Mathematical Theory and Modeling                                                                                        www.iiste.org
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)
Vol.2, No.4, 2012


                          The Univalence of Some Integral Operators
                                                           Deborah O. Makinde
                      Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
                          E-mail : domakinde.comp@gmail.com;           domakinde@oauife.edu.ng


Abstract
In this paper, we obtain the conditions for univalence of the integral operators of
the form:
And                                             1/ 
                             g (s) 
                          z             k
     F ( z )    t   i  1/𝜆
                               1
                                         ds
𝐻(𝑧) = {𝜆      𝑡          (
                             ) 𝜆−1 𝑑𝑠}
                 0 ∏ 𝑘 i 1 𝑔 𝑖 (𝑠) s
              𝑧 𝜆−1
                     ∫0            𝑖=1      𝑠
AMS Mathematics Subject Classification: 30C45.
Key Words: Integral operator, Univalent.
        1.         Introduction
Let 𝐴 be the class of the functions in the unit disk 𝑈 = {𝑍 ∈ 𝐶: |𝑧| < 1 such that 𝑓(0) = 𝑓 ′ (0) − 1 = 0.
Let 𝑆 be the class of functions 𝑓 ∈ 𝐴 which are univalent in 𝑈. Ozaki and Nunokawa [2] showed the
condition for the univalence of the function 𝑓 ∈ 𝐴 as given in the lemma below.
Lemma 1 [3]: Let 𝑓 ∈ 𝐴 satisfy the condition
     𝑧 2 𝑓 ′ (𝑧)
 |                 − 1| ≤ 1                                                                                                        (1)
      𝑓 2(𝑧)

For all 𝑧 ∈ 𝑈, then 𝑓 is univalent in 𝑈
Lemma 2 [2]: Let 𝛼 be a complex number,                     𝛼 > 0 , and 𝑓 ∈ 𝐴. If
                                                       1 − |𝑧|2𝑅𝑒𝛼 𝑧𝑓 ′′ (𝑧)
                                                                  | ′       |≤1
                                                           𝑅𝑒𝛼      𝑓 (𝑧)

                                                            𝑧              1⁄
                                                                              𝛼
For all 𝑧 ∈ 𝑈, then the function 𝐹 𝛼 (𝑧) = [𝛼 ∫ 𝑈 𝛼−1 𝑓 ′ (𝑢)𝑑𝑢]
                                               0

Is in the class 𝑆.
The Schwartz lemma [1] : Let the analytic function 𝑓 be regular in the unit disk and let 𝑓(0) = 0. If
|𝑓(𝑧)| ≤ 1, then
 |𝑓(𝑧)| ≤ |𝑧|
For all 𝑧 ∈ 𝑈, where equality can hold only if |𝑓(𝑧)| ≡ 𝐾𝑧 and 𝑘 = 1
Lemma 3 [4]: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝑎 + 𝑏 𝑖 a complex number, 𝑎, 𝑏 satisfies the conditions
          3 3                  1
𝑎 ∈ [ , ] ; 𝑏 ∈ [0,                 ]                                                                                             (2)
          4 2                 2√2

8𝑎2 + 𝑎9 𝑏 2 − 18𝑎 + 9 ≤ 0                                                                                                         (3)
                                                                                                                 1
                                                                                  𝑧   𝑔(𝑢)     𝑎+𝑏 𝑖 −1         𝑎+𝑏 𝑖
If |𝑔(𝑧) ≤ 1| for all 𝑧 ∈ 𝑈 then the function 𝐺(𝑧) = {𝑎 + 𝑏 𝑖 ∫ (
                                                               0
                                                                                           )              𝑑𝑢}
                                                                                       𝑢



                                                                 91
Mathematical Theory and Modeling                                                                                                                            www.iiste.org
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)
Vol.2, No.4, 2012

Is univalent in 𝑈
     1.        MAIN RESULTS

Theorem 1: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝜆 is a complex number, 𝜆 satisfies the conditions
 𝑅𝑒𝜆 ∈ (0, √𝑘 + 2], 𝑘 ≥ 1                                                                                                                                             (4)
(𝑅𝑒𝜆)4 (𝑅𝑒𝜆)2 (𝐼𝑚𝜆)2                                 − (𝑘 + 2) ≥ 0             2
                                                                                                                                                                      (5)
If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function
                                                                               1/ 
                                                   g (s) 
                            z                    k

                                              is 
                                     1
    F ( z)    t                                                                    ds Is univalent in 𝑈
                            0                i 1        
Proof: Let
                                    z                 k                             1/ 
                                                          g ( s)
                                                      ( is )
                                              1
         F ( z)    t                                                                    ds
                                    0                i 1


