SlideShare a Scribd company logo
1
This lecture will cover:
Field-effect transistor (FET) review
Motivation for TFET
Device design and simulation
Literature review
Simulation results
2
Field-effect transistor (FET)
review
 Switch
 On: ID is high
 Off: ID is low
Landauer Formula:
𝐼𝐷 =
𝑞
ℎ −∞
∞
𝑑𝐸𝐷(𝐸 − 𝑈)(
𝛾1𝛾2
𝛾1 + 𝛾2
)[𝑓1 𝐸 − 𝑓2 𝐸 ]
3
Motivation
"Intel," 2011. Available: http://www.carthrottle.com/why-chemistry-dictates-an-electric-vehicle-
future/
4
Current-voltage (IV) curve
 Subthreshold Swing SS (mV/dec):
𝜕𝑉𝑔𝑠
𝜕log(𝐼𝑑)
 Power P=(1/2)C𝑉𝑑
2
f+VdIloff
Ioff
Ion
~60 mV/dec
MOSFET IV Curve
5
𝜕𝑉𝐺𝑆
𝜕log(𝐼𝐷)
= 𝑙𝑛 10 ∗ (
𝜕𝐼𝐷
𝜕𝑉𝐺𝑆
∗
1
𝐼𝐷,𝑜𝑛
)−1
≈ 60 mV/dec
6
Tunnel Field Effect Transistor (TFET)
Tunnel Field Effect Transistor (TFET)
𝐼𝑑 =
2𝑒
ℎ
𝑊
𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
7
Off
On
𝐸𝑐
𝐸𝑣
q∆𝑉𝐺
λ
Channel
Source Drain
𝑓𝑠 𝐸
Device design and simulation
µ1
µ2
[𝛴]1
Source Drain
Gate
𝑉𝐷𝑆
𝐼𝐷𝑆
[𝛴]2
[H]
Green Function: 𝐺 = (𝐸𝐼 − 𝐻 − Σ 1 − Σ 2) −1
8
Graphene Nanoribbon (GNR)
Subbands Transmission
9
Relevant Functions (analytical)
SS=
𝜕𝑉𝑔𝑠
𝜕log(𝐼𝑑)
= 𝐥𝐧 𝟏𝟎 ∗ (
𝝏𝑰𝒅
𝝏𝑽𝒈𝒔
∗
𝟏
𝑰𝒅,𝒐𝒏
)−𝟏

