SlideShare a Scribd company logo
1 of 60
Download to read offline
EELE 3332 – Electromagnetic II
Chapter 10
Electromagnetic Wave
Propagation
Islamic University of Gaza
Electrical Engineering Department
Dr. Talal Skaik
2012 1
Energy can be transported from one point (where a transmitter is located)
to another point (with a receiver) by means of EM waves.
The rate of energy transportation can be obtined from
Maxwell's


 
     
     
   
2
2
2
equations:
E
Using Maxwell equation: H E
Dotting both sides with E:
E
E H E
But from vector identities: H E E H H E
E H H E H E
1
H E H E ... (1)
2
t
E
t
E
E
t
 
 
 

  


    

       
       

       

2
10.7 Power and the Poynting Vector
3
 
   
 
 
2
2
2
2 2
2
2 2
2
Using Maxwell equation : E , Dotting both sides with H:
H
H E H
2
1
Substitute in equation (1): H E H E
2
1
E H
2 2
1
E H
2 2
H
t
H
t t
E
E
t
H E
E
t t
E H
E
t



 

 

 

  

 
 
      
 
 
 

      

 
     
 
 
      

 
 
2 2 2
2 2 2
Take volume integral of both sides:
1 1
E H
2 2
Applying the divergence theorem to the left hand side:
1 1
E H
2 2
v v v
S v v
t
dv E H dv E dv
t
dS E H dv E dv
t
  
  

  
     
 
  
  
    
 
  
  
  
4
  2 2 2
1 1
E H
2 2
S v v
dS E H dv E dv
t
  
  
     
 
  
  
Power and the Poynting Vector
Total power
leaving the
volume
Rate of decrease
in energy stored
in electric and
magnetic fields
Ohmic
power
dissipated
2
the (Watts/m ) is defined as:
=E×H
It represents the instantaneous power density vector
associated with the EM field at a given point.
PoyntingVector

5
Power and the Poynting Vector
Poynting theorem: states that the net power flowing out of a given
volume v is equal to the time rate of decrease in the energy stored
with v minus the ohmic losses.
Illustration
of power
balance for
EM fields.
Note that is
normal to both E and
H and is therefore
along the direction
of propagation ak
=E×H

6
 
 
   
 
   
0
0
0
0
2
2
2
2
Assume that
E( , ) cos -
H( , ) cos -
( , )= E H = cos - cos -
( , )= cos cos 2 - 2
2
1
since cosAcosB= cos cos
2
z
x
z
y
z
z
z
z
z t E e t z a
E
then z t e t z a
E
and z t e t z t z a
E
z t e t z a
A B A B






 
 
  

    

   






 
  
 
  
 
 
  
 
Power and the Poynting Vector
 
 
0
0
0
*
s s
2
2
2
2
The time-average Poynting vector ( ) over the period T=2 / is:
1
( ) ( , )
It can also be found by:
1
( ) Re E ×H
2
For ( , ) cos cos 2 - 2
2
( ) cos
2
ave
T
ave
ave
z
z
z
ave
z
z z t dt
T
z
E
z t e t z a
E
z e

 

 
   





  
 
 
   
 
  

The total time-average power crossing a given surface S is given by:
S
z
ave ave
S
a
P d


  

7
Power and the Poynting Vector
 
 
0
2
2
0
*
s s
2
( , , , ) Poynting vector
( , , ) time-average of Po
time-varying vector (watts/m )
( , , , ) E×H
(time-invariant vector) (watt
ynting
s/m )
1
( , , , )
1
Re E
vector
×H
2
( )
2
T
ave
ave
av
ave
e
x y z t
x y z t dt
T
E
x y z t
x y z
z e


 

  
 




 

 
 
2
0
total time-average power through
cos E cos -
(scalar) watts
a surface
S
z z
z x
ave av
e
e
v
S
a
a for E e t z a
P d
P
 

  
 


 


 8
Power and the Poynting Vector
9
7
r
2
In a nonmagnetic medium
E = 4 sin (2 10 0.8 ) V/m
Find
(a) ,
(b) The time-average power carried by the wave
(c) The total power crossing 100 cm of plane 2x + y = 5
z
t x

 
  a
Example 10.7
10
7
(a) Since =0 and /c, the medium is not free space but
a lossless medium.
0.8 , 2 10 , (nonmagnetic),
Hence
o o r
  
       
   

    
 
 
8
7
2
or
0.8 3 10 12
2 10
14.59
120
120 . 10 98.7
12
o o r r
r
r
o
o r r
c
c

   


  

   
  
   


  


      
Example 10.7 - Solution
2
2
x
2
2
x x x
2
0
(b) sin ( )
1 16
81 mW/m
2 2 10
(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),
2
5
Hence the total power is
o
T
o
ave
x y
n
av
E
t x
E
dt
T
P
 

 
   
     




E H a
a a a
a a
a
   
3 4
5
2
. . 81 10 . 100 10
5
162 10
724.5 W
5
x y
e ave ave n x
dS S

 


 
  
     
 

 

a a
a a
11
Example 10.7 - Solution
12
10.8 Reflection of a plane wave
at normal incidence
When a plane wave from one medium meets a different medium, it
is partly reflected and partly transmitted.
The proportion of the incident wave that is reflected or transmitted
depends on the parameters (ε,μ,σ) of the two media involved.
Normal incidence (plane wave is normal to the boundary) and
oblique incidence will be studied.
13
Reflection of a plane wave at normal incidence
Suppose a plane wave propagating along the +z direction is incident
normally on the boundary z=0 between medium 1 (z<0) characterised
by ε1,μ1,σ1 and medium 2 (z>0) characterised by ε2,μ2,σ2.
i i z
(E ,H ) is traveling along +a in medium 1.
Assume the electric and megnetic filed (in phasor form) as follows:
Incident Wave
14
Reflection of a plane wave at normal incidence
1
1 1
0
0
0
1
E ( ) a ,
H ( ) a a
z
is i x
z z
i
is i y y
z E e then
E
z H e e

 


 

 
0 is magnitude of
the incident electric
field at z=0
i
E
z
(E ,H ) is traveling along a in medium 1.
Reflected Wave
r r 
15
Reflection of a plane wave at normal incidence
 
1
1 1
0
0
0
1
If E ( ) a ,
H ( ) a a
z
rs r x
z z
r
rs r y y
z E e then
E
z H e e

 


   
0 is magnitude of
the reflected electric
field at z=0
r
E
z
(E ,H ) is traveling along +a in medium 2.
Transmitted Wave
t t
16
Reflection of a plane wave at normal incidence
2
2 2
0
0
0
2
If E ( ) a ,
H ( ) a a
z
ts t x
z z
t
ts t y y
z E e then
E
z H e e

