SlideShare a Scribd company logo
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
182
New Class of p-valent Functions Defined by Multiplier Transformations
Lafta Hussain Hassan1, Najah Ali Jiben Al-Ziadi2
1
Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq,
laftaalnaeely@gmail.com
2
Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq,
najah.ali@qu.edu.iq
Abstract
The object of this paper to study the new class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) of p-valent functions
defined by multiplier transformations 𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)(𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0; 𝑝 ∈ ℕ) in the open unit
disk ∆ = {𝑡 ∶ 𝑡 ∈ ℂ and |𝑡| < 1}. We obtain some geometric properties for this class, like,
coefficient estimate, radii of convexity, starlikeness and close-to-convexity, extreme points,
closure theorems, integral operators and integral means inequalities.
Keywords: Holomorphic function, p-valent functions, multiplier transformations, coefficient
inequality, radii of convexity and starlikeness, extreme points, closure theorem.
1. Introduction
Let 𝒜(𝑝, 𝑘) symbolize the class of functions normalized by
𝑔(𝑡) = 𝑡𝑝
+ ∑ 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛 (𝑡 ∈ ∆; 𝑝, 𝑘 ∈ ℕ
= { 1, 2, 3, … }), (1.1)
which are holomorphic and p-valent in the open unit disk ∆ = {𝑡 ∶ 𝑡 ∈ ℂ and |𝑡| < 1}.
Let ℳ(𝑝, 𝑘) symbolize the function subclass of 𝒜(𝑝, 𝑘) consisting of functions of the shape:
𝑔(𝑡) = 𝑡𝑝
− ∑ 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛 (𝑡 ∈ ∆; 𝑏𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ
= {1, 2, 3, … }). (1.2)
For function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘), given by (1.2), and ℎ(𝑡) ∈ ℳ(𝑝, 𝑘) given by
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
183
ℎ(𝑡) = 𝑡𝑝
− ∑ 𝑐𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛 (𝑡 ∈ ∆; 𝑐𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ
= {1, 2, 3, … }), (1.3)
the Hadamard product (or convolution) of 𝑔(𝑡) and ℎ(𝑡) is defined by
(𝑔 ∗ ℎ)(𝑡) = 𝑡𝑝
− ∑ 𝑏𝑛𝑐𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
= (ℎ ∗ 𝑔)(𝑡). (1.4)
A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent starlike of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡) fulfills the
condition:
𝑅𝑒 (
𝑡𝑔′(𝑡)
𝑔(𝑡)
) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.5)
Also, a function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent convex of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡)
fulfills the condition:
𝑅𝑒 (1 +
𝑡𝑔′′(𝑡)
𝑔′(𝑡)
) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.6)
Symbolize by 𝑆𝑛
∗(𝑝, 𝛼) the class of p-valent starlike functions of order 𝛼. Symbolize by
𝐶𝑛(𝑝, 𝛼) the class of p-valent convex functions of order𝛼, which were studied by Owa [9]. It is
noted that
𝑔(𝑡) ∈ 𝐶𝑛(𝑝, 𝛼) if and only if
𝑡𝑔′(𝑡)
𝑝
∈ 𝑆𝑛
∗(𝑝, 𝛼).
A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent close to convex of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡)
fulfills the condition:
𝑅𝑒 (
𝑔′(𝑡)
𝑡𝑝−1
) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.7)
Let the functions 𝑔(𝑡) and ℎ(𝑡) be holomorphic in Δ. We say that the function 𝑔(𝑡) is
subordinate to ℎ(𝑡), if there exists a Schwarz function 𝑤(𝑡) holomorphic in 𝛥 with 𝑤(0) = 0 and
|𝑤(𝑡)| < 1, 𝑡 ∈ 𝛥 such that 𝑔(𝑡) = ℎ(𝑤(𝑡)). This subordinate is denoted by 𝑔 ≺ ℎ or 𝑔(𝑡) ≺
ℎ(𝑡) (𝑡 ∈ 𝛥). It is well known that (see [8]), if the function 𝑔(𝑡) is univalent in 𝛥, then 𝑔(𝑡) ≺
ℎ(𝑡) if and only if 𝑔(0) = ℎ(0) and 𝑔(𝛥) ⊂ ℎ(𝛥).