𝝏𝑰𝒅
𝝏𝑽𝒈𝒔
= 𝒆
𝝏𝑰𝒅
𝝏𝑬𝒗
𝒄𝒉 =
𝟐𝒆𝟐
𝒉
(
𝝏𝑻𝑾𝑲𝑩
𝑬𝒗
𝒄𝒉 𝑭 𝑬𝒗
𝒄𝒉 + 𝑻𝑾𝑲𝑩
𝝏𝑭(𝑬𝒗
𝒄𝒉)
𝝏𝑬𝒗
𝒄𝒉 )
 𝑻𝑾𝑲𝑩 = 𝒆
−
𝟒𝜦 𝟐𝒎∗𝑬𝒈
𝟑
𝟐
𝟑𝒉 ∆𝝓+𝑬𝒈
 F 𝑬𝒗
𝒄𝒉 = 𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
10
J. Knoch, S. Mantl and J. Appenzeller, "Impact of dimensionality on the performance of tunneling
FETs: Bulk versus one-dimensional devices," ScienceDirect, vol. 51, pp. 572-78, 2007.
Literature Review: MOSFET/TFET IV
of different material system
A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient
electronics switches," Nature, vol. 479, pp. 329-337, 2011.
11
Literature Review: varying gate
overlap & differential voltage
Gate overlap improves SS
without degrading Ion and Ioff
Differential voltage between top and bottom gate
for a double gate TFET correlates positively with Ion/Ioff
Fiori, G.; Iannaccone, G., "Ultralow-Voltage Bilayer Graphene Tunnel FET," Electron Device Letters,
IEEE , vol.0, no.10, pp.1096,1098, Oct. 2009 doi: 10.1109/LED.2009.2028248
12
Literature Review: varying drain-
side gate underlap & drain doping
X. Yang, J. Chauhan, J. Guo, and K. Mohanram “Graphene tunneling FET and its applications in
low-power circuit design,” VLSI, pp. 263-268, 2010
13
Drain-side gate underlap and drain doping reduce the
ambipolar IV characteristics without sacrificing Ion/Ioff and SS
Result: varying channel width
14
Channel width varies inversely with
SS and correlates negatively
(exponential) with Ion/Ioff
𝐼𝑑 =
2𝑒
ℎ
𝑊
𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
Result: varying channel width
y = 381.85e-0.554x
R² = 0.9697
y = 3E+08e-2.043x
R² = 0.979
1
10
100
1,000
10,000
100,000
1,000,000
0
50
100
150
200
250
0 1 2 3 4 5 6 7 8
ratio
SS(mV/dec)
width (nm)
SS (mV/dec)
Ion/Ioff
15
Channel width varies inversely with SS and
correlates negatively (exponential) with Ion/Ioff
Results: varying channel length
16
Off
On
𝐸𝑐
𝐸𝑣
q∆𝑉𝐺
λ
Channel
Source Drain
𝑓𝑠 𝐸
Results varying channel length
17
y = 30782ln(x) - 70513
R² = 0.7531
1
10
100
1,000
10,000
100,000
0
20
40
60
80
100
120
140
160
180
0 20 40 60 80 100 120 140 160 180
Ratio
SS
(mV/dec)
length (nm)
SS (mV/dec)
Ion/Ioff
Channel length varies inversely with SS and
correlates positively (logarithmic) with Ion/Ioff
Results: varying doping in contacts
18
Channel doping correlates positively with SS (exponential) and
positively with Ion/Ioff (exponential) up until doping of around 0.28eV
Off
On
𝐸𝑐
𝐸𝑣
q∆𝑉𝐺
λ
Channel
Source Drain
𝑓𝑠 𝐸
Results: varying doping in contacts
y = 0.1836e15.587x
R² = 0.8899
y = 20.708e32.662x
R² = 0.9263
y = 3E+07e-33.01x
1
10
100
1,000
10,000
100,000
1,000,000
0
10
20
30
40
50
60
70
0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
ratio
SS
(mV/dec)
doping (eV)
SS (mV/dec)
Ion/Ioff
19
Channel doping correlates positively with SS (exponential) and
positively with Ion/Ioff (exponential) up until doping of around 0.28eV
Results: varying drain bias
20
Drain bias correlates positively with SS (linear & weak)
and negatively with Ion/Ioff (exponential)
Off
On
𝐸𝑐
𝐸𝑣
q∆𝑉𝐺
λ
Channel
Source Drain
𝑓𝑠 𝐸
Results: varying drain bias
y = 366373e-26.58x
R² = 0.9464
1
10
100
1,000
10,000
100,000
1,000,000
0
2
4
6
8
10
12
0 0.05 0.1 0.15 0.2 0.25
ratio
SS
(mV/dec)
vd (V)
SS (mV/dec)
Ion/Ioff
21
Drain bias correlates positively with SS (linear & weak)
and negatively with Ion/Ioff (exponential)
Conclusion
 SS of 6.4 mV/dec and Ion/Ioff of >25,000 were
obtained for length=40nm, width=5nm, vd=0.1 V, and
doping=0.24eV.
 Further analysis is required to balance the trade-offs
among size, power, and performance.
 In comparison to a MOSFET, high Ion/Ioff ratio and
steep SS over several decades indicate GNR TFET’s
superiority for ultra-low-voltage applications.
22
Future direction
 Link experimental results with analytical equations
 Adjust simulation to account for experimental
challenges
 Include scattering (inelastic & elastic)
 Alternative TFET designs
23
Appendix: Simulation Design
(continue)
 Tight-binding Hamiltonian model
 TFET setup:
 Channel doping
 Tri-gate
 Non-equilibrium green function (NEGF)
 Assumptions:
 Room temperature
 ballistic transport
 electrodes are infinite electron reservoir
 steady state
24
 𝐼𝑑 =
2𝑒
ℎ
𝑊 𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
 𝐺 = (𝐸𝐼 − 𝐻 − Σ 1 − Σ 2) −1
 E : energy matrices from the electronic band structure
 H : hamiltonian matrix
 Σ 1,2 : self energy matrices from the contacts
 Σ 1=Γ1𝑓1 , Σ 2=Γ2𝑓2
 Γ: broadening matrices due to coupling with contacts
 f: fermi functions describing number of electrons
 𝐺𝑛 = 𝐺 Γ1𝑓1 + Γ2𝑓2 𝐺+
 Electron density per unit energy
Appendix: NEGF
25
Appendix: NEGF (continue)
 T(E)=Trace(Γ1𝐺Γ2𝐺+
)
 Average transmission at different energy
 U=𝑈𝐿 + 𝑈𝑁
 Potential energy effecting the DOS , and hence the transmission T
 𝑈𝐿 =
𝐶𝐺
𝐶𝐸
(−𝑞𝑉𝐺)+
𝐶𝐷
𝐶𝐸
(−q𝑉𝐷)
 𝑈𝑁 =
𝑞2
𝐶𝑒
∆N
 𝑓(𝐸) =
1
1+𝑒
𝐸−µ
𝑘𝑇
 Probability that an electron will be at an energy state E given the
fermi level µ, and temperature T
 𝐼𝑑 =
2𝑒
ℎ
𝑊 𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
26
Appendix: Relevant functions
(continue)
SS=
𝜕𝑉𝑔𝑠
𝜕log(𝐼𝑑)
= 𝐥𝐧 𝟏𝟎 ∗ (
𝝏𝑰𝒅
𝝏𝑽𝒈𝒔
∗
𝟏
𝑰𝒅,𝒐𝒏
)−𝟏

