SlideShare a Scribd company logo
1 of 50
1
Prof. David R. Jackson
Dept. of ECE
Notes 6
ECE 5317-6351
Microwave Engineering
Fall 2019
Waveguiding Structures
Part 1: General Theory
Adapted from notes by
Prof. Jeffery T. Williams
2
In general terms, a waveguiding system is a system that confines
electromagnetic energy and channels it from one point to another.
(This is opposed to a wireless system that uses antennas.)
Examples
– Coax
– Twin lead (twisted pair)
– Printed circuit lines (e.g. microstrip)
– Parallel plate waveguide
– Rectangular waveguide
– Circular waveguide
Waveguide Introduction
Note: In microwave engineering, the term “waveguide” is often used to mean
rectangular or circular waveguide (i.e., a hollow pipe of metal).
Waveguides
– Optical fiber (dielectric waveguide)
Transmission Lines
3
General Notation for Waveguiding Systems
Assume ejt time dependence and homogeneous source-free materials.
Assume wave propagation in the  z direction:
z
jk z
z
e e


     
ˆ
, , , , z
jk z
t z
E x y z e x y z e x y e
 
 
 
     
ˆ
, , , , z
jk z
t z
H x y z h x y z h x y e
 
 
 
, z
j k j
    
   
Transverse (x,y)
components
c j

 

 
   
 
tan c
d
c






Note: Lower case letters denote 2-D fields (the z term is suppressed).
j
  
 
 
c c c
j
  
 
 
z
jk
 
z
c

C
Example of waveguiding system (a waveguide)
4
Helmholtz Equation
E j H

  
 
 
 
 
2
c
E j H
j j E J
j j E E
j j E
k E

 
  
 
   
  
 
 

v
E


 
H j E J

   0
H
 
c j

 

 
   
 
Recall:
2 2
c
k  
 (complex)
where
5
Helmholtz Equation
Vector Laplacian definition:  
2
E E E
    
     
2 2 2 2
ˆ ˆ ˆ
x y z
E x E y E z E
      
where
2
E k E
 
  2 2
2 2
2 2
v
v
E E k E
E k E
E k E




    
 
   
 
 
 
     
 
6
2 2 v
E k E


 
    
 
Next, we examine the term on the right-hand side.
Helmholtz Equation (cont.)
So far we have:
7
   
 
0
0
0
0
c
c
c
v
H j E
H j E
j E
E
D




 
    
  
  
  
 
To do this, start with Ampere’s law:
In the time-harmonic (sinusoidal) steady
state, there can never be any volume
charge density inside of a linear,
homogeneous, isotropic, source-free
region that obeys Ohm’s law.
Helmholtz Equation (cont.)
8
Vector Helmholtz equation
2 2
0
E k E
  
Hence, we have
Helmholtz Equation (cont.)
9
 
 
   
    
    
2
2 2
c
c
c
c
H j E E
H j E
H j E
H j E
H j j H
H H j j H
H k H
 
 


 
 
   
   
  
    
    
      
  
Similarly, for the magnetic field, we have
H j E J

  
Helmholtz Equation (cont.)
c j

 

 
   
 
Recall:
10
2 2
0
H k H
  
Hence, we have
Helmholtz Equation (cont.)
Vector Helmholtz equation
11
2 2
0
H k H
  
Summary
2 2
0
E k E
  
These equations are valid for a source-free, homogeneous, isotropic,
linear material.
Vector Helmholtz equation
Helmholtz Equation (cont.)
12
2 2
0
z z
H k H
  
From the property of the vector Laplacian, we have
2 2
0
z z
E k E
  
Recall:
Scalar Helmholtz equation
Helmholtz Equation (cont.)
     
2 2 2 2
ˆ ˆ ˆ
x y z
E x E y E z E
      
13
Assume a guided wave with a field variation F(z) in the z direction of the
form
  z
jk z
F z e

Field Representation
Then all four of the transverse (x and y) field components can be
expressed in terms of the two longitudinal ones:
 
,
z z
E H
(This is a property of any guided wave.)
14
Assume a source-free region with a variation z
jk z
e
E j H

  
1) z
z y x
E
jk E j H
y


  

2) z
z x y
E
jk E j H
x


  

3) y x
z
E E
j H
x y

 
  
 
4) z
z y c x
H
jk H j E
y


 

5) z
z x c y
H
jk H j E
x


 

6) y x
z
H H
j E
x y

 
 
 
Field Representation: Proof
c
H j E

 
Take (x,y,z) components
15
Combining 1) and 5):
2
2
2 2
2
1
( )
1
c
z z
z z x x
c
z z z z
x
c c
z z
c z z x
z z
x c z
c
k
E H
jk jk H j H
y j x
E k H k
j H
y x j
E H
j jk k k H
y x
E H
H j jk
k y x