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
184
For a function 𝑔(𝑡) in 𝒜(𝑝, 𝑘), Deniz and Orhan [5] define the multiplier transformations
𝒥𝑝
𝛿(𝛽, 𝑣, 𝑙) as follows:
Definition (1.1)[ 5]: Let 𝑔(𝑡) ∈ 𝒜(𝑝, 𝑘). For the parameters 𝛿, 𝛽, 𝜈, 𝑙 ∈ ℝ, 𝛽 ≥ 𝜈 ≥ 0 and
𝛿, 𝑙 ≥ 0, we realize the multiplier transformations 𝒥𝑝
𝛿(𝛽, 𝑣, 𝑙) on 𝒜(𝑝, 𝑘) as
𝒥𝑝
0(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝑔(𝑡)
(𝑝 + 𝑙)𝒥𝑝
1(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝛽𝜈𝑡2
𝑔′′(𝑡) + (𝛽 − 𝜈 + (1 − 𝑝)𝛽𝜈)𝑡𝑔′(𝑡) + (𝑝(1 − 𝛽 + 𝜈) + 𝑙)𝑔(𝑡)
(𝑝 + 𝑙)𝒥𝑝
2(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝛽𝜈𝑡2
[𝒥𝑝
1(𝛽, 𝜈, 𝑙)𝑔(𝑡)]
′′
+ (𝛽 − 𝜈 + (1 − 𝑝)𝛽𝜈)𝑡[𝒥𝑝
1(𝛽, 𝜈, 𝑙)𝑔(𝑡)]
′
+(𝑝(1 − 𝛽 + 𝜈) + 𝑙)𝒥𝑝
1(𝛽, 𝜈, 𝑙)𝑔(𝑡)
𝒥𝑝
δ1
(𝛽, 𝜈, 𝑙) (𝒥𝑝
δ2
(𝛽, 𝜈, 𝑙)𝑔(𝑡)) = 𝒥𝑝
δ2
(𝛽, 𝜈, 𝑙) (𝒥𝑝
δ1
(𝛽, 𝜈, 𝑙)𝑔(𝑡)) for 𝑡 ∈ 𝛥 and 𝑝, 𝑘 ∈ ℕ
= {1,2, … }. (1.8)
If 𝑔(𝑡) is given by (1.1), then from the definition of the multiplier transformations 𝒥𝑝
𝛿(𝛽, 𝑣, 𝑙),
we see that
𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝑡𝑝
+ ∑ 𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
, (1.9)
where
𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙) = [
(𝑛 − 𝑝)(𝛽𝜈𝑛 + 𝛽 − 𝜈) + 𝑝 + 𝑙
𝑝 + 𝑙
]
𝛿
(𝛿, 𝛽, 𝜈, 𝑙 ∈ ℝ, 𝛽 ≥ 𝜈 ≥ 0 and 𝛿, 𝑙
≥ 0). (1.10)
With a view to derive our main outcomes, we have to recall here the following lemmas.
Lemma (1.1) [3]: Let 𝛼 ≥ 0. Then 𝑅𝑒(𝑤) > 𝛼 if and only if |𝑤 − (𝑝 + 𝛼)| < |𝑤 + (𝑝 − 𝛼)|,
where 𝑤 be any complex number.
Lemma (1.2) [7]: If 𝑔 and ℎ are holomorphic in ∆ with 𝑔 ≺ ℎ, then
∫ |𝑔(𝑟𝑒𝑖𝜃
)|
𝜂
2𝜋
0
𝑑𝜃 ≤ ∫ |ℎ(𝑟𝑒𝑖𝜃
)|
𝜂
2𝜋
0
𝑑𝜃,
where 𝜂 > 0, 𝑡 = 𝑟𝑒𝑖𝜃
and (0 < 𝑟 < 1).
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
185
Definition (1.2): A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) of the shape (1.2), is told to be in the class
ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) if and only if satisfies the following condition:
𝑅𝑒 {
𝜆𝜇𝑡3
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′′′
+ (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ 𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
𝜆𝜇𝑡2 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ (𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
+ (1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)
}
> 𝛼, (1.11)
where 𝑡 ∈ ∆ , 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1,2, 3, … }.
Noting that by customizing the parameter 𝛿, 𝜇, 𝜆, 𝑝 and 𝑘, we obtain the following various
subclasses investigated by different investigators:
1) If 𝛿 = 0 and 𝜇 = 0, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝒯
𝑛(𝑝, 𝛼, 𝜆)
which is introduced by Altintaş et al. [2].