𝝏𝑰𝒅
𝝏𝑽𝒈𝒔
= 𝒆
𝝏𝑰𝒅
𝝏𝑬𝒗
𝒄𝒉 =
𝟐𝒆𝟐
𝒉
(
𝝏𝑻𝑾𝑲𝑩
𝑬𝒗
𝒄𝒉 𝑭 𝑬𝒗
𝒄𝒉
+ 𝑻𝑾𝑲𝑩
𝝏𝑭(𝑬𝒗
𝒄𝒉)
𝝏𝑬𝒗
𝒄𝒉 )
 𝑻 𝑬 = 𝒆
−𝟐 𝟎
𝜦 𝟐𝒎∗
𝒉𝟐 𝒒𝝃𝒙 𝒅𝒙
 𝑻 𝑬𝒗
𝒄𝒉
= 𝑻𝑾𝑲𝑩 = 𝒆
−
𝟒𝜦 𝟐𝒎∗𝑬𝒈
𝟑
𝟐
𝟑𝒉 ∆𝝓+𝑬𝒈
 ∆𝝓 = 𝑬𝒗
𝒄𝒉
− 𝑬𝒄
𝒔
 𝑼 = 𝑬𝒗
𝒄𝒉
+ 𝑬𝒈
 𝑼 − 𝑬𝒄
𝒔
= −𝒒𝝃𝒙
 F 𝑬𝒗
𝒄𝒉
= 𝐸𝑐
𝑠
𝐸𝑣
𝑐ℎ
𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
27
J. Knoch, S. Mantl and J. Appenzeller, "Impact of dimensionality on the performance of tunneling
FETs: Bulk versus one-dimensional devices," ScienceDirect, vol. 51, pp. 572-78, 2007.

More Related Content

Similar to Tunnel_FET_-_Learning_Module_Draft.pptx

RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
Simen Li
 
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
IJECEIAES
 
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker SystemWireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
IOSRJECE
 
L25 resonance
L25 resonanceL25 resonance
L25 resonanceSatyakam
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
Sanchit Dhankhar
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
NahshonMObiri
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Simen Li
 
IPS Buoy
IPS BuoyIPS Buoy
IPS Buoy
Abhishek Mondal
 
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...Dr. SACHIN UMBARKAR
 
4.alternating_currents.ppt
4.alternating_currents.ppt4.alternating_currents.ppt
4.alternating_currents.ppt
Ganeshsaini17
 