 


 
 
 
    
  
 
 
 
 
 
   
 
   
 
  
 
 
 
   
 
 
2 2
c z
k k k
 
Cutoff wavenumber
(real number, as discussed later)
Field Representation: Proof (cont.)
A similar derivation holds for the other three transverse field components.
16
2
2
2
2
z z
x c z
c
z z
y c z
c
z z
x z
c
z z
y z
c
E H
j
H k
k y x
E H
j
H k
k x y
E H
j
E k
k x y
E H
j
E k
k y x




 
 
  
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
Summary of Results
These equations give the transverse
field components in terms of the
longitudinal components, Ez and Hz.
Field Representation (cont.)
2 2
c
k  

2 2
c z
k k k
 
17
Therefore, we only need to solve the Helmholtz equations for the
longitudinal field components (Ez and Hz).
2 2
0
z z
H k H
  
2 2
0
z z
E k E
  
Field Representation (cont.)
, , ,
x y x y
E E H H
From table
18
Types of guided waves:
Types of Waveguiding Systems
 TEMz: Ez = 0, Hz = 0
 TMz: Ez  0, Hz = 0
 TEz: Ez = 0, Hz  0
 Hybrid: Ez  0, Hz  0
Microstrip
h
w
r
TEMz
TMz , TEz
Hybrid Hybrid
 
0
R 
 
PEC
19
Waveguides
Two types of modes: TEz , TMz
 We assume that the boundary is PEC.
 We assume that the inside is filled with a homogenous isotropic linear
material (could be air)
An example of a
waveguide
(rectangular waveguide)
20
Transverse Electric (TEz) Waves
0
z
E
 
In general, Ex, Ey, Hx, Hy, Hz  0
To find the TEz field solutions (away from any sources), solve
2 2
( ) 0
z
k H
  
2 2 2
2
2 2 2
0
z
k H
x y z
 
  
   
 
  
 
The electric field is “transverse” (perpendicular) to z.
or
21
Recall that the field solutions we seek are assumed to
vary as   z
jk z
F z e

( , , ) ( , )
jk z
z
z z
H x y z h x y e
 
 
2
2 2
2 2
2 2
, 0
z
c
z
k
k k h x y
x y
 
 
 
    
 
 
 
 
2 2 2
c z
k k k
 
 
2 2
2
2 2
, 0
c z
k h x y
x y
 
 
   
 
 
 
2 2 2
2
2 2 2
0
z
k H
x y z
 
  
   
 
  
 
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
   
 
 
 
22
We need to solve the eigenvalue problem subject to the appropriate boundary conditions.
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
  
 
 
 
(2D Eigenvalue problem)
 
2
,
z
c
h x y
k


 
  
eigenfunction
eigenvalue
(A proof of this may be found in the ECE 6340 notes.)
For this type of eigenvalue problem, the eigenvalue is always real.
   
2 2
2 2
, ,
x y x y
x y
 
 
 
 
 
 
 
Change notation
23
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
  
 
 
 
z
c

C
Hence, TEz modes exist inside of a waveguide (conducting pipe).
c

C
 
,
z
h x y
PEC
0
z
h
n



Neumann boundary condition
A solution to the eigenvalue problem can always be found for a PEC boundary
(proof omitted).
Neumann boundary condition
(see below)
24
Once the solution for Hz is obtained, we use
2 2
2 2
z z z
x x
c c
z z z
y y
c c
jk H j H
H E
k x k y
jk H j H
H E
k y k x


  
 
 
 
 
 
TE wave impedance
TE
z
Z
k


y
x
y x z
E
E
H H k

 
For a wave propagating in the positive z direction (top sign):
y
x
y x z
E
E
H H k

  
Transverse Electric (TEz) Waves (cont.)
For a wave propagating in the negative z direction (bottom sign):
25
For a wave propagating in the positive z direction, we also have:
 
ˆ ˆ
ˆ
ˆ ˆ
ˆ
1
ˆ
( )
t x y
t TE y x
TE t
t t
TE
z e ye xe
z e Z yh xh
Z h
h z e
Z
  
   

  
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
Similarly, for a wave propagating in the negative z direction,
1
ˆ
( )
t t
TE
h z e
Z
  
Transverse Electric (TEz) Waves (cont.)
x TE y
y TE x
e Z h
e Z h

 
Recall:
26
Summarizing both cases, we have
+ sign: wave propagating in the + z direction
- sign: wave propagating in the - z direction
   
 
1
ˆ
, ,
t t
TE
h x y z e x y
Z
  
Transverse Electric (TEz) Waves (cont.)
27
0
z
H
 
Transverse Magnetic (TMz) Waves
In general, Ex, Ey, Ez ,Hx, Hy  0
To find the TEz field solutions (away from any sources), solve
2 2
( ) 0
z
k E
  
