EELE 3332 – Electromagnetic II
Chapter 10
Electromagnetic Wave
Propagation
Islamic University of Gaza
Electrical Engineering Department
Dr. Talal Skaik
2012 1
Energy can be transported from one point (where a transmitter is located)
to another point (with a receiver) by means of EM waves.
The rate of energy transportation can be obtined from
Maxwell's


 
     
     
   
2
2
2
equations:
E
Using Maxwell equation: H E
Dotting both sides with E:
E
E H E
But from vector identities: H E E H H E
E H H E H E
1
H E H E ... (1)
2
t
E
t
E
E
t
 
 
 

  


    

       
       

       

2
10.7 Power and the Poynting Vector
3
 
   
 
 
2
2
2
2 2
2
2 2
2
Using Maxwell equation : E , Dotting both sides with H:
H
H E H
2
1
Substitute in equation (1): H E H E
2
1
E H
2 2
1
E H
2 2
H
t
H
t t
E
E
t
H E
E
t t
E H
E
t



 

 

 

  

 
 
      
 
 
 

      

 
     
 
 
      

 
 
2 2 2
2 2 2
Take volume integral of both sides:
1 1
E H
2 2
Applying the divergence theorem to the left hand side:
1 1
E H
2 2
v v v
S v v
t
dv E H dv E dv
t
dS E H dv E dv
t
  
  

  
     
 
  
  
    
 
  
  
  
4
  2 2 2
1 1
E H
2 2
S v v
dS E H dv E dv
t
  
  
     
 
  
  
Power and the Poynting Vector
Total power
leaving the
volume
Rate of decrease
in energy stored
in electric and
magnetic fields
Ohmic
power
dissipated
2
the (Watts/m ) is defined as:
=E×H
It represents the instantaneous power density vector
associated with the EM field at a given point.
PoyntingVector

5
Power and the Poynting Vector
Poynting theorem: states that the net power flowing out of a given
volume v is equal to the time rate of decrease in the energy stored
with v minus the ohmic losses.
Illustration
of power
balance for
EM fields.
Note that is
normal to both E and
H and is therefore
along the direction
of propagation ak
=E×H

6
 
 
   
 
   
0
0
0
0
2
2
2
2
Assume that
E( , ) cos -
H( , ) cos -
( , )= E H = cos - cos -
( , )= cos cos 2 - 2
2
1
since cosAcosB= cos cos
2
z
x
z
y
z
z
z
z
z t E e t z a
E
then z t e t z a
E
and z t e t z t z a
E
z t e t z a
A B A B






 
 
  

    

   






 
  
 
  
 
 
  
 
Power and the Poynting Vector
 
 
0
0
0
*
s s
2
2
2
2
The time-average Poynting vector ( ) over the period T=2 / is:
1
( ) ( , )
It can also be found by:
1
( ) Re E ×H
2
For ( , ) cos cos 2 - 2
2
( ) cos
2
ave
T
ave
ave
z
z
z
ave
z
z z t dt
T
z
E
z t e t z a
E
z e

 

 
   





  
 
 
   
 
  

The total time-average power crossing a given surface S is given by:
S
z
ave ave
S
a
P d


  

7
Power and the Poynting Vector
 
 
0
2
2
0
*
s s
2
( , , , ) Poynting vector
( , , ) time-average of Po
time-varying vector (watts/m )
( , , , ) E×H
(time-invariant vector) (watt
ynting
s/m )
1
( , , , )
1
Re E
vector
×H
2
( )
2
T
ave
ave
av
ave
e
x y z t
x y z t dt
T
E
x y z t
x y z
z e


 

  
 




 

 
 
2
0
total time-average power through
cos E cos -
(scalar) watts
a surface
S
z z
z x
ave av
e
e
v
S
a
a for E e t z a
P d
P
 

  
 


 


 8
Power and the Poynting Vector
9
7
r
2
In a nonmagnetic medium
E = 4 sin (2 10 0.8 ) V/m
Find
(a) ,
(b) The time-average power carried by the wave
(c) The total power crossing 100 cm of plane 2x + y = 5
z
t x

 
  a
Example 10.7
10
7
(a) Since =0 and /c, the medium is not free space but
a lossless medium.
0.8 , 2 10 , (nonmagnetic),
Hence
o o r
  
       
   

    
 
 
8
7
2
or
0.8 3 10 12
2 10
14.59
120
120 . 10 98.7
12
o o r r
r
r
o
o r r
c
c

   


  

   
  
   


  


      
Example 10.7 - Solution
2
2
x
2
2
x x x
2
0
(b) sin ( )
1 16
81 mW/m
2 2 10
(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),
2
5
Hence the total power is
o
T
o
ave
x y
n
av
E
t x
E
dt
T
P
 

 
   
     




E H a
a a a
a a
a
   
3 4
5
2
. . 81 10 . 100 10
5
162 10
724.5 W
5
x y
e ave ave n x
dS S

 


 
  
     
 

 

a a
a a
11
Example 10.7 - Solution
12
10.8 Reflection of a plane wave
at normal incidence
When a plane wave from one medium meets a different medium, it
is partly reflected and partly transmitted.
The proportion of the incident wave that is reflected or transmitted
depends on the parameters (ε,μ,σ) of the two media involved.
Normal incidence (plane wave is normal to the boundary) and
oblique incidence will be studied.
13
Reflection of a plane wave at normal incidence
Suppose a plane wave propagating along the +z direction is incident
normally on the boundary z=0 between medium 1 (z<0) characterised
by ε1,μ1,σ1 and medium 2 (z>0) characterised by ε2,μ2,σ2.
i i z
(E ,H ) is traveling along +a in medium 1.
Assume the electric and megnetic filed (in phasor form) as follows:
Incident Wave
14
Reflection of a plane wave at normal incidence
1
1 1
0
0
0
1
E ( ) a ,
H ( ) a a
z
is i x
z z
i
is i y y
z E e then
E
z H e e

 


 

 
0 is magnitude of
the incident electric
field at z=0
i
E
z
(E ,H ) is traveling along a in medium 1.
Reflected Wave
r r 
15
Reflection of a plane wave at normal incidence
 
1
1 1
0
0
0
1
If E ( ) a ,
H ( ) a a
z
rs r x
z z
r
rs r y y
z E e then
E
z H e e

 


   
0 is magnitude of
the reflected electric
field at z=0
r
E
z
(E ,H ) is traveling along +a in medium 2.
Transmitted Wave
t t
16
Reflection of a plane wave at normal incidence
2
2 2
0
0
0
2
If E ( ) a ,
H ( ) a a
z
ts t x
z z
t
ts t y y
z E e then
E
z H e e