2_ALTERNATING_CURRENTS.ppt
2_ALTERNATING_CURRENTS.ppt2_ALTERNATING_CURRENTS.ppt
2_ALTERNATING_CURRENTS.ppt
Reeve2
 
4.alternating_currents (1).ppt
4.alternating_currents (1).ppt4.alternating_currents (1).ppt
4.alternating_currents (1).ppt
Ganeshsaini17
 
2_alternating_currents (2).pptx
2_alternating_currents (2).pptx2_alternating_currents (2).pptx
2_alternating_currents (2).pptx
ADITYARAJSINGH11A
 
2_alternating_currents.ppt
2_alternating_currents.ppt2_alternating_currents.ppt
2_alternating_currents.ppt
mragarwal
 
Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380Moez Ansary
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
IAES-IJPEDS
 

Similar to Tunnel_FET_-_Learning_Module_Draft.pptx (20)

RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
Threshold voltage model for hetero-gate-dielectric tunneling field effect tra...
 
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker SystemWireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
 
wep153
wep153wep153
wep153
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
L25 resonance
L25 resonanceL25 resonance
L25 resonance
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
1 1 4
1 1 41 1 4
1 1 4
 
1 1 4
1 1 41 1 4
1 1 4
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
IPS Buoy
IPS BuoyIPS Buoy
IPS Buoy
 
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...
13. Analysis of Half TEm horn type antenna for High power Impulse radiation a...
 
4.alternating_currents.ppt
4.alternating_currents.ppt4.alternating_currents.ppt
4.alternating_currents.ppt
 
2_ALTERNATING_CURRENTS.ppt
2_ALTERNATING_CURRENTS.ppt2_ALTERNATING_CURRENTS.ppt
2_ALTERNATING_CURRENTS.ppt
 
4.alternating_currents (1).ppt
4.alternating_currents (1).ppt4.alternating_currents (1).ppt
4.alternating_currents (1).ppt
 
2_alternating_currents (2).pptx
2_alternating_currents (2).pptx2_alternating_currents (2).pptx
2_alternating_currents (2).pptx
 
2_alternating_currents.ppt
2_alternating_currents.ppt2_alternating_currents.ppt
2_alternating_currents.ppt
 
Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380
 
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
 

More from SivaGovind2

Smart-Sensor.ppt
Smart-Sensor.pptSmart-Sensor.ppt
Smart-Sensor.ppt
SivaGovind2
 
1.CPLD SPLD.pdf
1.CPLD SPLD.pdf1.CPLD SPLD.pdf
1.CPLD SPLD.pdf
SivaGovind2
 
ARRHYTHMIA.pptx
ARRHYTHMIA.pptxARRHYTHMIA.pptx
ARRHYTHMIA.pptx
SivaGovind2
 
STARIN GAUGE.pdf
STARIN GAUGE.pdfSTARIN GAUGE.pdf
STARIN GAUGE.pdf
SivaGovind2
 
Basic method of measurement.pptx
Basic method of measurement.pptxBasic method of measurement.pptx
Basic method of measurement.pptx
SivaGovind2
 
Powerpoint_3.2.ppt
Powerpoint_3.2.pptPowerpoint_3.2.ppt
Powerpoint_3.2.ppt
SivaGovind2
 
Presentation 4.pptx
Presentation 4.pptxPresentation 4.pptx
Presentation 4.pptx
SivaGovind2
 
Embedded Systems With LPC1769.pptx
Embedded Systems With LPC1769.pptxEmbedded Systems With LPC1769.pptx
Embedded Systems With LPC1769.pptx
SivaGovind2
 
FINfet.pptx
FINfet.pptxFINfet.pptx
FINfet.pptx
SivaGovind2
 

More from SivaGovind2 (9)

Smart-Sensor.ppt
Smart-Sensor.pptSmart-Sensor.ppt
Smart-Sensor.ppt
 
1.CPLD SPLD.pdf
1.CPLD SPLD.pdf1.CPLD SPLD.pdf
1.CPLD SPLD.pdf
 
ARRHYTHMIA.pptx
ARRHYTHMIA.pptxARRHYTHMIA.pptx
ARRHYTHMIA.pptx
 
STARIN GAUGE.pdf
STARIN GAUGE.pdfSTARIN GAUGE.pdf
STARIN GAUGE.pdf
 
Basic method of measurement.pptx
Basic method of measurement.pptxBasic method of measurement.pptx
Basic method of measurement.pptx
 