2 2 2
2
2 2 2
0
z
k E
x y z
 
  
   
 
  
 
or
The magnetic field is “transverse” (perpendicular) to z.
28
 
2 2
2
2 2
, 0
c z
k e x y
x y
 
 
   
 
 
 
 
2
2 2
2 2
2 2
, 0
z
c
z
k
k k e x y
x y
 
 
 
    
 
 
 
 
2 2 2
c z
k k k
 
Transverse Magnetic (TMz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
   
 
 
 
2 2 2
2
2 2 2
0
z
k E
x y z
 
  
   
 
  
 
Recall that the field solutions we seek are assumed to
vary as
( , , ) ( , )
jk z
z
z z
E x y z e x y e
 
  z
jk z
F z e

29
We need to solve the eigenvalue problem subject to the appropriate boundary conditions.
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
  
 
 
 
(Eigenvalue problem)
 
2
,
z
c
e x y
k

 
eigenfunction
eigenvalue
(A proof of this may be found in the ECE 6340 notes.)
For this type of eigenvalue problem, the eigenvalue is always real.
30
Transverse Magnetic (TMz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
  
 
 
 
A solution to the eigenvalue problem can always be found for a PEC boundary
(proof omitted).
z
c

C
c

C
 
,
z
e x y
PEC
0
z
e 
Dirichlet boundary condition
Hence, TMz modes exist inside of a waveguide (conducting pipe).
Dirichlet boundary condition
(see below)
31
2 2
2 2
c z z z
x x
c c
c z z z
y y
c c
j E jk E
H E
k y k x
j E jk E
H E
k x k y


 
 
 
 
  
 
TM wave impedance
z
TM
c
k
Z


y
x z
y x c
E
E k
H H 
 
y
x z
y x c
E
E k
H H 
  
Once the solution for Ez is obtained, we use
For a wave propagating in the positive z direction (top sign):
For a wave propagating in the negative z direction (bottom sign):
Transverse Magnetic (TMz) Waves (cont.)
32
For a wave propagating in the positive z direction, we also have:
 
ˆ ˆ
ˆ
ˆ ˆ
ˆ
1
ˆ
( )
t x y
t TM y x
TM t
t t
TM
z e ye xe
z e Z yh xh
Z h
h z e
Z
  
   

  
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
Similarly, for a wave propagating in the negative z direction,
1
ˆ
( )
t t
TM
h z e
Z
  
Transverse Magnetic (TMz) Waves (cont.)
x TM y
y TM x
e Z h
e Z h

 
Recall :
33
Summarizing both cases, we have
+ sign: wave propagating in the + z direction
- sign: wave propagating in the - z direction
   
 
1
ˆ
, ,
t t
TM
h x y z e x y
Z
  
Transverse Magnetic (TMz) Waves (cont.)
34
Transverse ElectroMagnetic (TEM) Waves
0, 0
z z
E H
  
From the previous table for the transverse field components, all of
them are equal to zero if Ez and Hz are both zero.
Unless 2
0
c
k 
For TEM waves 2 2 2
0
c z
k k k
  
z c
k k  
 
In general, Ex, Ey, Hx, Hy  0
Hence, we have
2
2
2
2
z z
x c z
c
z z
y c z
c
z z
x z
c
z z
y z
c
E H
j
H k
k y x
E H
j
H k
k x y
E H
j
E k
k x y
E H
j
E k
k y x




 
 
  
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
35
Transverse ElectroMagnetic (TEM) Waves (cont.)
     
, , , ,
z
jk z jkz
t
H x y z h x y e h x y e
 
 
ˆ
s
J n H
 
From EM boundary conditions, we have:
 
 
ˆ , jkz
s t
J n h x y e
 
so
n̂
t
h
x
y
ˆ
s sz
J z J

The current flows purely in the z direction.
36
In a linear, isotropic, homogeneous source-free region,
0
E
 
 
 
 
     
 
 
0
, 0
, , 0
, 0
z
z z
t
jk z
t t
jk z jk z
t t t
t t
E
e x y e
e e x y e x y e
e x y
  
   
     
   
ˆ ˆ
t x y
x y
 
  
 
In rectangular coordinates, we have
Notation:
0
y
x z
E
E E
x y z

 
  
  
 
 
, 0
t t
e x y
  
Transverse ElectroMagnetic (TEM) Waves (cont.)
Hence, we have
37
Also, for the TEMz mode, we have from Faraday’s law (taking the z
component):
   
ˆ ˆ 0
z
z E z j H j H
 
       
0
y x
E E
x y
 
 
 
 
 
, 0
t t
e x y
  
0
y x
e e
x y
 
 
 
ˆ ˆ
t x y
x y
 
  
 