 


 

 
0 is magnitude of
the transmitted electric
field at z=0
i
E
1 1
2 2
Field in medium 1: E E E , H H H
Field in medium 2: E E , H H
Since the waves are transverse, E and H fields are entirely
tangential to the interface.
Applying the boundary
i r i r
t t
   
 


 
1t 2t 1t 2t
0 0 0 0 0
0
0 0
1 2
conditions at the interface 0:
(E =E and H =H )
:
E (0) E (0) E (0)
1
H (0) H (0) H (0)
i r t i r t
t
i r t i r
z
then
E E E
E
E E
 

    
    
17
Reflection of a plane wave at normal incidence
2 1
0 0
2 1
0 2 1
0 0
0 2 1
2
0 0
2 1
0 2
0 0
0 2 1
From the last two equations:
= ,
Re or
2
2
= ,
flection Coeffici
or
ent
Transmission Coefficient
r i
r
r i
i
t i
t
t i
i
E E
E
E E
E
and E E
E
E E
E
 
 
 
 

 

 
 




    



  

Note that:
1. 1+
2. Both and are dimensionless and may be complex.
( and are real for lossless media, and complex for lossy media)
3. 0 1 (-1 1, 0 2)




 


        18
Reflection of a plane wave at normal incidence
When medium 1 is a perfect dielectric (lossless , σ1=0), and
medium 2 is a perfect conductor (σ2=∞):
η2= 0 → Γ=-1 → τ=0
The wave is totally reflected and there is no transmitted wave
(E2 = 0).
The totally reflected wave combines with the incident wave to
form a standing wave.
A standing wave "stands" and does not travel; it consists of two
travelling waves (Ei and Er) of equal amplitudes but in opposite
directions. 19
Reflection of a plane wave at normal incidence
0
For conductor = 45




20
 
 
 
1 1
1 1
z z
1s is rs i0 r0
0
1 1 1 1
0
z z
1s i0
1s 0 1
1 1s
E =E +E = + a
But = = 1, =0, =0, =
E a
E 2 sin z a (since sin = )
2
Thus E =R
The standing wave in medium 1 is:
e E ,
x
r
i
j j
x
jA jA
i x
j t
E e E e
E
j
E
E e e
e e
or jE A
j
e
 
 

   




 
  

 
1 0 1
0
1 1
1
E =2 sin z sin a
2
Similarly, it can be shown that: H = cos z cos a
i x
i
y
or E t
E
t
 
 

Reflection of a plane wave at normal incidence
21
Reflection of a plane wave at normal incidence
Standing waves E  2Eio sin 1z sin t ax. The curves 0, 1, 2, 3, 4, . . ., are,
respectively, at times t  0, T/8, T/4, 3T/8, T/2, . . . ; l  2/1.
22
Standing Waves Examples
Standing wave on a string
http://www.walter-fendt.de/ph14e/stwaverefl.htm
Medium 1 : perfect dielectric 1=0
Medium 2: perfect dielectric 2=0
η1 and η2 are real and so are Γ and τ.
There is a standing wave in medium 1 but there is also a
transmitted wave in medium 2. (incident wave is partly reflected
and partly transmitted).
However, the incident and reflected waves have amplitudes that
are not equal in magnitude.
Two cases:
case 1: when η2 > η1
case 2: when η2 < η1
23
Reflection of a plane wave at normal incidence
24
CASE 1
Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0
2 1
2 1
2 1
0
If , , 0,
0
and are real
j o
e
 
 
 


    

     

1 1
1 1
1
1
2
2
1
E E E ( )
(1 )
E 1
j z j z
s is rs oi
j z j z
oi
j z
s oi
E e e
E e e
E e
 
 

 
 

    
  
   
 
1
2
1 1 max
1 max 1
max
1 max 1
E is maximum when 1 E 1
2 0,2 ,4 ,6 ...
0,1,2,3
or 0, ,2 ,3 ,... 2
j z
oi
e E
z n n
z n
z

     l
    

    
 
     
 
 
1
2
1 1 min
1 min 1 min
1
min
1
E is minimum when 1 E 1
3 5
2 ,3 ,5 ... or , , ...
2 2 2
(2 1) (2 1)
0,1,2,3
2 4
j z
oi
e E
z z
n n
z n

  
    
 l


     
   
 
    
25
CASE 2
Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0
2 1
2 1
2 1
If , , 0,
180
and are real
j o
e 
 
 
 


    

     

1 1
1 1
1
1
2
2
1
E E E ( )
(1 )
E 1
j z j z
s is rs oi
j z j z
oi
j z
s oi
E e e
E e e
E e
 
 

 
 

    
  
   
 
1
2
1 1 min
1 min 1
min
1 min 1
E is minimum when 1 E 1
2 0,2 ,4 ,6 ...
0,1,2,3
or 0, ,2 ,3 ,... 2
j z
oi
e E
z n
n
z n
z

    l

    

    
 
     
 
 
1
2
1 1 max
1 max 1 max
1
max
1
E is maximum when 1 E 1
3 5
2 ,3 ,5 ... or , , ...
2 2 2
(2 1)
(2 1)
0,1,2,3
2 4
j z
oi
e E
z z
n
n
z n

  
    
l



     
   


    
26
Standing waves due to reflection at an interface between two lossless
media; l  2/1.
• Measures the amount of reflections, the more reflections, the
larger the standing wave that is formed.
• The ratio of |E1|max to |E1|min
or
 Since 0 |≤ |Γ|≤1, it follows that 1 ≤s ≤∞.
* When Γ=0, s=1, no reflection, total transmission.
* When |Γ|=1, s=∞, no transmission, total reflection.
 s is dimensionless, expressed in decibels (dB) as: s dB=20log10 s
27







1
1
min
1
max
1
min
1
max
1
H
H
E
E
s
1
1




s
s
Standing Wave Ratio, SWR
8
1 8
1
2
2 1
2
10 1
3 10 3
120
4
.(4) 4
3
2
o
o o r r
o r
o
o r
c
c


  
       

 
 

 
  
  

 
 
  
  
Solution :
28
8
x
o o
r r
In freespace (z 0),a plane wave with
=10 cos(10 t )a mA/m
is incident normally on a lossless medium ( =2 , =8 ) in region z 0.
Determine the reflected wave , and th
i z

   