                    𝑘                    𝑧                     𝑔 𝑖 (𝑠) 1/𝜆
And let 𝑓(𝑧) = ∫ ∏ 𝑖=1 (
                0
                                                                       )           𝑑𝑠                                                                                 (6)
                                                                   𝑠




                          𝑘                          𝑔 𝑖 (𝑧) 1/𝜆
Then         𝑓 ′ (𝑧) = ∏ 𝑖=1 (                                 )
                                                          𝑧

                                        𝑔1 (𝑠) 1/𝜆                 𝑔2 (𝑠) 1/𝜆                   𝑔 𝑘 (𝑠) 1/𝜆
                         =(                      )            (            )          …(                )
                                             𝑠                         𝑠                           𝑠
                                                                               1                       1 ′                                  1          1
                                    𝑔1 (𝑠) 1/𝜆                     𝑔2 (𝑠) 𝜆                𝑔 𝑘 (𝑠)      𝜆         𝑔1 (𝑠) 1/𝜆            𝑔2 (𝑠) 𝜆  𝑔 (𝑠) 𝜆
           𝑓 ′′ (𝑧) = (                          )            [(         )         …(                ) ] + [(            )     ] ′ [(         ) …( 𝑘 ) ]
                                         𝑠                            𝑠                       𝑠                      𝑠                     𝑠        𝑠

          𝑧𝑓 ′′ (𝑧)         1           𝑧𝑔′ 1 (𝑧)                          1       𝑧𝑔′ 2 (𝑧)                 1    𝑧𝑔′ 𝑘 (𝑧)
                      = (                             − 1) + (                                    − 1) … (                    − 1)
           𝑓 ′ (𝑧)              𝜆        𝑔1 (𝑧)                            𝜆        𝑔1 (𝑧)                    𝜆    𝑔1 (𝑧)

                            1
                            𝑘                        𝑧𝑔′ 𝑖 (𝑧)
                       = ∑ 𝑖=1 (                                       − 1)
                                𝜆                     𝑔1 (𝑧)

This implies that
1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧)                      1−|𝑧|2𝑅𝑒𝜆 1                   𝑘              𝑧𝑔′ 𝑖 (𝑧)
              |             |=                                     |∑ 𝑖=1                         − 1|
    𝑅𝑒𝜆           𝑓 ′ (𝑧)                        𝑅𝑒𝜆           |𝜆|                     𝑔1 (𝑧)

                                         1−|𝑧|2𝑅𝑒𝜆 1                        𝑘           𝑧𝑔′ 𝑖 (𝑧)
                                    ≤                                  (|∑ 𝑖=1                       | + 1)
                                                 𝑅𝑒𝜆           |𝜆|                       𝑔1 (𝑧)

                                         1−|𝑧|2𝑅𝑒𝜆 1                        𝑘           𝑧 2 𝑔′ 𝑖 (𝑧)   𝑔 (𝑧)
                                    ≤                                  (|∑ 𝑖=1                       || 𝑖 |       + 1)                                               (7)
                                                 𝑅𝑒𝜆           |𝜆|                        𝑔2 1 (𝑧)       𝑧



Using Schwartz-lemma in (7), we have
 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧)                         1−|𝑧|2𝑅𝑒𝜆 1                    𝑘              𝑧 2 𝑔′ 𝑖 (𝑧)
                  |                 |≤                                 (|∑ 𝑖=1                            − 1| + 2)
     𝑅𝑒𝜆              𝑓 ′ (𝑧)                        𝑅𝑒𝜆           |𝜆|                      𝑔2 1 (𝑧)

But 𝑔 satisfies (1), thus
    𝑘     𝑧 2 𝑔′ 𝑖 (𝑧)
|∑ 𝑖=1                   − 1| ≤ 𝑘
            𝑔2 1 (𝑧)



                                                                                                                   92
Mathematical Theory and Modeling                                                                                         www.iiste.org
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)
Vol.2, No.4, 2012

This implies that
     𝑧𝑓 ′′ (𝑧)        1−|𝑧|2𝑅𝑒𝜆 1                                     𝑘+2
 |               |≤                        (𝑘 + 2) ≤                                                                               (8)
      𝑓 ′ (𝑧)                 𝑅𝑒𝜆    |𝜆|                          𝑅𝑒𝜆|𝜆|

From (4) and (5), we have
     𝑘+2
                ≤1                                                                                                                 (9)
  𝑅𝑒𝜆|𝜆|