Note:
Using the formula for the z component of the curl
of E, we have:
Hence
Transverse ElectroMagnetic (TEM) Waves (cont.)
Hence, we have:
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
  ˆ
, y x
t t
e e
e x y z
x y

 

   
 
 
 
38
 
 
, 0
t t
e x y
  
   
, ,
t t
e x y x y
  
 
 
, 0
t t
e x y
    
 
, 0
t t x y
    
 
2
, 0
t x y
  
Hence
Transverse ElectroMagnetic (TEM) Waves (cont.)
39
 
2
, 0
x y
  
Since the potential function that describes the electric field in the cross-
sectional plane is two dimensional, we can drop the “t” subscript if we wish:
Boundary Conditions:
 
 
,
,
a
b
a
b
x y
x y
  
  
conductor " "
conductor " "
This is enough to make the potential function unique.
Hence, the potential function is the same for DC as it is for a high-
frequency microwave signal.
Transverse ElectroMagnetic (TEM) Waves (cont.)
The field of a TEM mode does not change shape with frequency:
it has the same shape as a DC field.
 
2
, 0
x y
  
a b
PEC conductors
40
Notes:
 A TEMz mode has an electric field that has exactly the same shape as
a static (DC) field. (A similar proof holds for the magnetic field.)
 This implies that the C and L for the TEMz mode on a transmission
line are independent of frequency.
 This also implies that the voltage drop between the two conductors of
a transmission line carrying a TEMz mode is path independent.
 A TEMz mode requires two or more conductors: a static electric field
cannot exist inside of a waveguide (hollow metal pipe) due to the
Faraday cage effect.
Transverse ElectroMagnetic (TEM) Waves (cont.)
41
For a TEM mode, both wave impedances are the same:
Transverse ElectroMagnetic (TEM) Waves (cont.)
c
z
TM
c c c c
k k
Z
  

   
    
TE
z c
c
Z
k k
   


 
    
Note:  is complex for lossy media.
z
k k

Recall:
42
TEM Solution Process
A) Solve Laplace’s equation subject to appropriate B.C.s.:
B) Find the transverse electric field:
C) Find the total electric field:
D) Find the magnetic field:
 
2
, 0
x y
  
 
1
ˆ ;
H z E z

    propagating
   
, ,
t
e x y x y
 
   
, , , ,
z
jk z
t z
E x y z e x y e k k
 
Note: The only frequency dependence is in the wavenumber kz = k.
43
Note on Lossy Transmission Line
 A TEM mode can have an arbitrary amount of dielectric loss.
 A TEM mode cannot have conductor loss.
J E


Inside conductors:
 
I z
+ + + + + + +
- - - - - - - - - -
 
V z
z z
J E

In practice, a small conductor loss will not change the shape of the fields
too much, and the mode is approximately TEM.
If there is conductor loss,
there must be an Ez field.
44
If there is only dielectric loss (an exact TEM mode):
  
R j L G j C
  
  
 
0 0 1 tan
c
r r d
jk
j
j j

 
     


 
0 0
r r
LC    

 
z z
jk jk k k
   
  
j L G j C
  
 
      
2
0 0 1 tan
r r d
j L G j C j
       
   
Equate real and imaginary parts
    
2
0 0 tan
r r d
L G
      

Note on Lossy Transmission Line (cont.)
 
: r r
 
Note denotes real
45
tan d
G
C



From these two equations we have:
0 0
r r
LC    

0 0
r r
LC    

    
     
2
0 0
2
0 0 0 0 0 0
2
0 0
tan
tan tan tan
r r d
r r d r r d r r d
r r
L G
G
C LC LC
      
               
     

   
Equations for a TEM mode:
Note:
These formulas were assumed
previously in Notes 3.
Note on Lossy Transmission Line (cont.)
46
This general formula accounts for both dielectric and conductor loss:
  
R j L G j C
  
  
Dielectric loss
Conductor loss
When R is present the mode is not exactly TEM, but we usually ignore this.
Note on Lossy Transmission Line (cont.)
47
Summary
TEM Mode:
 
0 0 1 tan
z r rc r r d
k k k k j
    
   
0
z z
E H
 
   
 
1
ˆ
, ,
t t
h x y z e x y

 
 
1 tan
rc r d
j
  
 
0
0
0
376.7303



  
0
r
c rc
 
 
 
 
48
  
z
jk R j L G j C
  
   
Summary (cont.)
Transmission line mode (approximate TEM mode):
tan d
G
C



0 0
r r
LC    

0
lossless L
Z
C

 
0 0 0
0 0 0
/
tan
lossless
r r
lossless
r r
d
L Z
C Z
G C
R R
   
   
 




ˆ
s sz
J z J

 The mode requires two conductors.
 The mode is purely TEM only when R = 0.
49
Summary (cont.)
TEz Mode:
2 2
z c
k k k
 