Powerpoint_3.2.ppt
Powerpoint_3.2.pptPowerpoint_3.2.ppt
Powerpoint_3.2.ppt
 
Presentation 4.pptx
Presentation 4.pptxPresentation 4.pptx
Presentation 4.pptx
 
Embedded Systems With LPC1769.pptx
Embedded Systems With LPC1769.pptxEmbedded Systems With LPC1769.pptx
Embedded Systems With LPC1769.pptx
 
FINfet.pptx
FINfet.pptxFINfet.pptx
FINfet.pptx
 

Recently uploaded

ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 

Recently uploaded (20)

ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 

Tunnel_FET_-_Learning_Module_Draft.pptx

  • 1. 1
  • 2. This lecture will cover: Field-effect transistor (FET) review Motivation for TFET Device design and simulation Literature review Simulation results 2
  • 3. Field-effect transistor (FET) review  Switch  On: ID is high  Off: ID is low Landauer Formula: 𝐼𝐷 = 𝑞 ℎ −∞ ∞ 𝑑𝐸𝐷(𝐸 − 𝑈)( 𝛾1𝛾2 𝛾1 + 𝛾2 )[𝑓1 𝐸 − 𝑓2 𝐸 ] 3
  • 4. Motivation "Intel," 2011. Available: http://www.carthrottle.com/why-chemistry-dictates-an-electric-vehicle- future/ 4
  • 5. Current-voltage (IV) curve  Subthreshold Swing SS (mV/dec): 𝜕𝑉𝑔𝑠 𝜕log(𝐼𝑑)  Power P=(1/2)C𝑉𝑑 2 f+VdIloff Ioff Ion ~60 mV/dec MOSFET IV Curve 5 𝜕𝑉𝐺𝑆 𝜕log(𝐼𝐷) = 𝑙𝑛 10 ∗ ( 𝜕𝐼𝐷 𝜕𝑉𝐺𝑆 ∗ 1 𝐼𝐷,𝑜𝑛 )−1 ≈ 60 mV/dec
  • 6. 6 Tunnel Field Effect Transistor (TFET)
  • 7. Tunnel Field Effect Transistor (TFET) 𝐼𝑑 = 2𝑒 ℎ 𝑊 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸 7 Off On 𝐸𝑐 𝐸𝑣 q∆𝑉𝐺 λ Channel Source Drain 𝑓𝑠 𝐸
  • 8. Device design and simulation µ1 µ2 [𝛴]1 Source Drain Gate 𝑉𝐷𝑆 𝐼𝐷𝑆 [𝛴]2 [H] Green Function: 𝐺 = (𝐸𝐼 − 𝐻 − Σ 1 − Σ 2) −1 8
  • 10. Relevant Functions (analytical) SS= 𝜕𝑉𝑔𝑠 𝜕log(𝐼𝑑) = 𝐥𝐧 𝟏𝟎 ∗ ( 𝝏𝑰𝒅 𝝏𝑽𝒈𝒔 ∗ 𝟏 𝑰𝒅,𝒐𝒏 )−𝟏  𝝏𝑰𝒅 𝝏𝑽𝒈𝒔 = 𝒆 𝝏𝑰𝒅 𝝏𝑬𝒗 𝒄𝒉 = 𝟐𝒆𝟐 𝒉 ( 𝝏𝑻𝑾𝑲𝑩 𝑬𝒗 𝒄𝒉 𝑭 𝑬𝒗 𝒄𝒉 + 𝑻𝑾𝑲𝑩 𝝏𝑭(𝑬𝒗 𝒄𝒉) 𝝏𝑬𝒗 𝒄𝒉 )  𝑻𝑾𝑲𝑩 = 𝒆 − 𝟒𝜦 𝟐𝒎∗𝑬𝒈 𝟑 𝟐 𝟑𝒉 ∆𝝓+𝑬𝒈  F 𝑬𝒗 𝒄𝒉 = 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸 10 J. Knoch, S. Mantl and J. Appenzeller, "Impact of dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices," ScienceDirect, vol. 51, pp. 572-78, 2007.
  • 11. Literature Review: MOSFET/TFET IV of different material system A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronics switches," Nature, vol. 479, pp. 329-337, 2011. 11
  • 12. Literature Review: varying gate overlap & differential voltage Gate overlap improves SS without degrading Ion and Ioff Differential voltage between top and bottom gate for a double gate TFET correlates positively with Ion/Ioff Fiori, G.; Iannaccone, G., "Ultralow-Voltage Bilayer Graphene Tunnel FET," Electron Device Letters, IEEE , vol.0, no.10, pp.1096,1098, Oct. 2009 doi: 10.1109/LED.2009.2028248 12