 


 

 
0 is magnitude of
the transmitted electric
field at z=0
i
E
1 1
2 2
Field in medium 1: E E E , H H H
Field in medium 2: E E , H H
Since the waves are transverse, E and H fields are entirely
tangential to the interface.
Applying the boundary
i r i r
t t
   
 


 
1t 2t 1t 2t
0 0 0 0 0
0
0 0
1 2
conditions at the interface 0:
(E =E and H =H )
:
E (0) E (0) E (0)
1
H (0) H (0) H (0)
i r t i r t
t
i r t i r
z
then
E E E
E
E E
 

    
    
17
Reflection of a plane wave at normal incidence
2 1
0 0
2 1
0 2 1
0 0
0 2 1
2
0 0
2 1
0 2
0 0
0 2 1
From the last two equations:
= ,
Re or
2
2
= ,
flection Coeffici
or
ent
Transmission Coefficient
r i
r
r i
i
t i
t
t i
i
E E
E
E E
E
and E E
E
E E
E
 
 
 
 

 

 
 




    



  

Note that:
1. 1+
2. Both and are dimensionless and may be complex.
( and are real for lossless media, and complex for lossy media)
3. 0 1 (-1 1, 0 2)




 


        18
Reflection of a plane wave at normal incidence
When medium 1 is a perfect dielectric (lossless , σ1=0), and
medium 2 is a perfect conductor (σ2=∞):
η2= 0 → Γ=-1 → τ=0
The wave is totally reflected and there is no transmitted wave
(E2 = 0).
The totally reflected wave combines with the incident wave to
form a standing wave.
A standing wave "stands" and does not travel; it consists of two
travelling waves (Ei and Er) of equal amplitudes but in opposite
directions. 19
Reflection of a plane wave at normal incidence
0
For conductor = 45




20
 
 
 
1 1
1 1
z z
1s is rs i0 r0
0
1 1 1 1
0
z z
1s i0
1s 0 1
1 1s
E =E +E = + a
But = = 1, =0, =0, =
E a
E 2 sin z a (since sin = )
2
Thus E =R
The standing wave in medium 1 is:
e E ,
x
r
i
j j
x
jA jA
i x
j t
E e E e
E
j
E
E e e
e e
or jE A
j
e
 
 

   




 
  

 
1 0 1
0
1 1
1
E =2 sin z sin a
2
Similarly, it can be shown that: H = cos z cos a
i x
i
y
or E t
E
t
 
 

Reflection of a plane wave at normal incidence
21
Reflection of a plane wave at normal incidence
Standing waves E  2Eio sin 1z sin t ax. The curves 0, 1, 2, 3, 4, . . ., are,
respectively, at times t  0, T/8, T/4, 3T/8, T/2, . . . ; l  2/1.
22
Standing Waves Examples
Standing wave on a string
http://www.walter-fendt.de/ph14e/stwaverefl.htm
Medium 1 : perfect dielectric 1=0
Medium 2: perfect dielectric 2=0
η1 and η2 are real and so are Γ and τ.
There is a standing wave in medium 1 but there is also a
transmitted wave in medium 2. (incident wave is partly reflected
and partly transmitted).
However, the incident and reflected waves have amplitudes that
are not equal in magnitude.
Two cases:
case 1: when η2 > η1
case 2: when η2 < η1
23
Reflection of a plane wave at normal incidence
24
CASE 1
Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0
2 1
2 1
2 1
0
If , , 0,
0
and are real
j o
e
 
 
 


    

     

1 1
1 1
1
1
2
2
1
E E E ( )
(1 )
E 1
j z j z
s is rs oi
j z j z
oi
j z
s oi
E e e
E e e
E e
 
 

 
 

    
  
   
 
1
2
1 1 max
1 max 1
max
1 max 1
E is maximum when 1 E 1
2 0,2 ,4 ,6 ...
0,1,2,3
or 0, ,2 ,3 ,... 2
j z
oi
e E
z n n
z n
z

     l
    

    
 
     
 
 
1
2
1 1 min
1 min 1 min
1
min
1
E is minimum when 1 E 1
3 5
2 ,3 ,5 ... or , , ...
2 2 2
(2 1) (2 1)
0,1,2,3
2 4
j z
oi
e E
z z
n n
z n

  
    
 l


     
   
 
    
25
CASE 2
Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0
2 1
2 1
2 1
If , , 0,
180
and are real
j o
e 
 
 
 


    

     

1 1
1 1
1
1
2
2
1
E E E ( )
(1 )
E 1
j z j z
s is rs oi
j z j z
oi
j z
s oi
E e e
E e e
E e
 
 

 
 

    
  
   
 
1
2
1 1 min
1 min 1
min
1 min 1
E is minimum when 1 E 1
2 0,2 ,4 ,6 ...
0,1,2,3
or 0, ,2 ,3 ,... 2
j z
oi
e E
z n
n
z n
z

    l

    

    
 
     
 
 
1
2
1 1 max
1 max 1 max
1
max
1
E is maximum when 1 E 1
3 5
2 ,3 ,5 ... or , , ...
2 2 2
(2 1)
(2 1)
0,1,2,3
2 4
j z
oi
e E
z z
n
n
z n

  
    
l



     
   


    
26
Standing waves due to reflection at an interface between two lossless
media; l  2/1.
• Measures the amount of reflections, the more reflections, the
larger the standing wave that is formed.
• The ratio of |E1|max to |E1|min
or
 Since 0 |≤ |Γ|≤1, it follows that 1 ≤s ≤∞.
* When Γ=0, s=1, no reflection, total transmission.
* When |Γ|=1, s=∞, no transmission, total reflection.
 s is dimensionless, expressed in decibels (dB) as: s dB=20log10 s
27







1
1
min
1
max
1
min
1
max
1
H
H
E
E
s
1
1




s
s
Standing Wave Ratio, SWR
8
1 8
1
2
2 1
2
10 1
3 10 3
120
4
.(4) 4
3
2
o
o o r r
o r
o
o r
c
c


  
       

 
 

 
  
  

 
 
  
  
Solution :
28
8
x
o o
r r
In freespace (z 0),a plane wave with
=10 cos(10 t )a mA/m
is incident normally on a lossless medium ( =2 , =8 ) in region z 0.
Determine the reflected wave , and th
i z

   



H
H E t t
e transmitted wave ,
H E
Example 10.8
29
8
1 x
8
1 i
1
Given that =10 cos(10 t ) we expect that
= cos(10 t )
where and = =10
Hence, = 10 cos(
i
i io E
Ei Hi ki x z y io io o
i o
z
z
E H


 



     