                                                 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧)
Using (9) in (8), we obtain                                           |             |≤1
                                                        𝑅𝑒𝜆               𝑓 ′ (𝑧)


                          𝑘                             𝑔 𝑘 (𝑠) 1/𝜆
And from (6) 𝑓 ′ (𝑧) = ∏ 𝑖=1 (                                   )
                                                            𝑠

And by lemma 2 𝐹(𝑧) is univalent                                                                                                  ∎


Theorem 2                           Let 𝑔 ∈ 𝐴 satisfies (1) and let 𝜆 be a complex number with 𝑅𝑒𝜆, 𝐼𝑚𝜆 satisfying (2)
and (3). If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function
                                                                                                     𝑘             1/𝜆
                                                                                          𝑧
                                                                                              𝜆−1
                                                                                                       𝑔 𝑖 (𝑠) 𝜆−1
                                                                  𝐻(𝑧) = {𝜆 ∫ 𝑡                     ∏(        ) }
                                                                                      0                    𝑠
                                                                                                    𝑖=1

Is univalent in 𝑈.
Proof: Let
                         𝑧                    𝑔 𝑖 (𝑠)       𝜆−1 1/𝜆
                      𝑘
 𝐻(𝑧) = {𝜆 ∫ 𝑡 𝜆−1 ∏ 𝑖=1 (
            0
                                                        )         }                                                               (10)
                                                𝑠

Following the procedure of the proof of theorem 1, we obtain
                                                                                                              𝑘
                                     1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧)   1 − |𝑧|2𝑅𝑒𝜆            𝑧 2 𝑔′ (𝑧)
                                                | ′      |≤             |𝜆 − 1| (|∑ 2 𝑖       − 1| + 2)
                                         𝑅𝑒𝜆     ℎ (𝑧)          𝑅𝑒𝜆                  𝑔 1 (𝑧)
                                                                                                             𝑖=1

But 𝑔 satisfies (1), thus
                                     1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧)    1 − |𝑧|2𝑅𝑒𝜆                  |𝜆 − 1|(𝑘 + 2)
                                                | ′       |≤             |𝜆 − 1|(𝑘 + 2) ≤
                                         𝑅𝑒𝜆     ℎ (𝑧)           𝑅𝑒𝜆                            𝑅𝑒𝜆
From (2) and (3) we have
|𝜆−1|(𝑘+2)
                     ≤1
       𝑅𝑒𝜆

This implies that
1−|𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧)
                 |            | ≤ 1 for all 𝑧 ∈ 𝑈
      𝑅𝑒𝜆            ℎ′ (𝑧)


                                                 𝑔(𝑧)           𝜆−1
                       𝑘
From (10), ℎ′ (𝑧) = ∏ 𝑖=1 (                             )
                                                    𝑧

And by lemma 2, 𝐻(𝑧) is univalent in 𝑈                                                                                            ∎
Remark: Theorem 1and theorem 2 gives a generalization of theorem 1[4] and lemma 3 respectively,.




                                                                                                93
Mathematical Theory and Modeling                                                               www.iiste.org
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)
Vol.2, No.4, 2012

References
Mayer O, (1981). The function theory of one complex variable Bucuresti
Oaaki, S., & Nunokawa, M. (1972). The Schwarzian derivative and univalent function.Proc. Amer. Math.
    Soc. 33(2), 392-394
Pescar, V., (2006). Univalence of certain integral operators. . Acta Universitatis Apulensis, 12, 43-48
Pescar, V., & Breaz, D. (2008). Some integral and their univalence. Acta Universitatis Apulensis, 15,
     147-152