0, 0
z z
E H
 
   
 
1
ˆ
, ,
t t
TE
h x y z e x y
Z
 
 
0 0 1 tan
r rc r r d
k k k j
    
  
kc = real number (depends on geometry and mode number)
   
2 2
, ,
t z c z
h x y k h x y
  
TE
z
Z
k


 The mode can exist inside of a single pipe (waveguide).
50
TMz Mode:
2 2
z c
k k k
 
0, 0
z z
H E
 
   
 
1
ˆ
, ,
t t
TM
h x y z e x y
Z
 
 
0 0 1 tan
r rc r r d
k k k j
    
  
kc = real number (depends on geometry and mode number)
   
2 2
, ,
t z c z
e x y k e x y
  
z
TM
k
Z


Summary (cont.)
 The mode can exist inside a single pipe (waveguide).

More Related Content

Similar to Waveguiding Structures Part 1 (General Theory).pptx

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
Hydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulationHydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulationRohit Vishwakarma
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1HIMANSHU DIWAKAR
 
Preparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.pptPreparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.pptRajeshDommeti
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptxTayebaTakbirOrnila
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3SEENET-MTP
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-pptATTO RATHORE
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methodsGetachew Solomon
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transformiosrjce
 

Similar to Waveguiding Structures Part 1 (General Theory).pptx (20)

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
emtl
emtlemtl
emtl
 
Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
 
Hydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulationHydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulation
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Microwave PPT.ppt
Microwave PPT.pptMicrowave PPT.ppt
Microwave PPT.ppt
 
Preparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.pptPreparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.ppt
 
s3-Ellipsometry.ppt
s3-Ellipsometry.ppts3-Ellipsometry.ppt
s3-Ellipsometry.ppt
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
Lecture15_Hall_effect.pdf
Lecture15_Hall_effect.pdfLecture15_Hall_effect.pdf
Lecture15_Hall_effect.pdf
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppt
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methods
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
481 lecture10
481 lecture10481 lecture10
481 lecture10
 
481 lecture10
481 lecture10481 lecture10
481 lecture10
 
Electron spin resonance
Electron spin resonanceElectron spin resonance
Electron spin resonance
 
ch09.pdf
ch09.pdfch09.pdf
ch09.pdf
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 