H a
E E a
a a a a a a
E 8
1
2 1
2 1
8
r
10 t ) mV/m
2 1 1
Now = = ,
2 3 3
10 1
Thus cos 10 t + mV/m
3 3
from which we easily obtain as
y
ro o o
ro io
io o o
r o y
z
E
E E
E
z

 
 
   




   
 
 
   
 
a
E a
H
8
10 1
cos 10 t + mA/m
3 3
r x
z
 
   
 
H a
Example 10.8 – solution continued
 
8
2
Similarly,
4 4
1 or
3 3
Thus
cos 10 t +
where .Hence,
t
to
to io
io
t to E
Et Ei y
E
E E
E
E z


     

  
E a
a a a
8
8
40 4
cos 10 t mV/m
3 3
from which we obtain
20 4
cos 10 t mA/m
3 3
t o y
t x
z
z

 
  
 
 
 
 
 
 
E a
H a
30
Example 10.8 – solution continued
31
x y
Given a uniform plane wave in air as
(a) Find
(b) If the wave encounters
=40 cos( t
a perfectly conducting plate norm
) + 30 sin(
al
to the z axis at z
t ) V/m
= 0, fi
i
i
z z
   
 
E a a
H
r r
nd the reflected wave and .
(c) What are the total and fields for z 0 ?
(d) Calculate the time-average Poynting vectors
for z 0 and z 0.

 
E H
E H
Example 10.9
1 2
x 2 y
(a) This is similar to the problem in Example 10.3.
We may treat the wave as consisting of tw
=40 cos( t ) , = 30 sin( t
o waves and where
At
)
i i
i i
z z
   
 
E E
E
Solutio
a
n
a E
r
1
1
1
1 2
1
atmospheric pressure, air has = 1.0006 1.
Thus air
cos( t )
may be regarded as free space.
Let
40 1
120 3
1
i i i
i
i
H
i o
o
i o
o
z
H
E
H


 


 


  

H H H
H a
1 y
Hence = cos( t )
1
3
1
H k E z x y
i z

 
    

a a a a a a
H a
32
Example 10.9 -solution
33
Example 10.9 -solution
2
2
2
2
2 2
Similarly,
where
30 1
= sin( t )
Hence
120 4
i i o H
H k E z y x
i o
i o
o
H
E
H
z
 
  

 
  
   
H a
a a a a a a
2 x
1 2 x y
= sin( t )
and
sin( t ) + cos( t )
1
4
1 1
4 3
This problem can also be solved using Method 2 of Example 10.
mA
3
/m
.
i
i i i
z
z z
 
   

 
 
     
H a
H H H a a
2
2 1
2
(b) Since medium 2 is perfectly conducting,
1 <<
that is 1 , = 0
showing that the incident and fields are totally reflected.
= =
Hence, =
ro io io
r
E E E

 


 
  
 
E H
E x y
1 1
40 cos( t ) 30 sin( t ) V/m
1 1
H = cos( t ) sin( t ) A/m
3 4
(c) The total fields in air
and
can be shown to be standing wave.
The total
r y x
i r i r
z z
z z
   
   
 
   
  
   
a a
a a
E E E H H H
2 2
fields in the conductor are 0 , 0.
t t
   
E E H H 34
Example 10.9 -solution
35
Example 10.9 -solution
   
2
2 2
1
1 k z z
1
2 2 2 2
z z
2 2
2
2 k z
2 2
(d) For z 0,
| | 1
[ ]
2 2
1
= 40 30 40 30 =0
240
For z 0,
| |
0
2 2
because the whole incident power is reflected.
s
ave io ro
o
s to
ave
E
E E
E E
 

 

   
 
  
 

   
a a a
a a
a a
36
• Wave arrives at an angle.
• Assume lossless media.
• Uniform plane wave in general form
• For lossless unbounded media, k = 
( )
2 2 2 2 2
( , ) cos( ) Re[ ]
ˆ ˆ ˆ position vector
ˆ ˆ ˆ wave number or propagation vector
j t
o o
x y z
x x y y z z
x y z
E t E t E e
xa ya za
k a k a k a
k k k k


 
 
   
  
  
   
k r
r k r
r
k
Oblique incidence
z
y
z=0
Medium 1 : 1 , 1
Medium 2 : 2, 2
r
i
t
kr
ki
kt
kix
kiz
an
θi is angle of incidence.
The plane defined by propagation vector k and a unit normal
vector an to the boundary is called plane of incidence. 37
Oblique incidence
x
38
1 1 1
2 2 2
1
1
E cos( )
E cos( )
E cos( )
cos
sin
i io ix iy iz
r ro rx ry rz
t to tx ty tz
i r
t
ix i
iz i
E k x k y k z t
E k x k y k z t
E k x k y k z t
where k k
k
k
k



   
   
 
 
   
   
   
  
 


ki =β1
kix
kiz
i
Oblique incidence
It's defined as E is || to incidence plane (E-field lies in the xz-plane)
39
Parallel Polarization
 
 
 
 
1
1
1
1
sin cos
sin cos
1
sin cos
sin cos
1
E (cos sin )
H
E (cos sin )
H
i i
i i
r r
r r
j x z
is io i x i z
j x z
io
is y
j x z
rs ro r x r z
j x z
ro
rs y
E e
E
e
E e
E
e
  
  
  
  
 

 

 
 
 
 
 

 
 
a a
a
a a
a
40
Parallel Polarization
 
 
2
2
sin cos
sin cos
2
E (cos sin )
H
t t
t t
j x z
ts to t x t z
j x z
to
ts y
E e
E
e
  
  
 

 
 
 

a a
a
41
Parallel Polarization
42
Parallel Polarization
1 2
1
1 1 2
sin sin
sin
sin sin sin
1 1 2
Tangential components of E and H should be should be continuous
at the boundary z=0,
(cos ) (cos ) (cos )
i t
r
i i t
j x j x
j x
io i ro r to t
j x j x j x
io ro to
E e E e E e
E E E
e e e
   
 
     
  
  
 

  
 
 
1 1 2
1
The exponential terms must be equal for the previous equations
to be valid: sin sin sin
(Incidence angle = reflection angle)
i r t
i r
or
     
 


  

 1 1 1
2 2 2 2
sin
(snell's law)
sin
t
i
n
n
  
  
  
43
1 1 2
2 1
|| ||
2 1
,
cos cos cos (x-components of E)
(y-component of H)
cos cos
,
cos cos
io i ro r to t
io ro to
ro t i
ro io
io t i
Hence
E E E
E E E
E
E E
E
  
  
   
   
 
 

    

Reflection coefficient
Transmission coefficient 2
|| ||
2 1
|| ||
2 cos
,
cos cos
cos
where (1 )
cos
to i
to io
io t i
i
t
E
E E
E
 
 
   



  

  
Parallel Polarization
44
• defined as the incidence angle at which the reflection
coefficient is 0 (all transmission).
   