H
H E t t
e transmitted wave ,
H E
Example 10.8
29
8
1 x
8
1 i
1
Given that =10 cos(10 t ) we expect that
= cos(10 t )
where and = =10
Hence, = 10 cos(
i
i io E
Ei Hi ki x z y io io o
i o
z
z
E H


 



     

H a
E E a
a a a a a a
E 8
1
2 1
2 1
8
r
10 t ) mV/m
2 1 1
Now = = ,
2 3 3
10 1
Thus cos 10 t + mV/m
3 3
from which we easily obtain as
y
ro o o
ro io
io o o
r o y
z
E
E E
E
z

 
 
   




   
 
 
   
 
a
E a
H
8
10 1
cos 10 t + mA/m
3 3
r x
z
 
   
 
H a
Example 10.8 – solution continued
 
8
2
Similarly,
4 4
1 or
3 3
Thus
cos 10 t +
where .Hence,
t
to
to io
io
t to E
Et Ei y
E
E E
E
E z


     

  
E a
a a a
8
8
40 4
cos 10 t mV/m
3 3
from which we obtain
20 4
cos 10 t mA/m
3 3
t o y
t x
z
z

 
  
 
 
 
 
 
 
E a
H a
30
Example 10.8 – solution continued
31
x y
Given a uniform plane wave in air as
(a) Find
(b) If the wave encounters
=40 cos( t
a perfectly conducting plate norm
) + 30 sin(
al
to the z axis at z
t ) V/m
= 0, fi
i
i
z z
   
 
E a a
H
r r
nd the reflected wave and .
(c) What are the total and fields for z 0 ?
(d) Calculate the time-average Poynting vectors
for z 0 and z 0.

 
E H
E H
Example 10.9
1 2
x 2 y
(a) This is similar to the problem in Example 10.3.
We may treat the wave as consisting of tw
=40 cos( t ) , = 30 sin( t
o waves and where
At
)
i i
i i
z z
   
 
E E
E
Solutio
a
n
a E
r
1
1
1
1 2
1
atmospheric pressure, air has = 1.0006 1.
Thus air
cos( t )
may be regarded as free space.
Let
40 1
120 3
1
i i i
i
i
H
i o
o
i o
o
z
H
E
H


 


 


  

H H H
H a
1 y
Hence = cos( t )
1
3
1
H k E z x y
i z

 
    

a a a a a a
H a
32
Example 10.9 -solution
33
Example 10.9 -solution
2
2
2
2
2 2
Similarly,
where
30 1
= sin( t )
Hence
120 4
i i o H
H k E z y x
i o
i o
o
H
E
H
z
 
  

 
  
   
H a
a a a a a a
2 x
1 2 x y
= sin( t )
and
sin( t ) + cos( t )
1
4
1 1
4 3
This problem can also be solved using Method 2 of Example 10.
mA
3
/m
.
i
i i i
z
z z
 
   

 
 
     
H a
H H H a a
2
2 1
2
(b) Since medium 2 is perfectly conducting,
1 <<
that is 1 , = 0
showing that the incident and fields are totally reflected.
= =
Hence, =
ro io io
r
E E E

 


 
  
 
E H
E x y
1 1
40 cos( t ) 30 sin( t ) V/m
1 1
H = cos( t ) sin( t ) A/m
3 4
(c) The total fields in air
and
can be shown to be standing wave.
The total
r y x
i r i r
z z
z z
   
   
 
   
  
   
a a
a a
E E E H H H
2 2
fields in the conductor are 0 , 0.
t t
   
E E H H 34
Example 10.9 -solution
35
Example 10.9 -solution
   
2
2 2
1
1 k z z
1
2 2 2 2
z z
2 2
2
2 k z
2 2
(d) For z 0,
| | 1
[ ]
2 2
1
= 40 30 40 30 =0
240
For z 0,
| |
0
2 2
because the whole incident power is reflected.
s
ave io ro
o
s to
ave
E
E E
E E
 

 

   
 
  
 

   
a a a
a a
a a
36
• Wave arrives at an angle.
• Assume lossless media.
• Uniform plane wave in general form
• For lossless unbounded media, k = 
( )
2 2 2 2 2
( , ) cos( ) Re[ ]
ˆ ˆ ˆ position vector
ˆ ˆ ˆ wave number or propagation vector
j t
o o
x y z
x x y y z z
x y z
E t E t E e
xa ya za
k a k a k a
k k k k


 
 
   
  
  
   
k r
r k r
r
k
Oblique incidence
z
y
z=0
Medium 1 : 1 , 1
Medium 2 : 2, 2
r
i
t
kr
ki
kt
kix
kiz
an
θi is angle of incidence.
The plane defined by propagation vector k and a unit normal
vector an to the boundary is called plane of incidence. 37
Oblique incidence
x
38
1 1 1
2 2 2
1
1
E cos( )
E cos( )
E cos( )
cos
sin
i io ix iy iz
r ro rx ry rz
t to tx ty tz
i r
t
ix i
iz i
E k x k y k z t
E k x k y k z t
E k x k y k z t
where k k
k
k
k



   
   
 
 
   
   
   
  
 


ki =β1
kix
kiz
i
Oblique incidence
It's defined as E is || to incidence plane (E-field lies in the xz-plane)
39
Parallel Polarization
 
 
 
 
1
1
1
1
sin cos
sin cos
1
sin cos
sin cos
1
E (cos sin )
H
E (cos sin )
H
i i
i i
r r
r r
j x z
is io i x i z
j x z
io
is y
j x z
rs ro r x r z
j x z
ro
rs y
E e
E
e
E e
E
e
  
  
  
  
 

 

 
 
 
 
 

 
 
a a
a
a a
a
40
Parallel Polarization
 
 
2
2
sin cos
sin cos
2
E (cos sin )
H
t t
t t
j x z
ts to t x t z
j x z
to
ts y
E e
E
e
  
  
 

 
 
 

a a
a
41
Parallel Polarization
42
Parallel Polarization
1 2
1
1 1 2
sin sin
sin
sin sin sin
1 1 2
Tangential components of E and H should be should be continuous
at the boundary z=0,
(cos ) (cos ) (cos )
i t
r
i i t
j x j x
j x
io i ro r to t
j x j x j x
io ro to
E e E e E e
E E E
e e e
   
 
     
  
  
 

  
 
 
1 1 2
1
The exponential terms must be equal for the previous equations
to be valid: sin sin sin
(Incidence angle = reflection angle)
i r t
i r
or
     
 


  

 1 1 1
2 2 2 2
sin
(snell's law)
sin
t
i
n
n
  
  
  
43
1 1 2
2 1
|| ||
2 1
,
cos cos cos (x-components of E)
(y-component of H)
cos cos
,
cos cos
io i ro r to t
io ro to
ro t i
ro io
io t i
Hence
E E E
E E E
E
E E
E
  
  
   
   
 
 

    

Reflection coefficient
Transmission coefficient 2
|| ||
2 1
|| ||
2 cos
,
cos cos
cos
where (1 )
cos
to i
to io
io t i
i
t
E
E E
E
 
 
   



  

  
Parallel Polarization
44
• defined as the incidence angle at which the reflection
coefficient is 0 (all transmission).
   