                                                      94

The univalence of some integral operators

  • 1.
    Mathematical Theory andModeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.4, 2012 The Univalence of Some Integral Operators Deborah O. Makinde Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria E-mail : domakinde.comp@gmail.com; domakinde@oauife.edu.ng Abstract In this paper, we obtain the conditions for univalence of the integral operators of the form: And 1/   g (s)  z k F ( z )    t   i  1/𝜆  1 ds 𝐻(𝑧) = {𝜆 𝑡 (  ) 𝜆−1 𝑑𝑠} 0 ∏ 𝑘 i 1 𝑔 𝑖 (𝑠) s 𝑧 𝜆−1 ∫0 𝑖=1 𝑠 AMS Mathematics Subject Classification: 30C45. Key Words: Integral operator, Univalent. 1. Introduction Let 𝐴 be the class of the functions in the unit disk 𝑈 = {𝑍 ∈ 𝐶: |𝑧| < 1 such that 𝑓(0) = 𝑓 ′ (0) − 1 = 0. Let 𝑆 be the class of functions 𝑓 ∈ 𝐴 which are univalent in 𝑈. Ozaki and Nunokawa [2] showed the condition for the univalence of the function 𝑓 ∈ 𝐴 as given in the lemma below. Lemma 1 [3]: Let 𝑓 ∈ 𝐴 satisfy the condition 𝑧 2 𝑓 ′ (𝑧) | − 1| ≤ 1 (1) 𝑓 2(𝑧) For all 𝑧 ∈ 𝑈, then 𝑓 is univalent in 𝑈 Lemma 2 [2]: Let 𝛼 be a complex number, 𝛼 > 0 , and 𝑓 ∈ 𝐴. If 1 − |𝑧|2𝑅𝑒𝛼 𝑧𝑓 ′′ (𝑧) | ′ |≤1 𝑅𝑒𝛼 𝑓 (𝑧) 𝑧 1⁄ 𝛼 For all 𝑧 ∈ 𝑈, then the function 𝐹 𝛼 (𝑧) = [𝛼 ∫ 𝑈 𝛼−1 𝑓 ′ (𝑢)𝑑𝑢] 0 Is in the class 𝑆. The Schwartz lemma [1] : Let the analytic function 𝑓 be regular in the unit disk and let 𝑓(0) = 0. If |𝑓(𝑧)| ≤ 1, then |𝑓(𝑧)| ≤ |𝑧| For all 𝑧 ∈ 𝑈, where equality can hold only if |𝑓(𝑧)| ≡ 𝐾𝑧 and 𝑘 = 1 Lemma 3 [4]: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝑎 + 𝑏 𝑖 a complex number, 𝑎, 𝑏 satisfies the conditions 3 3 1 𝑎 ∈ [ , ] ; 𝑏 ∈ [0, ] (2) 4 2 2√2 8𝑎2 + 𝑎9 𝑏 2 − 18𝑎 + 9 ≤ 0 (3) 1 𝑧 𝑔(𝑢) 𝑎+𝑏 𝑖 −1 𝑎+𝑏 𝑖 If |𝑔(𝑧) ≤ 1| for all 𝑧 ∈ 𝑈 then the function 𝐺(𝑧) = {𝑎 + 𝑏 𝑖 ∫ ( 0 ) 𝑑𝑢} 𝑢 91
  • 2.
    Mathematical Theory andModeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.4, 2012 Is univalent in 𝑈 1. MAIN RESULTS Theorem 1: Let 𝑔 ∈ 𝐴 satisfies (1) and 𝜆 is a complex number, 𝜆 satisfies the conditions 𝑅𝑒𝜆 ∈ (0, √𝑘 + 2], 𝑘 ≥ 1 (4) (𝑅𝑒𝜆)4 (𝑅𝑒𝜆)2 (𝐼𝑚𝜆)2 − (𝑘 + 2) ≥ 0 2 (5) If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function 1/   g (s)  z k  is   1 F ( z)    t ds Is univalent in 𝑈 0 i 1   Proof: Let z k 1/  g ( s)  ( is )  1 F ( z)    t ds 0 i 1 𝑘 𝑧 𝑔 𝑖 (𝑠) 1/𝜆 And let 𝑓(𝑧) = ∫ ∏ 𝑖=1 ( 0 ) 𝑑𝑠 (6) 𝑠 𝑘 𝑔 𝑖 (𝑧) 1/𝜆 Then 𝑓 ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑧 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 1/𝜆 𝑔 𝑘 (𝑠) 1/𝜆 =( ) ( ) …( ) 𝑠 𝑠 𝑠 1 1 ′ 1 1 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 𝜆 𝑔 𝑘 (𝑠) 𝜆 𝑔1 (𝑠) 1/𝜆 𝑔2 (𝑠) 𝜆 𝑔 (𝑠) 𝜆 𝑓 ′′ (𝑧) = ( ) [( ) …( ) ] + [( ) ] ′ [( ) …( 𝑘 ) ] 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑧𝑓 ′′ (𝑧) 1 𝑧𝑔′ 1 (𝑧) 1 𝑧𝑔′ 2 (𝑧) 1 𝑧𝑔′ 𝑘 (𝑧) = ( − 1) + ( − 1) … ( − 1) 𝑓 ′ (𝑧) 𝜆 𝑔1 (𝑧) 𝜆 𝑔1 (𝑧) 𝜆 𝑔1 (𝑧) 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) = ∑ 𝑖=1 ( − 1) 𝜆 𝑔1 (𝑧) This implies that 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) | |= |∑ 𝑖=1 − 1| 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑔1 (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧𝑔′ 𝑖 (𝑧) ≤ (|∑ 𝑖=1 | + 1) 𝑅𝑒𝜆 |𝜆| 𝑔1 (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧) 𝑔 (𝑧) ≤ (|∑ 𝑖=1 || 𝑖 | + 1) (7) 𝑅𝑒𝜆 |𝜆| 𝑔2 1 (𝑧) 𝑧 Using Schwartz-lemma in (7), we have 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧) | |≤ (|∑ 𝑖=1 − 1| + 2) 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑔2 1 (𝑧) But 𝑔 satisfies (1), thus 𝑘 𝑧 2 𝑔′ 𝑖 (𝑧) |∑ 𝑖=1 − 1| ≤ 𝑘 𝑔2 1 (𝑧) 92
  • 3.
    Mathematical Theory andModeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.4, 2012 This implies that 𝑧𝑓 ′′ (𝑧) 1−|𝑧|2𝑅𝑒𝜆 1 𝑘+2 | |≤ (𝑘 + 2) ≤ (8) 𝑓 ′ (𝑧) 𝑅𝑒𝜆 |𝜆| 𝑅𝑒𝜆|𝜆| From (4) and (5), we have 𝑘+2 ≤1 (9) 𝑅𝑒𝜆|𝜆| 1−|𝑧|2𝑅𝑒𝜆 𝑧𝑓 ′′ (𝑧) Using (9) in (8), we obtain | |≤1 𝑅𝑒𝜆 𝑓 ′ (𝑧) 𝑘 𝑔 𝑘 (𝑠) 1/𝜆 And from (6) 𝑓 ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑠 And by lemma 2 𝐹(𝑧) is univalent ∎ Theorem 2 Let 𝑔 ∈ 𝐴 satisfies (1) and let 𝜆 be a complex number with 𝑅𝑒𝜆, 𝐼𝑚𝜆 satisfying (2) and (3). If |𝑔(𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 then the function 𝑘 1/𝜆 𝑧 𝜆−1 𝑔 𝑖 (𝑠) 𝜆−1 𝐻(𝑧) = {𝜆 ∫ 𝑡 ∏( ) } 0 𝑠 𝑖=1 Is univalent in 𝑈. Proof: Let 𝑧 𝑔 𝑖 (𝑠) 𝜆−1 1/𝜆 𝑘 𝐻(𝑧) = {𝜆 ∫ 𝑡 𝜆−1 ∏ 𝑖=1 ( 0 ) } (10) 𝑠 Following the procedure of the proof of theorem 1, we obtain 𝑘 1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) 1 − |𝑧|2𝑅𝑒𝜆 𝑧 2 𝑔′ (𝑧) | ′ |≤ |𝜆 − 1| (|∑ 2 𝑖 − 1| + 2) 𝑅𝑒𝜆 ℎ (𝑧) 𝑅𝑒𝜆 𝑔 1 (𝑧) 𝑖=1 But 𝑔 satisfies (1), thus 1 − |𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) 1 − |𝑧|2𝑅𝑒𝜆 |𝜆 − 1|(𝑘 + 2) | ′ |≤ |𝜆 − 1|(𝑘 + 2) ≤ 𝑅𝑒𝜆 ℎ (𝑧) 𝑅𝑒𝜆 𝑅𝑒𝜆 From (2) and (3) we have |𝜆−1|(𝑘+2) ≤1 𝑅𝑒𝜆 This implies that 1−|𝑧|2𝑅𝑒𝜆 𝑧ℎ′′ (𝑧) | | ≤ 1 for all 𝑧 ∈ 𝑈 𝑅𝑒𝜆 ℎ′ (𝑧) 𝑔(𝑧) 𝜆−1 𝑘 From (10), ℎ′ (𝑧) = ∏ 𝑖=1 ( ) 𝑧 And by lemma 2, 𝐻(𝑧) is univalent in 𝑈 ∎ Remark: Theorem 1and theorem 2 gives a generalization of theorem 1[4] and lemma 3 respectively,. 93
  • 4.
    Mathematical Theory andModeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.4, 2012 References Mayer O, (1981). The function theory of one complex variable Bucuresti Oaaki, S., & Nunokawa, M. (1972). The Schwarzian derivative and univalent function.Proc. Amer. Math. Soc. 33(2), 392-394 Pescar, V., (2006). Univalence of certain integral operators. . Acta Universitatis Apulensis, 12, 43-48 Pescar, V., & Breaz, D. (2008). Some integral and their univalence. Acta Universitatis Apulensis, 15, 147-152 94