2 1 ||
||
2 1 ||
2 1 ||
2 2 2 2
2 1 ||
1 1
||
2 2
2 1 2 2 1
|| 2
1 2
Byt setting :
cos cos
0
cos cos
cos cos
1 sin 1 sin
sin
, and
sin
1 ( / )
sin
1 ( / )
i B
t B
t B
t B
t B
t
i B
i
B
or
Since
 
   
   
   
   
  
 
  
   

 
 

  

 
  
 

 

Parallel Polarization - Brewster angle, B
45
Perpendicular Polarization
In this case, the E field is perpendicular to the plane of incidence
(the xz-plane)
46
 
 
 
 
1
1
1
1
sin cos
sin cos
1
sin cos
sin cos
1
E
H ( cos sin )
E
H (cos sin )
i i
i i
r r
r r
j x z
is io y
j x z
io
is i x i z
j x z
rs ro y
j x z
ro
rs r x r z
E e
E
e
E e
E
e
  
  
  
  
 

 

 
 
 
 

  

 
a
a a
a
a a
Perpendicular Polarization
47
Perpendicular Polarization
 
 
2
2
sin cos
sin cos
2
E
H ( cos sin )
t t
t t
j x z
ts to y
j x z
to
ts t x t z
E e
E
e
  
  
 

 
 

  
a
a a
(cos sin )
t x t z
 

a a
48
i
1 1 2
components of E and H should be should be continuous
at the boundary z=0, and by setting = :
(y-component of E)
cos cos (x-component of H)
r
io ro to
io ro to
i t
Tangential
E E E
E E E
 
 
  

 
 
 
 
 
Reflect 2 1
2 1
2
2 1
cos cos
,
cos cos
2 cos
,
cos cos
where 1
ro i t
ro io
io i t
to i
to io
io i t
E
E E
E
E
E E
E
   
   
 
 
   

 
 
 

    

  

  
ion coefficient
Transmission coefficient
Perpendicular Polarization
49
• For no reflection (total transmission):
   
2 1
2 1
2 1
2 2 2 2
2 1
1 1
2 2
2 2 1 1 2
2
1 2
Byt setting :
cos cos
0
cos cos
cos cos
1 sin 1 sin
sin
, and
sin
1 ( / )
sin
1 ( / )
i B
B t
B t
B t
B t
t
i B
i
B
or
Since
 
   
   
   
   
  
 
  
   

 








 

  

 
  
 

 

Perpendicular Polarization - Brewster angle
50
Summary
Property Normal
Incidence
Perpendicular Parallel
Reflection
coefficient
Transmission
coefficient
Relation
i
t
i
t








cos
cos
cos
cos
1
2
1
2
||




t
i
i







cos
cos
cos
2
1
2
2



t
i
t
i








cos
cos
cos
cos
1
2
1
2




2
2 1
2

 

 i
t
i







cos
cos
cos
2
1
2
2
||


1
2
1
2










1
 
 

1
  
t
i



cos
cos
1 ||
|| 


51
j(0.866y+0.5z)
s x
An EM wave travels in free space with the
electric field component
= 100e V/m
Determine
(a) and
(b) The magnetic field compone
(
nt
c
 l
E a
) The time average power in the wave
Example 10.10
52
j( )
j
s o o x
2 2 2
(a) Comparing the given E with
= e = e
it is clear that
0 , 0.866 , 0.5
(0 8 6
. 6
x y z
k x k y k z
x x z
x y z
E
k k k
k k k k
 
  
   
k.r
E E a
2 2
8
) (0.5) 1
But in free space,
2
Hence, 3 10 rad/s
2
2 6.283 m
o o
k =
c
kc
k
 
   
l


l 
 
  
  
  
Example 10.10 -solution
53
j(0.866 0.5 )
s
2 2
j
s x
j(0.866 0.5 )
s y z
(b) the corresponding magnetic field is given by
0.866a 0.5a
0.866 0.5
0.866 0.5
0.866 0.5
100 e
(0.132 0.23 ) e A/m
(c) The time averag
y z
k s
y z
k y z
y z
y z
a
a







  


 
 
E
H
a a
a a
H a
H a a
   
 
2
2
*
s s k y z
y z
e power is
100
1
= Re (0.866 +0.5 )
2 2 2 120
=11.49 + 6.631 W/m2
o
avg
E
 
   
E H a a a
a a
Example 10.10 -solution
54
Example 10.11
r
y
A uniform plane wave in air with
= 8 cos V/m
is incident on a dielectric slab (z 0) with 1 , 2.5 , =0.
Find
(a) The polarization of the wave
(b) The angle of
( t 4 )
n
3
i
r
x z
  

  
 
E a
cidence
(c) The reflected field
(d) The transmitted field
E
H
55
8
(a) From the incident field, it is evident that the propagation vector is
4 3 5
Hence, =5c=15 10 rad/s
A unit vector normal to the interface (z = 0)
i x z i o o
k
c

  

     

E
k a a
i
is .
The plane containing and is y = constant, which is the xz-plane,
the plane of incidence. Since is normal to this plane, we have
perpendicular polarization (similar to Figure 10.17).
z
z
a
k a
E
Example 10.11 - solution
i i
i i
n
i
4
(b) from the figure, tan 53.13
3
Alternatively, we can obtain from the fact that
is the angle between and , that is,
cos .
4 3
5
o
ix
iz
k n
x z
 
 

   



 

k
k
k a
a a
a a
i
3
.
5
or 53.13
z
o






a
56
Example 10.11 - solution
57
i y
(c) Let cos( . )
which is similar to form to the given . The unit vector is chosen in
view of the fact that the tangential component of must be continuous
at the interface. From t
r ro r y
E t

 
E k r a
E a
E
he Figure:
sin , cos
But = and = = 5
because both and are in
the same medium. Hence
4 3
r rx x rz z
rx r r rz r r
r i r i
r i
r x z
k k k k
k k
k k
k
 
 
 
 
 
k k a k a
a a
Example 10.11 - solution
58
0
1 1
1
2 2 2
2 1
2 1
0 2
1 0 2
2
To find , we need . From Snell's law
sin53.13
sin sin sin
2.5
or 30.39
cos cos
cos cos
377
where 377 , 238.4
2.5
r t
o
t i i
o
t
ro i t
io i t
r
o r
ro
io
E
c
n
n c
E
E
E
E

 
  
 

   
   
 
  
 


  


  

    
  
8
238.4cos53.13 377cos30.39
0.389
238.4cos53.13 377cos30.39
Hence, 0.389(8) 3.112
3.112cos(15 10 4 3 ) V/m
o o
o o
ro io
r y
E E
t x z