2 1 ||
||
2 1 ||
2 1 ||
2 2 2 2
2 1 ||
1 1
||
2 2
2 1 2 2 1
|| 2
1 2
Byt setting :
cos cos
0
cos cos
cos cos
1 sin 1 sin
sin
, and
sin
1 ( / )
sin
1 ( / )
i B
t B
t B
t B
t B
t
i B
i
B
or
Since
 
   
   
   
   
  
 
  
   

 
 

  

 
  
 

 

Parallel Polarization - Brewster angle, B
45
Perpendicular Polarization
In this case, the E field is perpendicular to the plane of incidence
(the xz-plane)
46
 
 
 
 
1
1
1
1
sin cos
sin cos
1
sin cos
sin cos
1
E
H ( cos sin )
E
H (cos sin )
i i
i i
r r
r r
j x z
is io y
j x z
io
is i x i z
j x z
rs ro y
j x z
ro
rs r x r z
E e
E
e
E e
E
e
  
  
  
  
 

 

 
 
 
 

  

 
a
a a
a
a a
Perpendicular Polarization
47
Perpendicular Polarization
 
 
2
2
sin cos
sin cos
2
E
H ( cos sin )
t t
t t
j x z
ts to y
j x z
to
ts t x t z
E e
E
e
  
  
 

 
 

  
a
a a
(cos sin )
t x t z
 

a a
48
i
1 1 2
components of E and H should be should be continuous
at the boundary z=0, and by setting = :
(y-component of E)
cos cos (x-component of H)
r
io ro to
io ro to
i t
Tangential
E E E
E E E
 
 
  

 
 
 
 
 
Reflect 2 1
2 1
2
2 1
cos cos
,
cos cos
2 cos
,
cos cos
where 1
ro i t
ro io
io i t
to i
to io
io i t
E
E E
E
E
E E
E
   
   
 
 
   

 
 
 

    

  

  
ion coefficient
Transmission coefficient
Perpendicular Polarization
49
• For no reflection (total transmission):
   
2 1
2 1
2 1
2 2 2 2
2 1
1 1
2 2
2 2 1 1 2
2
1 2
Byt setting :
cos cos
0
cos cos
cos cos
1 sin 1 sin
sin
, and
sin
1 ( / )
sin
1 ( / )
i B
B t
B t
B t
B t
t
i B
i
B
or
Since
 
   
   
   
   
  
 
  
   

 








 

  

 
  
 

 

Perpendicular Polarization - Brewster angle
50
Summary
Property Normal
Incidence
Perpendicular Parallel
Reflection
coefficient
Transmission
coefficient
Relation
i
t
i
t








cos
cos
cos
cos
1
2
1
2
||




t
i
i







cos
cos
cos
2
1
2
2



t
i
t
i








cos
cos
cos
cos
1
2
1
2




2
2 1
2

 

 i
t
i







cos
cos
cos
2
1
2
2
||


1
2
1
2










1
 
 

1
  
t
i



cos
cos
1 ||
|| 


51
j(0.866y+0.5z)
s x
An EM wave travels in free space with the
electric field component
= 100e V/m
Determine
(a) and
(b) The magnetic field compone
(
nt
c
 l
E a
) The time average power in the wave
Example 10.10
52
j( )
j
s o o x
2 2 2
(a) Comparing the given E with
= e = e
it is clear that
0 , 0.866 , 0.5
(0 8 6
. 6
x y z
k x k y k z
x x z
x y z
E
k k k
k k k k
 
  
   
k.r
E E a
2 2
8
) (0.5) 1
But in free space,
2
Hence, 3 10 rad/s
2
2 6.283 m
o o
k =
c
kc
k
 
   
l


l 
 
  
  
  
Example 10.10 -solution
53
j(0.866 0.5 )
s
2 2
j
s x
j(0.866 0.5 )
s y z
(b) the corresponding magnetic field is given by
0.866a 0.5a
0.866 0.5
0.866 0.5
0.866 0.5
100 e
(0.132 0.23 ) e A/m
(c) The time averag
y z
k s
y z
k y z
y z
y z
a
a







  


 
 
E
H
a a
a a
H a
H a a
   
 
2
2
*
s s k y z
y z
e power is
100
1
= Re (0.866 +0.5 )
2 2 2 120
=11.49 + 6.631 W/m2
o
avg
E
 
   
E H a a a
a a
Example 10.10 -solution
54
Example 10.11
r
y
A uniform plane wave in air with
= 8 cos V/m
is incident on a dielectric slab (z 0) with 1 , 2.5 , =0.
Find
(a) The polarization of the wave
(b) The angle of
( t 4 )
n
3
i
r
x z
  

  
 
E a
cidence
(c) The reflected field
(d) The transmitted field
E
H
55
8
(a) From the incident field, it is evident that the propagation vector is
4 3 5
Hence, =5c=15 10 rad/s
A unit vector normal to the interface (z = 0)
i x z i o o
k
c

  

     

E
k a a
i
is .
The plane containing and is y = constant, which is the xz-plane,
the plane of incidence. Since is normal to this plane, we have
perpendicular polarization (similar to Figure 10.17).
z
z
a
k a
E
Example 10.11 - solution
i i
i i
n
i
4
(b) from the figure, tan 53.13
3
Alternatively, we can obtain from the fact that
is the angle between and , that is,
cos .
4 3
5
o
ix
iz
k n
x z
 
 

   



 

k
k
k a
a a
a a
i
3
.
5
or 53.13
z
o






a
56
Example 10.11 - solution
57
i y
(c) Let cos( . )
which is similar to form to the given . The unit vector is chosen in
view of the fact that the tangential component of must be continuous
at the interface. From t
r ro r y
E t