  • 13. Literature Review: varying drain- side gate underlap & drain doping X. Yang, J. Chauhan, J. Guo, and K. Mohanram “Graphene tunneling FET and its applications in low-power circuit design,” VLSI, pp. 263-268, 2010 13 Drain-side gate underlap and drain doping reduce the ambipolar IV characteristics without sacrificing Ion/Ioff and SS
  • 14. Result: varying channel width 14 Channel width varies inversely with SS and correlates negatively (exponential) with Ion/Ioff 𝐼𝑑 = 2𝑒 ℎ 𝑊 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸
  • 15. Result: varying channel width y = 381.85e-0.554x R² = 0.9697 y = 3E+08e-2.043x R² = 0.979 1 10 100 1,000 10,000 100,000 1,000,000 0 50 100 150 200 250 0 1 2 3 4 5 6 7 8 ratio SS(mV/dec) width (nm) SS (mV/dec) Ion/Ioff 15 Channel width varies inversely with SS and correlates negatively (exponential) with Ion/Ioff
  • 16. Results: varying channel length 16 Off On 𝐸𝑐 𝐸𝑣 q∆𝑉𝐺 λ Channel Source Drain 𝑓𝑠 𝐸
  • 17. Results varying channel length 17 y = 30782ln(x) - 70513 R² = 0.7531 1 10 100 1,000 10,000 100,000 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Ratio SS (mV/dec) length (nm) SS (mV/dec) Ion/Ioff Channel length varies inversely with SS and correlates positively (logarithmic) with Ion/Ioff
  • 18. Results: varying doping in contacts 18 Channel doping correlates positively with SS (exponential) and positively with Ion/Ioff (exponential) up until doping of around 0.28eV Off On 𝐸𝑐 𝐸𝑣 q∆𝑉𝐺 λ Channel Source Drain 𝑓𝑠 𝐸
  • 19. Results: varying doping in contacts y = 0.1836e15.587x R² = 0.8899 y = 20.708e32.662x R² = 0.9263 y = 3E+07e-33.01x 1 10 100 1,000 10,000 100,000 1,000,000 0 10 20 30 40 50 60 70 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 ratio SS (mV/dec) doping (eV) SS (mV/dec) Ion/Ioff 19 Channel doping correlates positively with SS (exponential) and positively with Ion/Ioff (exponential) up until doping of around 0.28eV
  • 20. Results: varying drain bias 20 Drain bias correlates positively with SS (linear & weak) and negatively with Ion/Ioff (exponential) Off On 𝐸𝑐 𝐸𝑣 q∆𝑉𝐺 λ Channel Source Drain 𝑓𝑠 𝐸
  • 21. Results: varying drain bias y = 366373e-26.58x R² = 0.9464 1 10 100 1,000 10,000 100,000 1,000,000 0 2 4 6 8 10 12 0 0.05 0.1 0.15 0.2 0.25 ratio SS (mV/dec) vd (V) SS (mV/dec) Ion/Ioff 21 Drain bias correlates positively with SS (linear & weak) and negatively with Ion/Ioff (exponential)