 

     
    
E a
Example 10.11 - solution
59
8
2 2 2 2 2 8
(d) Similarly, let the transmitted electric field be
cos( . )
15 10
where 1 2.5 7.906
3 10
From the Figure ,
sin =4
cos 6.819
4 6.819
No
t to t y
t r r
tx t t
tz t t
t x z
E t
k
c
k k
k k


     


 

     


 
 
E k r a
k a a
2
2 1
tice that
2 cos
cos cos
2 238.4cos53.13
0.611
238.4cos53.13 377cos30.39
ix rx tx
to i
io i t
o
o o
k = k = k
E
E
 

   
  


 

Example 10.11 - solution
60
8
t t
t
t
2
The same result could be obtained from the relation =1+ . Hence,
0.611 8 4.888
4.88cos(15 10 4 6.819 )
From , is easily obtained as
4 6.819
4.888 cos
7.906(238.4)
t
to io
t y
k x z
y
E E
t x z





   
   
 
  
E a
E H
a E a a
H a
8
t
( . )
( 17.69 10.37 )cos(15 10 4 6.819 ) mA/m
r
x z
t
t x z
 
     
k r
H a a
Example 10.11 - solution

More Related Content

Similar to tripple e 136 EMII2013_Chapter_10_P2.pdf

A uniform plane wave propagates in the y direction in air with its el.pdf
A uniform plane wave propagates in the y direction in air with its el.pdfA uniform plane wave propagates in the y direction in air with its el.pdf
A uniform plane wave propagates in the y direction in air with its el.pdf
trishacolsyn25353
 
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdfA parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
aroraenterprisesmbd
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
Bipin Kujur
 
The fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdfThe fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdf
info309708
 
The fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdfThe fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdf
RBMADU
 

Similar to tripple e 136 EMII2013_Chapter_10_P2.pdf (20)

ch02.pdf
ch02.pdfch02.pdf
ch02.pdf
 
Fields Lec 5&amp;6
Fields Lec 5&amp;6Fields Lec 5&amp;6
Fields Lec 5&amp;6
 
Lect15 handout
Lect15 handoutLect15 handout
Lect15 handout
 
Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
 
EMF.1.13.ElectricField-P.pdf
EMF.1.13.ElectricField-P.pdfEMF.1.13.ElectricField-P.pdf
EMF.1.13.ElectricField-P.pdf
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Chapter 4a interference
Chapter 4a interferenceChapter 4a interference
Chapter 4a interference
 
A uniform plane wave propagates in the y direction in air with its el.pdf
A uniform plane wave propagates in the y direction in air with its el.pdfA uniform plane wave propagates in the y direction in air with its el.pdf
A uniform plane wave propagates in the y direction in air with its el.pdf
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
 
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdfA parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atoms
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
interference pattern
 interference pattern interference pattern
interference pattern
 
DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...
 
The fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdfThe fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdf
 
The fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdfThe fundamental theory of electromagnetic field is based on Maxwell.pdf
The fundamental theory of electromagnetic field is based on Maxwell.pdf
 

Recently uploaded

electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
benjamincojr
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
Kira Dess
 

Recently uploaded (20)

Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTUUNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptx
 