Waveguiding Structures Part 1 (General Theory).pptx

  • 1. 1 Prof. David R. Jackson Dept. of ECE Notes 6 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding Structures Part 1: General Theory Adapted from notes by Prof. Jeffery T. Williams
  • 2. 2 In general terms, a waveguiding system is a system that confines electromagnetic energy and channels it from one point to another. (This is opposed to a wireless system that uses antennas.) Examples – Coax – Twin lead (twisted pair) – Printed circuit lines (e.g. microstrip) – Parallel plate waveguide – Rectangular waveguide – Circular waveguide Waveguide Introduction Note: In microwave engineering, the term “waveguide” is often used to mean rectangular or circular waveguide (i.e., a hollow pipe of metal). Waveguides – Optical fiber (dielectric waveguide) Transmission Lines
  • 3. 3 General Notation for Waveguiding Systems Assume ejt time dependence and homogeneous source-free materials. Assume wave propagation in the  z direction: z jk z z e e         ˆ , , , , z jk z t z E x y z e x y z e x y e             ˆ , , , , z jk z t z H x y z h x y z h x y e       , z j k j          Transverse (x,y) components c j             tan c d c       Note: Lower case letters denote 2-D fields (the z term is suppressed). j        c c c j        z jk   z c  C Example of waveguiding system (a waveguide)
  • 4. 4 Helmholtz Equation E j H             2 c E j H j j E J j j E E j j E k E                     v E     H j E J     0 H   c j             Recall: 2 2 c k    (complex) where
  • 5. 5 Helmholtz Equation Vector Laplacian definition:   2 E E E            2 2 2 2 ˆ ˆ ˆ x y z E x E y E z E        where 2 E k E     2 2 2 2 2 2 v v E E k E E k E E k E                             
  • 6. 6 2 2 v E k E            Next, we examine the term on the right-hand side. Helmholtz Equation (cont.) So far we have:
  • 7. 7       0 0 0 0 c c c v H j E H j E j E E D                       To do this, start with Ampere’s law: In the time-harmonic (sinusoidal) steady state, there can never be any volume charge density inside of a linear, homogeneous, isotropic, source-free region that obeys Ohm’s law. Helmholtz Equation (cont.)
  • 8. 8 Vector Helmholtz equation 2 2 0 E k E    Hence, we have Helmholtz Equation (cont.)
  • 9. 9                   2 2 2 c c c c H j E E H j E H j E H j E H j j H H H j j H H k H                                          Similarly, for the magnetic field, we have H j E J     Helmholtz Equation (cont.) c j             Recall:
  • 10. 10 2 2 0 H k H    Hence, we have Helmholtz Equation (cont.) Vector Helmholtz equation
  • 11. 11 2 2 0 H k H    Summary 2 2 0 E k E    These equations are valid for a source-free, homogeneous, isotropic, linear material. Vector Helmholtz equation Helmholtz Equation (cont.)
  • 12. 12 2 2 0 z z H k H    From the property of the vector Laplacian, we have 2 2 0 z z E k E    Recall: Scalar Helmholtz equation Helmholtz Equation (cont.)       2 2 2 2 ˆ ˆ ˆ x y z E x E y E z E       
  • 13. 13 Assume a guided wave with a field variation F(z) in the z direction of the form   z jk z F z e  Field Representation Then all four of the transverse (x and y) field components can be expressed in terms of the two longitudinal ones:   , z z E H (This is a property of any guided wave.)
  • 14. 14 Assume a source-free region with a variation z jk z e E j H     1) z z y x E jk E j H y       2) z z x y E jk E j H x       3) y x z E E j H x y         4) z z y c x H jk H j E y      5) z z x c y H jk H j E x      6) y x z H H j E x y        Field Representation: Proof c H j E    Take (x,y,z) components
  • 15. 15 Combining 1) and 5): 2 2 2 2 2 1 ( ) 1 c z z z z x x c z z z z x c c z z c z z x z z x c z c k E H jk jk H j H y j x E k H k j H y x j E H j jk k k H y x E H H j jk k y x                                                             2 2 c z k k k   Cutoff wavenumber (real number, as discussed later) Field Representation: Proof (cont.) A similar derivation holds for the other three transverse field components.
  • 16. 16 2 2 2 2 z z x c z c z z y c z c z z x z c z z y z c E H j H k k y x E H j H k k x y E H j E k k x y E H j E k k y x                                                       Summary of Results These equations give the transverse field components in terms of the longitudinal components, Ez and Hz. Field Representation (cont.) 2 2 c k    2 2 c z k k k  
  • 17. 17 Therefore, we only need to solve the Helmholtz equations for the longitudinal field components (Ez and Hz). 2 2 0 z z H k H    2 2 0 z z E k E    Field Representation (cont.) , , , x y x y E E H H From table
  • 18. 18 Types of guided waves: Types of Waveguiding Systems  TEMz: Ez = 0, Hz = 0  TMz: Ez  0, Hz = 0  TEz: Ez = 0, Hz  0  Hybrid: Ez  0, Hz  0 Microstrip h w r TEMz TMz , TEz Hybrid Hybrid   0 R    PEC
  • 19. 19 Waveguides Two types of modes: TEz , TMz  We assume that the boundary is PEC.  We assume that the inside is filled with a homogenous isotropic linear material (could be air) An example of a waveguide (rectangular waveguide)
  • 20. 20 Transverse Electric (TEz) Waves 0 z E   In general, Ex, Ey, Hx, Hy, Hz  0 To find the TEz field solutions (away from any sources), solve 2 2 ( ) 0 z k H    2 2 2 2 2 2 2 0 z k H x y z                 The electric field is “transverse” (perpendicular) to z. or