 
E k r a
E a
E
he Figure:
sin , cos
But = and = = 5
because both and are in
the same medium. Hence
4 3
r rx x rz z
rx r r rz r r
r i r i
r i
r x z
k k k k
k k
k k
k
 
 
 
 
 
k k a k a
a a
Example 10.11 - solution
58
0
1 1
1
2 2 2
2 1
2 1
0 2
1 0 2
2
To find , we need . From Snell's law
sin53.13
sin sin sin
2.5
or 30.39
cos cos
cos cos
377
where 377 , 238.4
2.5
r t
o
t i i
o
t
ro i t
io i t
r
o r
ro
io
E
c
n
n c
E
E
E
E

 
  
 

   
   
 
  
 


  


  

    
  
8
238.4cos53.13 377cos30.39
0.389
238.4cos53.13 377cos30.39
Hence, 0.389(8) 3.112
3.112cos(15 10 4 3 ) V/m
o o
o o
ro io
r y
E E
t x z


 

     
    
E a
Example 10.11 - solution
59
8
2 2 2 2 2 8
(d) Similarly, let the transmitted electric field be
cos( . )
15 10
where 1 2.5 7.906
3 10
From the Figure ,
sin =4
cos 6.819
4 6.819
No
t to t y
t r r
tx t t
tz t t
t x z
E t
k
c
k k
k k


     


 

     


 
 
E k r a
k a a
2
2 1
tice that
2 cos
cos cos
2 238.4cos53.13
0.611
238.4cos53.13 377cos30.39
ix rx tx
to i
io i t
o
o o
k = k = k
E
E
 

   
  


 

Example 10.11 - solution
60
8
t t
t
t
2
The same result could be obtained from the relation =1+ . Hence,
0.611 8 4.888
4.88cos(15 10 4 6.819 )
From , is easily obtained as
4 6.819
4.888 cos
7.906(238.4)
t
to io
t y
k x z
y
E E
t x z





   
   
 
  
E a
E H
a E a a
H a
8
t
( . )
( 17.69 10.37 )cos(15 10 4 6.819 ) mA/m
r
x z
t
t x z
 
