Data / Alerts SQL Consumers Data Model Object Model System Of Record (SoR) User Action CDC Replication Microservices Edge Compute or Cloud for Raw Data Events Prepare Technical Data Views LCRs Business Data Views Raw data, Time Series & Alerting events are pushed Prepared data events are pushed Canonical data Events (ephemeral or persisted) Stream Process Events (persisted) Stream Process Events (persisted) Applications, Data Services Biz Consumers Analytics & Data Marts Data Science & Streaming Applications DBAs for HA, DR and OLTP 8
  • 9. Single Pane of Glass for Real-Time Data Mesh Copyright © 2020 Oracle and/or its affiliates. connect DB2/z Data Objects Table Data Raw Data / Alerts SQL Consumers Applications, Data Services Biz Consumers Analytics & Data Marts Data Science & Streaming Applications DBAs for HA, DR and OLTP Real-Time Stream Data Processing Raw Data DBAs & Data Engineers Data Owners & Data Products 9 Data Consumer DrivenEvent Centric Pipelines Deploys in a Mesh Across Containers, Public Clouds and 5G Edge Devices
  • 10. Oracle Focus on Operational Data 10Copyright © 2020 Oracle and/or its affiliates. DATA DATA Oracle data mesh/fabric solution strength in Operational and Analytic use cases Oracle is only DI vendor that customers trust for 99.99999% up-time SLAs Business Applications Systems of Record Data Stores Analytic Services Analytic Data Stores OLTP Replication, Migrations, High Availability, Recovery Data Warehouse, Data Mart, Data Lake, NoSQL, etc.
  • 11. Stream Processing/CEP for Event Driven Architectures Copyright © 2020 Oracle and/or its affiliates. There has been a widespread awakening to the benefits of Event Drive Architecture (EDA) for increasing the scalability and agility of business systems. […] Stream analytics is based on the mathematics of complex-event processing (CEP). CEP is a computing technique in which incoming data about what is happening (event data) is processed as it arrives (data in motion or recently in motion) to generate higher level, more useful, summary information (complex events). W. Roy Schulte (of Gartner), March 2020: EDA is Suddenly Popular Will Stream Analytics be Next? Event Stream Analytics (& CEP) Data & Microservice Events Event/Data Pipelines Time-Series Analysis Geospatial Analysis Real-time AI/ML Continious ETL Use Cases:
  • 12. How it Works Today: GoldenGate for Big Data Copyright © 2020 Oracle and/or its affiliates. Data Domain Consumers Data Objects Table Data Raw Data / Alerts SQL Consumers Applications, Data Services Biz Consumers Analytics & Data Marts Data Science & Streaming Applications DBAs for HA, DR and OLTP BYOS (Bring Your Own Spark) * distributed, may run on any combination of containers and clouds 12 Data Engineer Data AnalystDBA/GG Ops Capture Pipeline Analyze DeliverIngest GoldenGate Microservices Applications Stream Analytics Application BYOM (Bring Your Own Messaging)All Data Events & Transactions
  • 14. Today’s Demo: Retail / Inventory Analysis Training Data Customer Data Merchandising Data Orders Data Data Preparation Data Science Data Flow Obj Store Prepared Bulk Data Prepared Event Data Autonomous Data Warehouse Real Time Analytics Mobile / SMS Alerts Data / Micro Services Data Visualization ML Model Data Catalog Weather Data Analytics Cloud Real-time Inventory Alerts, Data Integration, and Predictive Stocking Self-Service Data Preparation, Data Integration and Data Visualization Data Governance, Search and Access
  • 15. Today’s Demo: Retail / Inventory Analysis Training Data Customer Data Merchandising Data Orders Data Data Preparation Data Science Data Flow Obj Store Prepared Bulk Data Prepared Event Data Autonomous Data Warehouse Real Time Analytics Mobile / SMS Alerts Data / Micro Services Data Visualization ML Model OCI Data Catalog Weather Data Analytics Cloud
  • 16. DEMO
  • 17.
  • 18. Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.