  • 21. 21 Recall that the field solutions we seek are assumed to vary as   z jk z F z e  ( , , ) ( , ) jk z z z z H x y z h x y e     2 2 2 2 2 2 2 , 0 z c z k k k h x y x y                    2 2 2 c z k k k     2 2 2 2 2 , 0 c z k h x y x y               2 2 2 2 2 2 2 0 z k H x y z                 Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              
  • 22. 22 We need to solve the eigenvalue problem subject to the appropriate boundary conditions. Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              (2D Eigenvalue problem)   2 , z c h x y k        eigenfunction eigenvalue (A proof of this may be found in the ECE 6340 notes.) For this type of eigenvalue problem, the eigenvalue is always real.     2 2 2 2 , , x y x y x y               Change notation
  • 23. 23 Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              z c  C Hence, TEz modes exist inside of a waveguide (conducting pipe). c  C   , z h x y PEC 0 z h n    Neumann boundary condition A solution to the eigenvalue problem can always be found for a PEC boundary (proof omitted). Neumann boundary condition (see below)
  • 24. 24 Once the solution for Hz is obtained, we use 2 2 2 2 z z z x x c c z z z y y c c jk H j H H E k x k y jk H j H H E k y k x                TE wave impedance TE z Z k   y x y x z E E H H k    For a wave propagating in the positive z direction (top sign): y x y x z E E H H k     Transverse Electric (TEz) Waves (cont.) For a wave propagating in the negative z direction (bottom sign):
  • 25. 25 For a wave propagating in the positive z direction, we also have:   ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ ( ) t x y t TE y x TE t t t TE z e ye xe z e Z yh xh Z h h z e Z                  ˆ ˆ , , , t x y e x y xe x y ye x y   Similarly, for a wave propagating in the negative z direction, 1 ˆ ( ) t t TE h z e Z    Transverse Electric (TEz) Waves (cont.) x TE y y TE x e Z h e Z h    Recall:
  • 26. 26 Summarizing both cases, we have + sign: wave propagating in the + z direction - sign: wave propagating in the - z direction       1 ˆ , , t t TE h x y z e x y Z    Transverse Electric (TEz) Waves (cont.)
  • 27. 27 0 z H   Transverse Magnetic (TMz) Waves In general, Ex, Ey, Ez ,Hx, Hy  0 To find the TEz field solutions (away from any sources), solve 2 2 ( ) 0 z k E    2 2 2 2 2 2 2 0 z k E x y z                 or The magnetic field is “transverse” (perpendicular) to z.
  • 28. 28   2 2 2 2 2 , 0 c z k e x y x y                 2 2 2 2 2 2 2 , 0 z c z k k k e x y x y                    2 2 2 c z k k k   Transverse Magnetic (TMz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y               2 2 2 2 2 2 2 0 z k E x y z                 Recall that the field solutions we seek are assumed to vary as ( , , ) ( , ) jk z z z z E x y z e x y e     z jk z F z e 
  • 29. 29 We need to solve the eigenvalue problem subject to the appropriate boundary conditions. Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y              (Eigenvalue problem)   2 , z c e x y k    eigenfunction eigenvalue (A proof of this may be found in the ECE 6340 notes.) For this type of eigenvalue problem, the eigenvalue is always real.
  • 30. 30 Transverse Magnetic (TMz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y              A solution to the eigenvalue problem can always be found for a PEC boundary (proof omitted). z c  C c  C   , z e x y PEC 0 z e  Dirichlet boundary condition Hence, TMz modes exist inside of a waveguide (conducting pipe). Dirichlet boundary condition (see below)
  • 31. 31 2 2 2 2 c z z z x x c c c z z z y y c c j E jk E H E k y k x j E jk E H E k x k y                TM wave impedance z TM c k Z   y x z y x c E E k H H    y x z y x c E E k H H     Once the solution for Ez is obtained, we use For a wave propagating in the positive z direction (top sign): For a wave propagating in the negative z direction (bottom sign): Transverse Magnetic (TMz) Waves (cont.)
  • 32. 32 For a wave propagating in the positive z direction, we also have:   ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ ( ) t x y t TM y x TM t t t TM z e ye xe z e Z yh xh Z h h z e Z                  ˆ ˆ , , , t x y e x y xe x y ye x y   Similarly, for a wave propagating in the negative z direction, 1 ˆ ( ) t t TM h z e Z    Transverse Magnetic (TMz) Waves (cont.) x TM y y TM x e Z h e Z h    Recall :
  • 33. 33 Summarizing both cases, we have + sign: wave propagating in the + z direction - sign: wave propagating in the - z direction       1 ˆ , , t t TM h x y z e x y Z    Transverse Magnetic (TMz) Waves (cont.)
  • 34. 34 Transverse ElectroMagnetic (TEM) Waves 0, 0 z z E H    From the previous table for the transverse field components, all of them are equal to zero if Ez and Hz are both zero. Unless 2 0 c k  For TEM waves 2 2 2 0 c z k k k    z c k k     In general, Ex, Ey, Hx, Hy  0 Hence, we have 2 2 2 2 z z x c z c z z y c z c z z x z c z z y z c E H j H k k y x E H j H k k x y E H j E k k x y E H j E k k y x                                                      
  • 35. 35 Transverse ElectroMagnetic (TEM) Waves (cont.)       , , , , z jk z jkz t H x y z h x y e h x y e     ˆ s J n H   From EM boundary conditions, we have:     ˆ , jkz s t J n h x y e   so n̂ t h x y ˆ s sz J z J  The current flows purely in the z direction.