2) If 𝛿 = 0, 𝜇 = 0 and 𝑝 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class
Р(𝑛, 𝛼, 𝜆) which is introduced by Altintaş [1].
3) If 𝛿 = 0, 𝜇 = 0 and 𝜆 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class
𝐶𝑛(𝑝, 𝛼) which is introduced by Owa [9].
4) If 𝛿 = 0, 𝜇 = 0, 𝜆 = 1, 𝑝 = 1 and 𝑘 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to
the class 𝐶(𝛼) which is introduced Silverman [11].
5) If 𝛿 = 0, 𝜇 = 0 and 𝜆 = 0, the class ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝑆𝑛
∗(𝑝, 𝛼)
which is introduced by Owa [9].
6) If 𝛿 = 0, 𝜇 = 0, 𝜆 = 0, 𝑝 = 1 and 𝑘 = 1, the class ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to
the class 𝒯∗(𝛼) which is introduced Silverman [11].
Several of the upcoming characteristics were researched for different classes in [4, 5, 6, 10, 12].
2. Coefficient Inequality
From the following theorem, we get the necessary and sufficient condition for the
function 𝑔(𝑡) to be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Theorem (2.1): Let 𝑔(𝑡) be in the shape (1.2). Then 𝑔(𝑡) is in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙)
if and only if
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
186
∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑏𝑛
∞
𝑛=𝑘+𝑝
≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1], (2.1)
where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }.
The result is sharp for the function 𝑔(𝑡) given by
𝑔(𝑡) = 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑛
, (𝑛 ≥ 𝑘 + 𝑝; 𝑝 , 𝑘
∈ ℕ). (2.2)
Proof: Assume that 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), so we have
𝑅𝑒 {
𝜆𝜇𝑡3
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′′′
+ (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ 𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
𝜆𝜇𝑡2 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ (𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
+ (1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)
}
> 𝛼.
Then
𝑅𝑒 {
𝑝[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1 ]𝑡𝑝
− ∑ 𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑛[(𝑛 − 1)(𝜆𝜇 + 𝜆 − 𝜇) + 1]𝑏𝑛𝑡𝑛
∞
𝑛=𝑘+𝑝
[𝑝(𝜆𝜇𝑝 − 𝜆𝜇 + 𝜆 − 𝜇) + (1 − 𝜆 + 𝜇)]𝑡𝑝 − ∑ 𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)[𝑛(𝜆𝜇𝑛 − 𝜆𝜇 + 𝜆 − 𝜇)
∞
𝑛=𝑘+𝑝 + 1 − 𝜆 + 𝜇]𝑏𝑛𝑡𝑛
}
> 𝛼.
Or equivalently
𝑅𝑒 {
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑡𝑝
− ∑ 𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝑏𝑛𝑡𝑛
∞
𝑛=𝑘+𝑝
[𝑝(𝜆𝜇𝑝 − 𝜆𝜇 + 𝜆 − 𝜇) + (1 − 𝜆 + 𝜇)]𝑡𝑝 − ∑ 𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)[𝑛(𝜆𝜇𝑛 − 𝜆𝜇 + 𝜆 − 𝜇)
∞
𝑛=𝑘+𝑝 + 1 − 𝜆 + 𝜇]𝑏𝑛𝑡𝑛
}
> 0.
This inequality is valid for 𝑡 ∈ ∆. Letting 𝑡 → 1−
yields
𝑅𝑒 {(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
− ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛
∞
𝑛=𝑘+𝑝
} > 0.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
187
Therefore
∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛
∞
𝑛=𝑘+𝑝
≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1].