  • 22. Conclusion  SS of 6.4 mV/dec and Ion/Ioff of >25,000 were obtained for length=40nm, width=5nm, vd=0.1 V, and doping=0.24eV.  Further analysis is required to balance the trade-offs among size, power, and performance.  In comparison to a MOSFET, high Ion/Ioff ratio and steep SS over several decades indicate GNR TFET’s superiority for ultra-low-voltage applications. 22
  • 23. Future direction  Link experimental results with analytical equations  Adjust simulation to account for experimental challenges  Include scattering (inelastic & elastic)  Alternative TFET designs 23
  • 24. Appendix: Simulation Design (continue)  Tight-binding Hamiltonian model  TFET setup:  Channel doping  Tri-gate  Non-equilibrium green function (NEGF)  Assumptions:  Room temperature  ballistic transport  electrodes are infinite electron reservoir  steady state 24
  • 25.  𝐼𝑑 = 2𝑒 ℎ 𝑊 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸  𝐺 = (𝐸𝐼 − 𝐻 − Σ 1 − Σ 2) −1  E : energy matrices from the electronic band structure  H : hamiltonian matrix  Σ 1,2 : self energy matrices from the contacts  Σ 1=Γ1𝑓1 , Σ 2=Γ2𝑓2  Γ: broadening matrices due to coupling with contacts  f: fermi functions describing number of electrons  𝐺𝑛 = 𝐺 Γ1𝑓1 + Γ2𝑓2 𝐺+  Electron density per unit energy Appendix: NEGF 25
  • 26. Appendix: NEGF (continue)  T(E)=Trace(Γ1𝐺Γ2𝐺+ )  Average transmission at different energy  U=𝑈𝐿 + 𝑈𝑁  Potential energy effecting the DOS , and hence the transmission T  𝑈𝐿 = 𝐶𝐺 𝐶𝐸 (−𝑞𝑉𝐺)+ 𝐶𝐷 𝐶𝐸 (−q𝑉𝐷)  𝑈𝑁 = 𝑞2 𝐶𝑒 ∆N  𝑓(𝐸) = 1 1+𝑒 𝐸−µ 𝑘𝑇  Probability that an electron will be at an energy state E given the fermi level µ, and temperature T  𝐼𝑑 = 2𝑒 ℎ 𝑊 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑇 𝐸 − 𝑈 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸 26
  • 27. Appendix: Relevant functions (continue) SS= 𝜕𝑉𝑔𝑠 𝜕log(𝐼𝑑) = 𝐥𝐧 𝟏𝟎 ∗ ( 𝝏𝑰𝒅 𝝏𝑽𝒈𝒔 ∗ 𝟏 𝑰𝒅,𝒐𝒏 )−𝟏  𝝏𝑰𝒅 𝝏𝑽𝒈𝒔 = 𝒆 𝝏𝑰𝒅 𝝏𝑬𝒗 𝒄𝒉 = 𝟐𝒆𝟐 𝒉 ( 𝝏𝑻𝑾𝑲𝑩 𝑬𝒗 𝒄𝒉 𝑭 𝑬𝒗 𝒄𝒉 + 𝑻𝑾𝑲𝑩 𝝏𝑭(𝑬𝒗 𝒄𝒉) 𝝏𝑬𝒗 𝒄𝒉 )  𝑻 𝑬 = 𝒆 −𝟐 𝟎 𝜦 𝟐𝒎∗ 𝒉𝟐 𝒒𝝃𝒙 𝒅𝒙  𝑻 𝑬𝒗 𝒄𝒉 = 𝑻𝑾𝑲𝑩 = 𝒆 − 𝟒𝜦 𝟐𝒎∗𝑬𝒈 𝟑 𝟐 𝟑𝒉 ∆𝝓+𝑬𝒈  ∆𝝓 = 𝑬𝒗 𝒄𝒉 − 𝑬𝒄 𝒔  𝑼 = 𝑬𝒗 𝒄𝒉 + 𝑬𝒈  𝑼 − 𝑬𝒄 𝒔 = −𝒒𝝃𝒙  F 𝑬𝒗 𝒄𝒉 = 𝐸𝑐 𝑠 𝐸𝑣 𝑐ℎ 𝑓𝑠 𝐸 − 𝑓𝑑 𝐸 𝑑𝐸 27 J. Knoch, S. Mantl and J. Appenzeller, "Impact of dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices," ScienceDirect, vol. 51, pp. 572-78, 2007.

Editor's Notes

  1. Similar physics in bilayer graphene
  2. Transistors of width <3.75nm do not generate enough on-current.
  3. Transistors of width <3.75nm do not generate enough on-current.