     
k r
H a a
Example 10.11 - solution

tripple e 136 EMII2013_Chapter_10_P2.pdf

  • 1.
    EELE 3332 –Electromagnetic II Chapter 10 Electromagnetic Wave Propagation Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1
  • 2.
    Energy can betransported from one point (where a transmitter is located) to another point (with a receiver) by means of EM waves. The rate of energy transportation can be obtined from Maxwell's                     2 2 2 equations: E Using Maxwell equation: H E Dotting both sides with E: E E H E But from vector identities: H E E H H E E H H E H E 1 H E H E ... (1) 2 t E t E E t                                             2 10.7 Power and the Poynting Vector
  • 3.
    3          2 2 2 2 2 2 2 2 2 Using Maxwell equation : E , Dotting both sides with H: H H E H 2 1 Substitute in equation (1): H E H E 2 1 E H 2 2 1 E H 2 2 H t H t t E E t H E E t t E H E t                                                                   2 2 2 2 2 2 Take volume integral of both sides: 1 1 E H 2 2 Applying the divergence theorem to the left hand side: 1 1 E H 2 2 v v v S v v t dv E H dv E dv t dS E H dv E dv t                                        
  • 4.
    4   22 2 1 1 E H 2 2 S v v dS E H dv E dv t                     Power and the Poynting Vector Total power leaving the volume Rate of decrease in energy stored in electric and magnetic fields Ohmic power dissipated 2 the (Watts/m ) is defined as: =E×H It represents the instantaneous power density vector associated with the EM field at a given point. PoyntingVector 
  • 5.
    5 Power and thePoynting Vector Poynting theorem: states that the net power flowing out of a given volume v is equal to the time rate of decrease in the energy stored with v minus the ohmic losses. Illustration of power balance for EM fields. Note that is normal to both E and H and is therefore along the direction of propagation ak =E×H 
  • 6.
    6              0 0 0 0 2 2 2 2 Assume that E( , ) cos - H( , ) cos - ( , )= E H = cos - cos - ( , )= cos cos 2 - 2 2 1 since cosAcosB= cos cos 2 z x z y z z z z z t E e t z a E then z t e t z a E and z t e t z t z a E z t e t z a A B A B                                                  Power and the Poynting Vector
  • 7.
        0 0 0 * ss 2 2 2 2 The time-average Poynting vector ( ) over the period T=2 / is: 1 ( ) ( , ) It can also be found by: 1 ( ) Re E ×H 2 For ( , ) cos cos 2 - 2 2 ( ) cos 2 ave T ave ave z z z ave z z z t dt T z E z t e t z a E z e                                 The total time-average power crossing a given surface S is given by: S z ave ave S a P d       7 Power and the Poynting Vector
  • 8.
        0 2 2 0 * ss 2 ( , , , ) Poynting vector ( , , ) time-average of Po time-varying vector (watts/m ) ( , , , ) E×H (time-invariant vector) (watt ynting s/m ) 1 ( , , , ) 1 Re E vector ×H 2 ( ) 2 T ave ave av ave e x y z t x y z t dt T E x y z t x y z z e                      2 0 total time-average power through cos E cos - (scalar) watts a surface S z z z x ave av e e v S a a for E e t z a P d P                8 Power and the Poynting Vector
  • 9.
    9 7 r 2 In a nonmagneticmedium E = 4 sin (2 10 0.8 ) V/m Find (a) , (b) The time-average power carried by the wave (c) The total power crossing 100 cm of plane 2x + y = 5 z t x      a Example 10.7
  • 10.
    10 7 (a) Since =0and /c, the medium is not free space but a lossless medium. 0.8 , 2 10 , (nonmagnetic), Hence o o r                          8 7 2 or 0.8 3 10 12 2 10 14.59 120 120 . 10 98.7 12 o o r r r r o o r r c c                                     Example 10.7 - Solution
  • 11.
    2 2 x 2 2 x x x 2 0 (b)sin ( ) 1 16 81 mW/m 2 2 10 (c) On plane 2x + y = 5 (see Example 3.5 or 8.5), 2 5 Hence the total power is o T o ave x y n av E t x E dt T P                    E H a a a a a a a     3 4 5 2 . . 81 10 . 100 10 5 162 10 724.5 W 5 x y e ave ave n x dS S                       a a a a 11 Example 10.7 - Solution
  • 12.
    12 10.8 Reflection ofa plane wave at normal incidence When a plane wave from one medium meets a different medium, it is partly reflected and partly transmitted. The proportion of the incident wave that is reflected or transmitted depends on the parameters (ε,μ,σ) of the two media involved. Normal incidence (plane wave is normal to the boundary) and oblique incidence will be studied.
  • 13.
    13 Reflection of aplane wave at normal incidence Suppose a plane wave propagating along the +z direction is incident normally on the boundary z=0 between medium 1 (z<0) characterised by ε1,μ1,σ1 and medium 2 (z>0) characterised by ε2,μ2,σ2.
  • 14.
    i i z (E,H ) is traveling along +a in medium 1. Assume the electric and megnetic filed (in phasor form) as follows: Incident Wave 14 Reflection of a plane wave at normal incidence 1 1 1 0 0 0 1 E ( ) a , H ( ) a a z is i x z z i is i y y z E e then E z H e e           0 is magnitude of the incident electric field at z=0 i E
  • 15.
    z (E ,H )is traveling along a in medium 1. Reflected Wave r r  15 Reflection of a plane wave at normal incidence   1 1 1 0 0 0 1 If E ( ) a , H ( ) a a z rs r x z z r rs r y y z E e then E z H e e          0 is magnitude of the reflected electric field at z=0 r E
  • 16.
    z (E ,H )is traveling along +a in medium 2. Transmitted Wave t t 16 Reflection of a plane wave at normal incidence 2 2 2 0 0 0 2 If E ( ) a , H ( ) a a z ts t x z z t ts t y y z E e then E z H e e           0 is magnitude of the transmitted electric field at z=0 i E
  • 17.
    1 1 2 2 Fieldin medium 1: E E E , H H H Field in medium 2: E E , H H Since the waves are transverse, E and H fields are entirely tangential to the interface. Applying the boundary i r i r t t           1t 2t 1t 2t 0 0 0 0 0 0 0 0 1 2 conditions at the interface 0: (E =E and H =H ) : E (0) E (0) E (0) 1 H (0) H (0) H (0) i r t i r t t i r t i r z then E E E E E E              17 Reflection of a plane wave at normal incidence
  • 18.
    2 1 0 0 21 0 2 1 0 0 0 2 1 2 0 0 2 1 0 2 0 0 0 2 1 From the last two equations: = , Re or 2 2 = , flection Coeffici or ent Transmission Coefficient r i r r i i t i t t i i E E E E E E and E E E E E E                                 Note that: 1. 1+ 2. Both and are dimensionless and may be complex. ( and are real for lossless media, and complex for lossy media) 3. 0 1 (-1 1, 0 2)                 18 Reflection of a plane wave at normal incidence
  • 19.
    When medium 1is a perfect dielectric (lossless , σ1=0), and medium 2 is a perfect conductor (σ2=∞): η2= 0 → Γ=-1 → τ=0 The wave is totally reflected and there is no transmitted wave (E2 = 0). The totally reflected wave combines with the incident wave to form a standing wave. A standing wave "stands" and does not travel; it consists of two travelling waves (Ei and Er) of equal amplitudes but in opposite directions. 19 Reflection of a plane wave at normal incidence 0 For conductor = 45    