  • 36. 36 In a linear, isotropic, homogeneous source-free region, 0 E                   0 , 0 , , 0 , 0 z z z t jk z t t jk z jk z t t t t t E e x y e e e x y e x y e e x y                  ˆ ˆ t x y x y        In rectangular coordinates, we have Notation: 0 y x z E E E x y z              , 0 t t e x y    Transverse ElectroMagnetic (TEM) Waves (cont.) Hence, we have
  • 37. 37 Also, for the TEMz mode, we have from Faraday’s law (taking the z component):     ˆ ˆ 0 z z E z j H j H           0 y x E E x y           , 0 t t e x y    0 y x e e x y       ˆ ˆ t x y x y        Note: Using the formula for the z component of the curl of E, we have: Hence Transverse ElectroMagnetic (TEM) Waves (cont.) Hence, we have:       ˆ ˆ , , , t x y e x y xe x y ye x y     ˆ , y x t t e e e x y z x y              
  • 38. 38     , 0 t t e x y        , , t t e x y x y        , 0 t t e x y        , 0 t t x y        2 , 0 t x y    Hence Transverse ElectroMagnetic (TEM) Waves (cont.)
  • 39. 39   2 , 0 x y    Since the potential function that describes the electric field in the cross- sectional plane is two dimensional, we can drop the “t” subscript if we wish: Boundary Conditions:     , , a b a b x y x y       conductor " " conductor " " This is enough to make the potential function unique. Hence, the potential function is the same for DC as it is for a high- frequency microwave signal. Transverse ElectroMagnetic (TEM) Waves (cont.) The field of a TEM mode does not change shape with frequency: it has the same shape as a DC field.   2 , 0 x y    a b PEC conductors
  • 40. 40 Notes:  A TEMz mode has an electric field that has exactly the same shape as a static (DC) field. (A similar proof holds for the magnetic field.)  This implies that the C and L for the TEMz mode on a transmission line are independent of frequency.  This also implies that the voltage drop between the two conductors of a transmission line carrying a TEMz mode is path independent.  A TEMz mode requires two or more conductors: a static electric field cannot exist inside of a waveguide (hollow metal pipe) due to the Faraday cage effect. Transverse ElectroMagnetic (TEM) Waves (cont.)
  • 41. 41 For a TEM mode, both wave impedances are the same: Transverse ElectroMagnetic (TEM) Waves (cont.) c z TM c c c c k k Z              TE z c c Z k k              Note:  is complex for lossy media. z k k  Recall:
  • 42. 42 TEM Solution Process A) Solve Laplace’s equation subject to appropriate B.C.s.: B) Find the transverse electric field: C) Find the total electric field: D) Find the magnetic field:   2 , 0 x y      1 ˆ ; H z E z      propagating     , , t e x y x y       , , , , z jk z t z E x y z e x y e k k   Note: The only frequency dependence is in the wavenumber kz = k.
  • 43. 43 Note on Lossy Transmission Line  A TEM mode can have an arbitrary amount of dielectric loss.  A TEM mode cannot have conductor loss. J E   Inside conductors:   I z + + + + + + + - - - - - - - - - -   V z z z J E  In practice, a small conductor loss will not change the shape of the fields too much, and the mode is approximately TEM. If there is conductor loss, there must be an Ez field.
  • 44. 44 If there is only dielectric loss (an exact TEM mode):    R j L G j C         0 0 1 tan c r r d jk j j j              0 0 r r LC        z z jk jk k k        j L G j C             2 0 0 1 tan r r d j L G j C j             Equate real and imaginary parts      2 0 0 tan r r d L G         Note on Lossy Transmission Line (cont.)   : r r   Note denotes real
  • 45. 45 tan d G C    From these two equations we have: 0 0 r r LC      0 0 r r LC                 2 0 0 2 0 0 0 0 0 0 2 0 0 tan tan tan tan r r d r r d r r d r r d r r L G G C LC LC                                   Equations for a TEM mode: Note: These formulas were assumed previously in Notes 3. Note on Lossy Transmission Line (cont.)
  • 46. 46 This general formula accounts for both dielectric and conductor loss:    R j L G j C       Dielectric loss Conductor loss When R is present the mode is not exactly TEM, but we usually ignore this. Note on Lossy Transmission Line (cont.)
  • 47. 47 Summary TEM Mode:   0 0 1 tan z r rc r r d k k k k j          0 z z E H         1 ˆ , , t t h x y z e x y      1 tan rc r d j      0 0 0 376.7303       0 r c rc        
  • 48. 48    z jk R j L G j C        Summary (cont.) Transmission line mode (approximate TEM mode): tan d G C    0 0 r r LC      0 lossless L Z C    0 0 0 0 0 0 / tan lossless r r lossless r r d L Z C Z G C R R               ˆ s sz J z J   The mode requires two conductors.  The mode is purely TEM only when R = 0.
  • 49. 49 Summary (cont.) TEz Mode: 2 2 z c k k k   0, 0 z z E H         1 ˆ , , t t TE h x y z e x y Z     0 0 1 tan r rc r r d k k k j         kc = real number (depends on geometry and mode number)     2 2 , , t z c z h x y k h x y    TE z Z k    The mode can exist inside of a single pipe (waveguide).
  • 50. 50 TMz Mode: 2 2 z c k k k   0, 0 z z H E         1 ˆ , , t t TM h x y z e x y Z     0 0 1 tan r rc r r d k k k j         kc = real number (depends on geometry and mode number)     2 2 , , t z c z e x y k e x y    z TM k Z   Summary (cont.)  The mode can exist inside a single pipe (waveguide).