tripple e 136 EMII2013_Chapter_10_P2.pdf

  • 1. EELE 3332 – Electromagnetic II Chapter 10 Electromagnetic Wave Propagation Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1
  • 2. Energy can be transported from one point (where a transmitter is located) to another point (with a receiver) by means of EM waves. The rate of energy transportation can be obtined from Maxwell's                     2 2 2 equations: E Using Maxwell equation: H E Dotting both sides with E: E E H E But from vector identities: H E E H H E E H H E H E 1 H E H E ... (1) 2 t E t E E t                                             2 10.7 Power and the Poynting Vector
  • 3. 3           2 2 2 2 2 2 2 2 2 Using Maxwell equation : E , Dotting both sides with H: H H E H 2 1 Substitute in equation (1): H E H E 2 1 E H 2 2 1 E H 2 2 H t H t t E E t H E E t t E H E t                                                                   2 2 2 2 2 2 Take volume integral of both sides: 1 1 E H 2 2 Applying the divergence theorem to the left hand side: 1 1 E H 2 2 v v v S v v t dv E H dv E dv t dS E H dv E dv t                                        
  • 4. 4   2 2 2 1 1 E H 2 2 S v v dS E H dv E dv t                     Power and the Poynting Vector Total power leaving the volume Rate of decrease in energy stored in electric and magnetic fields Ohmic power dissipated 2 the (Watts/m ) is defined as: =E×H It represents the instantaneous power density vector associated with the EM field at a given point. PoyntingVector 
  • 5. 5 Power and the Poynting Vector Poynting theorem: states that the net power flowing out of a given volume v is equal to the time rate of decrease in the energy stored with v minus the ohmic losses. Illustration of power balance for EM fields. Note that is normal to both E and H and is therefore along the direction of propagation ak =E×H 
  • 6. 6               0 0 0 0 2 2 2 2 Assume that E( , ) cos - H( , ) cos - ( , )= E H = cos - cos - ( , )= cos cos 2 - 2 2 1 since cosAcosB= cos cos 2 z x z y z z z z z t E e t z a E then z t e t z a E and z t e t z t z a E z t e t z a A B A B                                                  Power and the Poynting Vector
  • 7.     0 0 0 * s s 2 2 2 2 The time-average Poynting vector ( ) over the period T=2 / is: 1 ( ) ( , ) It can also be found by: 1 ( ) Re E ×H 2 For ( , ) cos cos 2 - 2 2 ( ) cos 2 ave T ave ave z z z ave z z z t dt T z E z t e t z a E z e                                 The total time-average power crossing a given surface S is given by: S z ave ave S a P d       7 Power and the Poynting Vector
  • 8.     0 2 2 0 * s s 2 ( , , , ) Poynting vector ( , , ) time-average of Po time-varying vector (watts/m ) ( , , , ) E×H (time-invariant vector) (watt ynting s/m ) 1 ( , , , ) 1 Re E vector ×H 2 ( ) 2 T ave ave av ave e x y z t x y z t dt T E x y z t x y z z e                      2 0 total time-average power through cos E cos - (scalar) watts a surface S z z z x ave av e e v S a a for E e t z a P d P                8 Power and the Poynting Vector
  • 9. 9 7 r 2 In a nonmagnetic medium E = 4 sin (2 10 0.8 ) V/m Find (a) , (b) The time-average power carried by the wave (c) The total power crossing 100 cm of plane 2x + y = 5 z t x      a Example 10.7
  • 10. 10 7 (a) Since =0 and /c, the medium is not free space but a lossless medium. 0.8 , 2 10 , (nonmagnetic), Hence o o r                          8 7 2 or 0.8 3 10 12 2 10 14.59 120 120 . 10 98.7 12 o o r r r r o o r r c c                                     Example 10.7 - Solution
  • 11. 2 2 x 2 2 x x x 2 0 (b) sin ( ) 1 16 81 mW/m 2 2 10 (c) On plane 2x + y = 5 (see Example 3.5 or 8.5), 2 5 Hence the total power is o T o ave x y n av E t x E dt T P                    E H a a a a a a a     3 4 5 2 . . 81 10 . 100 10 5 162 10 724.5 W 5 x y e ave ave n x dS S                       a a a a 11 Example 10.7 - Solution
  • 12. 12 10.8 Reflection of a plane wave at normal incidence When a plane wave from one medium meets a different medium, it is partly reflected and partly transmitted. The proportion of the incident wave that is reflected or transmitted depends on the parameters (ε,μ,σ) of the two media involved. Normal incidence (plane wave is normal to the boundary) and oblique incidence will be studied.
  • 13. 13 Reflection of a plane wave at normal incidence Suppose a plane wave propagating along the +z direction is incident normally on the boundary z=0 between medium 1 (z<0) characterised by ε1,μ1,σ1 and medium 2 (z>0) characterised by ε2,μ2,σ2.
  • 14. i i z (E ,H ) is traveling along +a in medium 1. Assume the electric and megnetic filed (in phasor form) as follows: Incident Wave 14 Reflection of a plane wave at normal incidence 1 1 1 0 0 0 1 E ( ) a , H ( ) a a z is i x z z i is i y y z E e then E z H e e           0 is magnitude of the incident electric field at z=0 i E
  • 15. z (E ,H ) is traveling along a in medium 1. Reflected Wave r r  15 Reflection of a plane wave at normal incidence   1 1 1 0 0 0 1 If E ( ) a , H ( ) a a z rs r x z z r rs r y y z E e then E z H e e          0 is magnitude of the reflected electric field at z=0 r E
  • 16. z (E ,H ) is traveling along +a in medium 2. Transmitted Wave t t 16 Reflection of a plane wave at normal incidence 2 2 2 0 0 0 2 If E ( ) a , H ( ) a a z ts t x z z t ts t y y z E e then E z H e e           0 is magnitude of the transmitted electric field at z=0 i E
  • 17. 1 1 2 2 Field in medium 1: E E E , H H H Field in medium 2: E E , H H Since the waves are transverse, E and H fields are entirely tangential to the interface. Applying the boundary i r i r t t           1t 2t 1t 2t 0 0 0 0 0 0 0 0 1 2 conditions at the interface 0: (E =E and H =H ) : E (0) E (0) E (0) 1 H (0) H (0) H (0) i r t i r t t i r t i r z then E E E E E E              17 Reflection of a plane wave at normal incidence
  • 18. 2 1 0 0 2 1 0 2 1 0 0 0 2 1 2 0 0 2 1 0 2 0 0 0 2 1 From the last two equations: = , Re or 2 2 = , flection Coeffici or ent Transmission Coefficient r i r r i i t i t t i i E E E E E E and E E E E E E                                 Note that: 1. 1+ 2. Both and are dimensionless and may be complex. ( and are real for lossless media, and complex for lossy media) 3. 0 1 (-1 1, 0 2)                 18 Reflection of a plane wave at normal incidence
  • 19. When medium 1 is a perfect dielectric (lossless , σ1=0), and medium 2 is a perfect conductor (σ2=∞): η2= 0 → Γ=-1 → τ=0 The wave is totally reflected and there is no transmitted wave (E2 = 0). The totally reflected wave combines with the incident wave to form a standing wave. A standing wave "stands" and does not travel; it consists of two travelling waves (Ei and Er) of equal amplitudes but in opposite directions. 19 Reflection of a plane wave at normal incidence 0 For conductor = 45    