  • 20.
    20      1 1 1 1 z z 1s is rs i0 r0 0 1 1 1 1 0 z z 1s i0 1s 0 1 1 1s E =E +E = + a But = = 1, =0, =0, = E a E 2 sin z a (since sin = ) 2 Thus E =R The standing wave in medium 1 is: e E , x r i j j x jA jA i x j t E e E e E j E E e e e e or jE A j e                      1 0 1 0 1 1 1 E =2 sin z sin a 2 Similarly, it can be shown that: H = cos z cos a i x i y or E t E t      Reflection of a plane wave at normal incidence
  • 21.
    21 Reflection of aplane wave at normal incidence Standing waves E  2Eio sin 1z sin t ax. The curves 0, 1, 2, 3, 4, . . ., are, respectively, at times t  0, T/8, T/4, 3T/8, T/2, . . . ; l  2/1.
  • 22.
    22 Standing Waves Examples Standingwave on a string http://www.walter-fendt.de/ph14e/stwaverefl.htm
  • 23.
    Medium 1 :perfect dielectric 1=0 Medium 2: perfect dielectric 2=0 η1 and η2 are real and so are Γ and τ. There is a standing wave in medium 1 but there is also a transmitted wave in medium 2. (incident wave is partly reflected and partly transmitted). However, the incident and reflected waves have amplitudes that are not equal in magnitude. Two cases: case 1: when η2 > η1 case 2: when η2 < η1 23 Reflection of a plane wave at normal incidence
  • 24.
    24 CASE 1 Medium 1: perfect dielectric 1=0, Medium 2: perfect dielectric 2=0 2 1 2 1 2 1 0 If , , 0, 0 and are real j o e                      1 1 1 1 1 1 2 2 1 E E E ( ) (1 ) E 1 j z j z s is rs oi j z j z oi j z s oi E e e E e e E e                         1 2 1 1 max 1 max 1 max 1 max 1 E is maximum when 1 E 1 2 0,2 ,4 ,6 ... 0,1,2,3 or 0, ,2 ,3 ,... 2 j z oi e E z n n z n z       l                        1 2 1 1 min 1 min 1 min 1 min 1 E is minimum when 1 E 1 3 5 2 ,3 ,5 ... or , , ... 2 2 2 (2 1) (2 1) 0,1,2,3 2 4 j z oi e E z z n n z n           l                   
  • 25.
    25 CASE 2 Medium 1: perfect dielectric 1=0, Medium 2: perfect dielectric 2=0 2 1 2 1 2 1 If , , 0, 180 and are real j o e                       1 1 1 1 1 1 2 2 1 E E E ( ) (1 ) E 1 j z j z s is rs oi j z j z oi j z s oi E e e E e e E e                         1 2 1 1 min 1 min 1 min 1 min 1 E is minimum when 1 E 1 2 0,2 ,4 ,6 ... 0,1,2,3 or 0, ,2 ,3 ,... 2 j z oi e E z n n z n z      l                         1 2 1 1 max 1 max 1 max 1 max 1 E is maximum when 1 E 1 3 5 2 ,3 ,5 ... or , , ... 2 2 2 (2 1) (2 1) 0,1,2,3 2 4 j z oi e E z z n n z n          l                    
  • 26.
    26 Standing waves dueto reflection at an interface between two lossless media; l  2/1.
  • 27.
    • Measures theamount of reflections, the more reflections, the larger the standing wave that is formed. • The ratio of |E1|max to |E1|min or  Since 0 |≤ |Γ|≤1, it follows that 1 ≤s ≤∞. * When Γ=0, s=1, no reflection, total transmission. * When |Γ|=1, s=∞, no transmission, total reflection.  s is dimensionless, expressed in decibels (dB) as: s dB=20log10 s 27        1 1 min 1 max 1 min 1 max 1 H H E E s 1 1     s s Standing Wave Ratio, SWR
  • 28.
    8 1 8 1 2 2 1 2 101 3 10 3 120 4 .(4) 4 3 2 o o o r r o r o o r c c                                       Solution : 28 8 x o o r r In freespace (z 0),a plane wave with =10 cos(10 t )a mA/m is incident normally on a lossless medium ( =2 , =8 ) in region z 0. Determine the reflected wave , and th i z         H H E t t e transmitted wave , H E Example 10.8
  • 29.
    29 8 1 x 8 1 i 1 Giventhat =10 cos(10 t ) we expect that = cos(10 t ) where and = =10 Hence, = 10 cos( i i io E Ei Hi ki x z y io io o i o z z E H               H a E E a a a a a a a E 8 1 2 1 2 1 8 r 10 t ) mV/m 2 1 1 Now = = , 2 3 3 10 1 Thus cos 10 t + mV/m 3 3 from which we easily obtain as y ro o o ro io io o o r o y z E E E E z                            a E a H 8 10 1 cos 10 t + mA/m 3 3 r x z         H a Example 10.8 – solution continued
  • 30.
      8 2 Similarly, 4 4 1or 3 3 Thus cos 10 t + where .Hence, t to to io io t to E Et Ei y E E E E E z             E a a a a 8 8 40 4 cos 10 t mV/m 3 3 from which we obtain 20 4 cos 10 t mA/m 3 3 t o y t x z z                   E a H a 30 Example 10.8 – solution continued
  • 31.
    31 x y Given auniform plane wave in air as (a) Find (b) If the wave encounters =40 cos( t a perfectly conducting plate norm ) + 30 sin( al to the z axis at z t ) V/m = 0, fi i i z z       E a a H r r nd the reflected wave and . (c) What are the total and fields for z 0 ? (d) Calculate the time-average Poynting vectors for z 0 and z 0.    E H E H Example 10.9
  • 32.
    1 2 x 2y (a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of tw =40 cos( t ) , = 30 sin( t o waves and where At ) i i i i z z       E E E Solutio a n a E r 1 1 1 1 2 1 atmospheric pressure, air has = 1.0006 1. Thus air cos( t ) may be regarded as free space. Let 40 1 120 3 1 i i i i i H i o o i o o z H E H               H H H H a 1 y Hence = cos( t ) 1 3 1 H k E z x y i z          a a a a a a H a 32 Example 10.9 -solution
  • 33.
    33 Example 10.9 -solution 2 2 2 2 22 Similarly, where 30 1 = sin( t ) Hence 120 4 i i o H H k E z y x i o i o o H E H z                H a a a a a a a 2 x 1 2 x y = sin( t ) and sin( t ) + cos( t ) 1 4 1 1 4 3 This problem can also be solved using Method 2 of Example 10. mA 3 /m . i i i i z z z                  H a H H H a a
  • 34.
    2 2 1 2 (b) Sincemedium 2 is perfectly conducting, 1 << that is 1 , = 0 showing that the incident and fields are totally reflected. = = Hence, = ro io io r E E E             E H E x y 1 1 40 cos( t ) 30 sin( t ) V/m 1 1 H = cos( t ) sin( t ) A/m 3 4 (c) The total fields in air and can be shown to be standing wave. The total r y x i r i r z z z z                      a a a a E E E H H H 2 2 fields in the conductor are 0 , 0. t t     E E H H 34 Example 10.9 -solution
  • 35.
    35 Example 10.9 -solution    2 2 2 1 1 k z z 1 2 2 2 2 z z 2 2 2 2 k z 2 2 (d) For z 0, | | 1 [ ] 2 2 1 = 40 30 40 30 =0 240 For z 0, | | 0 2 2 because the whole incident power is reflected. s ave io ro o s to ave E E E E E                       a a a a a a a
  • 36.
    36 • Wave arrivesat an angle. • Assume lossless media. • Uniform plane wave in general form • For lossless unbounded media, k =  ( ) 2 2 2 2 2 ( , ) cos( ) Re[ ] ˆ ˆ ˆ position vector ˆ ˆ ˆ wave number or propagation vector j t o o x y z x x y y z z x y z E t E t E e xa ya za k a k a k a k k k k                     k r r k r r k Oblique incidence
  • 37.
    z y z=0 Medium 1 :1 , 1 Medium 2 : 2, 2 r i t kr ki kt kix kiz an θi is angle of incidence. The plane defined by propagation vector k and a unit normal vector an to the boundary is called plane of incidence. 37 Oblique incidence x
  • 38.
    38 1 1 1 22 2 1 1 E cos( ) E cos( ) E cos( ) cos sin i io ix iy iz r ro rx ry rz t to tx ty tz i r t ix i iz i E k x k y k z t E k x k y k z t E k x k y k z t where k k k k k                                   ki =β1 kix kiz i Oblique incidence