  • 20. 20       1 1 1 1 z z 1s is rs i0 r0 0 1 1 1 1 0 z z 1s i0 1s 0 1 1 1s E =E +E = + a But = = 1, =0, =0, = E a E 2 sin z a (since sin = ) 2 Thus E =R The standing wave in medium 1 is: e E , x r i j j x jA jA i x j t E e E e E j E E e e e e or jE A j e                      1 0 1 0 1 1 1 E =2 sin z sin a 2 Similarly, it can be shown that: H = cos z cos a i x i y or E t E t      Reflection of a plane wave at normal incidence
  • 21. 21 Reflection of a plane wave at normal incidence Standing waves E  2Eio sin 1z sin t ax. The curves 0, 1, 2, 3, 4, . . ., are, respectively, at times t  0, T/8, T/4, 3T/8, T/2, . . . ; l  2/1.
  • 22. 22 Standing Waves Examples Standing wave on a string http://www.walter-fendt.de/ph14e/stwaverefl.htm
  • 23. Medium 1 : perfect dielectric 1=0 Medium 2: perfect dielectric 2=0 η1 and η2 are real and so are Γ and τ. There is a standing wave in medium 1 but there is also a transmitted wave in medium 2. (incident wave is partly reflected and partly transmitted). However, the incident and reflected waves have amplitudes that are not equal in magnitude. Two cases: case 1: when η2 > η1 case 2: when η2 < η1 23 Reflection of a plane wave at normal incidence
  • 24. 24 CASE 1 Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0 2 1 2 1 2 1 0 If , , 0, 0 and are real j o e                      1 1 1 1 1 1 2 2 1 E E E ( ) (1 ) E 1 j z j z s is rs oi j z j z oi j z s oi E e e E e e E e                         1 2 1 1 max 1 max 1 max 1 max 1 E is maximum when 1 E 1 2 0,2 ,4 ,6 ... 0,1,2,3 or 0, ,2 ,3 ,... 2 j z oi e E z n n z n z       l                        1 2 1 1 min 1 min 1 min 1 min 1 E is minimum when 1 E 1 3 5 2 ,3 ,5 ... or , , ... 2 2 2 (2 1) (2 1) 0,1,2,3 2 4 j z oi e E z z n n z n           l                   
  • 25. 25 CASE 2 Medium 1 : perfect dielectric 1=0, Medium 2: perfect dielectric 2=0 2 1 2 1 2 1 If , , 0, 180 and are real j o e                       1 1 1 1 1 1 2 2 1 E E E ( ) (1 ) E 1 j z j z s is rs oi j z j z oi j z s oi E e e E e e E e                         1 2 1 1 min 1 min 1 min 1 min 1 E is minimum when 1 E 1 2 0,2 ,4 ,6 ... 0,1,2,3 or 0, ,2 ,3 ,... 2 j z oi e E z n n z n z      l                         1 2 1 1 max 1 max 1 max 1 max 1 E is maximum when 1 E 1 3 5 2 ,3 ,5 ... or , , ... 2 2 2 (2 1) (2 1) 0,1,2,3 2 4 j z oi e E z z n n z n          l                    
  • 26. 26 Standing waves due to reflection at an interface between two lossless media; l  2/1.
  • 27. • Measures the amount of reflections, the more reflections, the larger the standing wave that is formed. • The ratio of |E1|max to |E1|min or  Since 0 |≤ |Γ|≤1, it follows that 1 ≤s ≤∞. * When Γ=0, s=1, no reflection, total transmission. * When |Γ|=1, s=∞, no transmission, total reflection.  s is dimensionless, expressed in decibels (dB) as: s dB=20log10 s 27        1 1 min 1 max 1 min 1 max 1 H H E E s 1 1     s s Standing Wave Ratio, SWR
  • 28. 8 1 8 1 2 2 1 2 10 1 3 10 3 120 4 .(4) 4 3 2 o o o r r o r o o r c c                                       Solution : 28 8 x o o r r In freespace (z 0),a plane wave with =10 cos(10 t )a mA/m is incident normally on a lossless medium ( =2 , =8 ) in region z 0. Determine the reflected wave , and th i z         H H E t t e transmitted wave , H E Example 10.8
  • 29. 29 8 1 x 8 1 i 1 Given that =10 cos(10 t ) we expect that = cos(10 t ) where and = =10 Hence, = 10 cos( i i io E Ei Hi ki x z y io io o i o z z E H               H a E E a a a a a a a E 8 1 2 1 2 1 8 r 10 t ) mV/m 2 1 1 Now = = , 2 3 3 10 1 Thus cos 10 t + mV/m 3 3 from which we easily obtain as y ro o o ro io io o o r o y z E E E E z                            a E a H 8 10 1 cos 10 t + mA/m 3 3 r x z         H a Example 10.8 – solution continued
  • 30.   8 2 Similarly, 4 4 1 or 3 3 Thus cos 10 t + where .Hence, t to to io io t to E Et Ei y E E E E E z             E a a a a 8 8 40 4 cos 10 t mV/m 3 3 from which we obtain 20 4 cos 10 t mA/m 3 3 t o y t x z z                   E a H a 30 Example 10.8 – solution continued
  • 31. 31 x y Given a uniform plane wave in air as (a) Find (b) If the wave encounters =40 cos( t a perfectly conducting plate norm ) + 30 sin( al to the z axis at z t ) V/m = 0, fi i i z z       E a a H r r nd the reflected wave and . (c) What are the total and fields for z 0 ? (d) Calculate the time-average Poynting vectors for z 0 and z 0.    E H E H Example 10.9
  • 32. 1 2 x 2 y (a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of tw =40 cos( t ) , = 30 sin( t o waves and where At ) i i i i z z       E E E Solutio a n a E r 1 1 1 1 2 1 atmospheric pressure, air has = 1.0006 1. Thus air cos( t ) may be regarded as free space. Let 40 1 120 3 1 i i i i i H i o o i o o z H E H               H H H H a 1 y Hence = cos( t ) 1 3 1 H k E z x y i z          a a a a a a H a 32 Example 10.9 -solution
  • 33. 33 Example 10.9 -solution 2 2 2 2 2 2 Similarly, where 30 1 = sin( t ) Hence 120 4 i i o H H k E z y x i o i o o H E H z                H a a a a a a a 2 x 1 2 x y = sin( t ) and sin( t ) + cos( t ) 1 4 1 1 4 3 This problem can also be solved using Method 2 of Example 10. mA 3 /m . i i i i z z z                  H a H H H a a
  • 34. 2 2 1 2 (b) Since medium 2 is perfectly conducting, 1 << that is 1 , = 0 showing that the incident and fields are totally reflected. = = Hence, = ro io io r E E E             E H E x y 1 1 40 cos( t ) 30 sin( t ) V/m 1 1 H = cos( t ) sin( t ) A/m 3 4 (c) The total fields in air and can be shown to be standing wave. The total r y x i r i r z z z z                      a a a a E E E H H H 2 2 fields in the conductor are 0 , 0. t t     E E H H 34 Example 10.9 -solution
  • 35. 35 Example 10.9 -solution     2 2 2 1 1 k z z 1 2 2 2 2 z z 2 2 2 2 k z 2 2 (d) For z 0, | | 1 [ ] 2 2 1 = 40 30 40 30 =0 240 For z 0, | | 0 2 2 because the whole incident power is reflected. s ave io ro o s to ave E E E E E                       a a a a a a a
  • 36. 36 • Wave arrives at an angle. • Assume lossless media. • Uniform plane wave in general form • For lossless unbounded media, k =  ( ) 2 2 2 2 2 ( , ) cos( ) Re[ ] ˆ ˆ ˆ position vector ˆ ˆ ˆ wave number or propagation vector j t o o x y z x x y y z z x y z E t E t E e xa ya za k a k a k a k k k k                     k r r k r r k Oblique incidence
  • 37. z y z=0 Medium 1 : 1 , 1 Medium 2 : 2, 2 r i t kr ki kt kix kiz an θi is angle of incidence. The plane defined by propagation vector k and a unit normal vector an to the boundary is called plane of incidence. 37 Oblique incidence x
  • 38. 38 1 1 1 2 2 2 1 1 E cos( ) E cos( ) E cos( ) cos sin i io ix iy iz r ro rx ry rz t to tx ty tz i r t ix i iz i E k x k y k z t E k x k y k z t E k x k y k z t where k k k k k                                   ki =β1 kix kiz i Oblique incidence
  • 39. It's defined as E is || to incidence plane (E-field lies in the xz-plane) 39 Parallel Polarization
  • 40.         1 1 1 1 sin cos sin cos 1 sin cos sin cos 1 E (cos sin ) H E (cos sin ) H i i i i r r r r j x z is io i x i z j x z io is y j x z rs ro r x r z j x z ro rs y E e E e E e E e                                  a a a a a a 40 Parallel Polarization
  • 41.     2 2 sin cos sin cos 2 E (cos sin ) H t t t t j x z ts to t x t z j x z to ts y E e E e                 a a a 41 Parallel Polarization
  • 42. 42 Parallel Polarization 1 2 1 1 1 2 sin sin sin sin sin sin 1 1 2 Tangential components of E and H should be should be continuous at the boundary z=0, (cos ) (cos ) (cos ) i t r i i t j x j x j x io i ro r to t j x j x j x io ro to E e E e E e E E E e e e                             1 1 2 1 The exponential terms must be equal for the previous equations to be valid: sin sin sin (Incidence angle = reflection angle) i r t i r or                1 1 1 2 2 2 2 sin (snell's law) sin t i n n         
  • 43. 43 1 1 2 2 1 || || 2 1 , cos cos cos (x-components of E) (y-component of H) cos cos , cos cos io i ro r to t io ro to ro t i ro io io t i Hence E E E E E E E E E E                          Reflection coefficient Transmission coefficient 2 || || 2 1 || || 2 cos , cos cos cos where (1 ) cos to i to io io t i i t E E E E                   Parallel Polarization
  • 44. 44 • defined as the incidence angle at which the reflection coefficient is 0 (all transmission).     2 1 || || 2 1 || 2 1 || 2 2 2 2 2 1 || 1 1 || 2 2 2 1 2 2 1 || 2 1 2 Byt setting : cos cos 0 cos cos cos cos 1 sin 1 sin sin , and sin 1 ( / ) sin 1 ( / ) i B t B t B t B t B t i B i B or Since                                                    Parallel Polarization - Brewster angle, B
  • 45. 45 Perpendicular Polarization In this case, the E field is perpendicular to the plane of incidence (the xz-plane)
  • 46. 46         1 1 1 1 sin cos sin cos 1 sin cos sin cos 1 E H ( cos sin ) E H (cos sin ) i i i i r r r r j x z is io y j x z io is i x i z j x z rs ro y j x z ro rs r x r z E e E e E e E e                                  a a a a a a Perpendicular Polarization
  • 47. 47 Perpendicular Polarization     2 2 sin cos sin cos 2 E H ( cos sin ) t t t t j x z ts to y j x z to ts t x t z E e E e                  a a a (cos sin ) t x t z    a a
  • 48. 48 i 1 1 2 components of E and H should be should be continuous at the boundary z=0, and by setting = : (y-component of E) cos cos (x-component of H) r io ro to io ro to i t Tangential E E E E E E                   Reflect 2 1 2 1 2 2 1 cos cos , cos cos 2 cos , cos cos where 1 ro i t ro io io i t to i to io io i t E E E E E E E E                                      ion coefficient Transmission coefficient Perpendicular Polarization
  • 49. 49 • For no reflection (total transmission):     2 1 2 1 2 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 1 2 Byt setting : cos cos 0 cos cos cos cos 1 sin 1 sin sin , and sin 1 ( / ) sin 1 ( / ) i B B t B t B t B t t i B i B or Since                                                            Perpendicular Polarization - Brewster angle
  • 51. 51 j(0.866y+0.5z) s x An EM wave travels in free space with the electric field component = 100e V/m Determine (a) and (b) The magnetic field compone ( nt c  l E a ) The time average power in the wave Example 10.10
  • 52. 52 j( ) j s o o x 2 2 2 (a) Comparing the given E with = e = e it is clear that 0 , 0.866 , 0.5 (0 8 6 . 6 x y z k x k y k z x x z x y z E k k k k k k k          k.r E E a 2 2 8 ) (0.5) 1 But in free space, 2 Hence, 3 10 rad/s 2 2 6.283 m o o k = c kc k       l   l             Example 10.10 -solution
  • 53. 53 j(0.866 0.5 ) s 2 2 j s x j(0.866 0.5 ) s y z (b) the corresponding magnetic field is given by 0.866a 0.5a 0.866 0.5 0.866 0.5 0.866 0.5 100 e (0.132 0.23 ) e A/m (c) The time averag y z k s y z k y z y z y z a a                 E H a a a a H a H a a       2 2 * s s k y z y z e power is 100 1 = Re (0.866 +0.5 ) 2 2 2 120 =11.49 + 6.631 W/m2 o avg E       E H a a a a a Example 10.10 -solution
  • 54. 54 Example 10.11 r y A uniform plane wave in air with = 8 cos V/m is incident on a dielectric slab (z 0) with 1 , 2.5 , =0. Find (a) The polarization of the wave (b) The angle of ( t 4 ) n 3 i r x z          E a cidence (c) The reflected field (d) The transmitted field E H
  • 55. 55 8 (a) From the incident field, it is evident that the propagation vector is 4 3 5 Hence, =5c=15 10 rad/s A unit vector normal to the interface (z = 0) i x z i o o k c             E k a a i is . The plane containing and is y = constant, which is the xz-plane, the plane of incidence. Since is normal to this plane, we have perpendicular polarization (similar to Figure 10.17). z z a k a E Example 10.11 - solution
  • 56. i i i i n i 4 (b) from the figure, tan 53.13 3 Alternatively, we can obtain from the fact that is the angle between and , that is, cos . 4 3 5 o ix iz k n x z                k k k a a a a a i 3 . 5 or 53.13 z o       a 56 Example 10.11 - solution
  • 57. 57 i y (c) Let cos( . ) which is similar to form to the given . The unit vector is chosen in view of the fact that the tangential component of must be continuous at the interface. From t r ro r y E t    E k r a E a E he Figure: sin , cos But = and = = 5 because both and are in the same medium. Hence 4 3 r rx x rz z rx r r rz r r r i r i r i r x z k k k k k k k k k           k k a k a a a Example 10.11 - solution
  • 58. 58 0 1 1 1 2 2 2 2 1 2 1 0 2 1 0 2 2 To find , we need . From Snell's law sin53.13 sin sin sin 2.5 or 30.39 cos cos cos cos 377 where 377 , 238.4 2.5 r t o t i i o t ro i t io i t r o r ro io E c n n c E E E E                                            8 238.4cos53.13 377cos30.39 0.389 238.4cos53.13 377cos30.39 Hence, 0.389(8) 3.112 3.112cos(15 10 4 3 ) V/m o o o o ro io r y E E t x z                 E a Example 10.11 - solution
  • 59. 59 8 2 2 2 2 2 8 (d) Similarly, let the transmitted electric field be cos( . ) 15 10 where 1 2.5 7.906 3 10 From the Figure , sin =4 cos 6.819 4 6.819 No t to t y t r r tx t t tz t t t x z E t k c k k k k                          E k r a k a a 2 2 1 tice that 2 cos cos cos 2 238.4cos53.13 0.611 238.4cos53.13 377cos30.39 ix rx tx to i io i t o o o k = k = k E E                Example 10.11 - solution
  • 60. 60 8 t t t t 2 The same result could be obtained from the relation =1+ . Hence, 0.611 8 4.888 4.88cos(15 10 4 6.819 ) From , is easily obtained as 4 6.819 4.888 cos 7.906(238.4) t to io t y k x z y E E t x z                   E a E H a E a a H a 8 t ( . ) ( 17.69 10.37 )cos(15 10 4 6.819 ) mA/m r x z t t x z         k r H a a Example 10.11 - solution