  • 39.
    It's defined asE is || to incidence plane (E-field lies in the xz-plane) 39 Parallel Polarization
  • 40.
           1 1 1 1 sin cos sin cos 1 sin cos sin cos 1 E (cos sin ) H E (cos sin ) H i i i i r r r r j x z is io i x i z j x z io is y j x z rs ro r x r z j x z ro rs y E e E e E e E e                                  a a a a a a 40 Parallel Polarization
  • 41.
        2 2 sincos sin cos 2 E (cos sin ) H t t t t j x z ts to t x t z j x z to ts y E e E e                 a a a 41 Parallel Polarization
  • 42.
    42 Parallel Polarization 1 2 1 11 2 sin sin sin sin sin sin 1 1 2 Tangential components of E and H should be should be continuous at the boundary z=0, (cos ) (cos ) (cos ) i t r i i t j x j x j x io i ro r to t j x j x j x io ro to E e E e E e E E E e e e                             1 1 2 1 The exponential terms must be equal for the previous equations to be valid: sin sin sin (Incidence angle = reflection angle) i r t i r or                1 1 1 2 2 2 2 sin (snell's law) sin t i n n         
  • 43.
    43 1 1 2 21 || || 2 1 , cos cos cos (x-components of E) (y-component of H) cos cos , cos cos io i ro r to t io ro to ro t i ro io io t i Hence E E E E E E E E E E                          Reflection coefficient Transmission coefficient 2 || || 2 1 || || 2 cos , cos cos cos where (1 ) cos to i to io io t i i t E E E E                   Parallel Polarization
  • 44.
    44 • defined asthe incidence angle at which the reflection coefficient is 0 (all transmission).     2 1 || || 2 1 || 2 1 || 2 2 2 2 2 1 || 1 1 || 2 2 2 1 2 2 1 || 2 1 2 Byt setting : cos cos 0 cos cos cos cos 1 sin 1 sin sin , and sin 1 ( / ) sin 1 ( / ) i B t B t B t B t B t i B i B or Since                                                    Parallel Polarization - Brewster angle, B
  • 45.
    45 Perpendicular Polarization In thiscase, the E field is perpendicular to the plane of incidence (the xz-plane)
  • 46.
    46        1 1 1 1 sin cos sin cos 1 sin cos sin cos 1 E H ( cos sin ) E H (cos sin ) i i i i r r r r j x z is io y j x z io is i x i z j x z rs ro y j x z ro rs r x r z E e E e E e E e                                  a a a a a a Perpendicular Polarization
  • 47.
    47 Perpendicular Polarization    2 2 sin cos sin cos 2 E H ( cos sin ) t t t t j x z ts to y j x z to ts t x t z E e E e                  a a a (cos sin ) t x t z    a a
  • 48.
    48 i 1 1 2 componentsof E and H should be should be continuous at the boundary z=0, and by setting = : (y-component of E) cos cos (x-component of H) r io ro to io ro to i t Tangential E E E E E E                   Reflect 2 1 2 1 2 2 1 cos cos , cos cos 2 cos , cos cos where 1 ro i t ro io io i t to i to io io i t E E E E E E E E                                      ion coefficient Transmission coefficient Perpendicular Polarization
  • 49.
    49 • For noreflection (total transmission):     2 1 2 1 2 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 1 2 Byt setting : cos cos 0 cos cos cos cos 1 sin 1 sin sin , and sin 1 ( / ) sin 1 ( / ) i B B t B t B t B t t i B i B or Since                                                            Perpendicular Polarization - Brewster angle
  • 50.
  • 51.
    51 j(0.866y+0.5z) s x An EMwave travels in free space with the electric field component = 100e V/m Determine (a) and (b) The magnetic field compone ( nt c  l E a ) The time average power in the wave Example 10.10
  • 52.
    52 j( ) j s oo x 2 2 2 (a) Comparing the given E with = e = e it is clear that 0 , 0.866 , 0.5 (0 8 6 . 6 x y z k x k y k z x x z x y z E k k k k k k k          k.r E E a 2 2 8 ) (0.5) 1 But in free space, 2 Hence, 3 10 rad/s 2 2 6.283 m o o k = c kc k       l   l             Example 10.10 -solution
  • 53.
    53 j(0.866 0.5 ) s 22 j s x j(0.866 0.5 ) s y z (b) the corresponding magnetic field is given by 0.866a 0.5a 0.866 0.5 0.866 0.5 0.866 0.5 100 e (0.132 0.23 ) e A/m (c) The time averag y z k s y z k y z y z y z a a                 E H a a a a H a H a a       2 2 * s s k y z y z e power is 100 1 = Re (0.866 +0.5 ) 2 2 2 120 =11.49 + 6.631 W/m2 o avg E       E H a a a a a Example 10.10 -solution
  • 54.
    54 Example 10.11 r y A uniformplane wave in air with = 8 cos V/m is incident on a dielectric slab (z 0) with 1 , 2.5 , =0. Find (a) The polarization of the wave (b) The angle of ( t 4 ) n 3 i r x z          E a cidence (c) The reflected field (d) The transmitted field E H
  • 55.
    55 8 (a) From theincident field, it is evident that the propagation vector is 4 3 5 Hence, =5c=15 10 rad/s A unit vector normal to the interface (z = 0) i x z i o o k c             E k a a i is . The plane containing and is y = constant, which is the xz-plane, the plane of incidence. Since is normal to this plane, we have perpendicular polarization (similar to Figure 10.17). z z a k a E Example 10.11 - solution
  • 56.
    i i i i n i 4 (b)from the figure, tan 53.13 3 Alternatively, we can obtain from the fact that is the angle between and , that is, cos . 4 3 5 o ix iz k n x z                k k k a a a a a i 3 . 5 or 53.13 z o       a 56 Example 10.11 - solution
  • 57.
    57 i y (c) Letcos( . ) which is similar to form to the given . The unit vector is chosen in view of the fact that the tangential component of must be continuous at the interface. From t r ro r y E t    E k r a E a E he Figure: sin , cos But = and = = 5 because both and are in the same medium. Hence 4 3 r rx x rz z rx r r rz r r r i r i r i r x z k k k k k k k k k           k k a k a a a Example 10.11 - solution
  • 58.
    58 0 1 1 1 2 22 2 1 2 1 0 2 1 0 2 2 To find , we need . From Snell's law sin53.13 sin sin sin 2.5 or 30.39 cos cos cos cos 377 where 377 , 238.4 2.5 r t o t i i o t ro i t io i t r o r ro io E c n n c E E E E                                            8 238.4cos53.13 377cos30.39 0.389 238.4cos53.13 377cos30.39 Hence, 0.389(8) 3.112 3.112cos(15 10 4 3 ) V/m o o o o ro io r y E E t x z                 E a Example 10.11 - solution
  • 59.
    59 8 2 2 22 2 8 (d) Similarly, let the transmitted electric field be cos( . ) 15 10 where 1 2.5 7.906 3 10 From the Figure , sin =4 cos 6.819 4 6.819 No t to t y t r r tx t t tz t t t x z E t k c k k k k                          E k r a k a a 2 2 1 tice that 2 cos cos cos 2 238.4cos53.13 0.611 238.4cos53.13 377cos30.39 ix rx tx to i io i t o o o k = k = k E E                Example 10.11 - solution
  • 60.
    60 8 t t t t 2 The sameresult could be obtained from the relation =1+ . Hence, 0.611 8 4.888 4.88cos(15 10 4 6.819 ) From , is easily obtained as 4 6.819 4.888 cos 7.906(238.4) t to io t y k x z y E E t x z                   E a E H a E a a H a 8 t ( . ) ( 17.69 10.37 )cos(15 10 4 6.819 ) mA/m r x z t t x z         k r H a a Example 10.11 - solution