Conversely, let (2.1) hold. We will show that (1.11) is valid and then 𝑔(𝑡) ∈
ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). By Lemma (1.1), we set
𝑤 =
𝜆𝜇𝑡3
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′′′
+ (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ 𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
𝜆𝜇𝑡2 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ (𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
+ (1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)
Or show that
𝑇 =
1
|𝑁(𝑡)|
|𝜆𝜇𝑡3
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′′′
+ (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ 𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
− (𝑝 + 𝛼)𝜆𝜇𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
− (𝑝 + 𝛼)(𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
− (𝑝 + 𝛼)(1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)|
<
1
|𝑁(𝑡)|
|𝜆𝜇𝑡3
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′′′
+ (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ 𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
+ (𝑝 − 𝛼)𝜆𝜇𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡))
′′
+ (𝑝 − 𝛼)(𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡))
′
+ (𝑝 − 𝛼)(1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)|
= 𝑄,
where
𝑁(𝑡) = 𝜆𝜇𝑡2
(𝒥𝑝
𝛿(𝛽, 𝜈, 𝜄) 𝑔(𝑡))
′′
+ (𝜆 − 𝜇)𝑡 (𝒥𝑝
𝛿(𝛽, 𝜈, 𝜄)𝑔(𝑡))
′
+ (1 − 𝜆 + 𝜇)𝒥𝑝
𝛿(𝛽, 𝜈, 𝜄)𝑔(𝑡)
and it is simple to prove that 𝑄 − 𝑇 > 0.
The proof is therefore complete.
Corollary (2.1): Let 𝑔(𝑡) be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then
𝑏𝑛 ≤
(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
, (2.3)
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
188
where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 1, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }.
3. Radii of Convexity, Starlikeness and Close-to-Convexity
In the next theorems, we will find the radii of convexity, starlikeness and close-to-convexity for
the functions in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Theorem (3.1): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent convex
of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅1, where
𝑅1 = 𝑖𝑛𝑓
𝑛
[
𝑝(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝜄)
𝑛(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
]
1
𝑛−𝑝
,
(𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ).
The outcome is sharp for the function 𝑔(𝑡) given by (2.2).
Proof: It is sufficient to prove that
|1 +
𝑡𝑔′′(𝑡)
𝑔′(𝑡)
− 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝),
for |𝑡| < 𝑅1, we have
|1 +
𝑡𝑔′′(𝑡)
𝑔′(𝑡)
− 𝑝| ≤
∑ 𝑛(𝑛 − 𝑝)𝑏𝑛 |𝑡|𝑛−𝑝
∞
𝑛=𝑘+𝑝
𝑝 − ∑ 𝑛𝑏𝑛 |𝑡|𝑛−𝑝
∞
𝑛=𝑘+𝑝
.
Thus
|1 +
𝑡𝑔′′(𝑡)
𝑔′(𝑡)
− 𝑝| ≤ 𝑝 − 𝛾,
if
∑
𝑛(𝑛 − 𝛾)
𝑝(𝑝 − 𝛾)
𝑏𝑛 |𝑡|𝑛−𝑝
≤ 1. (3.1)
∞
𝑛=𝑘+𝑝
Therefore, by Theorem (2.1), (3.1) will be true if
𝑛(𝑛 − 𝛾)
𝑝(𝑝 − 𝛾)
|𝑡|𝑛−𝑝
≤
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
,
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
189
and hence
|𝑡| ≤ [
𝑝(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑛(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
]
1
𝑛−𝑝
, (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ).
Setting |𝑡| = 𝑅1, we get the desired result.
Theorem (3.2): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent starlike
of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅2, where
𝑅2 = 𝑖𝑛𝑓
𝑛
[
(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
]
1
𝑛−𝑝
,
(𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ).
The outcome is sharp for the function 𝑔(𝑡) given by (2.2).
Proof: It is sufficient to prove that
|
𝑡𝑔′(𝑡)
𝑔(𝑡)
− 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝),
for |𝑡| < 𝑅2, we have
|
𝑡𝑔′(𝑡)
𝑔(𝑡)
− 𝑝| ≤
∑ (𝑛 − 𝑝)𝑏𝑛 |𝑡|𝑛−𝑝
∞
𝑛=𝑘+𝑝
1 − ∑ 𝑏𝑛 |𝑡|𝑛−𝑝
∞
𝑛=𝑘+𝑝
.
Thus
|
𝑡𝑔′(𝑡)
𝑔(𝑡)
− 𝑝| ≤ 𝑝 − 𝛾,
if
∑
𝑛 − 𝛾
𝑝 − 𝛾
𝑏𝑛 |𝑡|𝑛−𝑝
≤ 1. (3.2)
∞
𝑛=𝑘+𝑝
Therefore, by Theorem (2.1), (3.2) will be true if
𝑛 − 𝛾
𝑝 − 𝛾
|𝑡|𝑛−𝑝
≤
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
.
and hence
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
190
|𝑡| ≤ [
(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
]
1
𝑛−𝑝
,
(𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ).
Setting |𝑡| = 𝑅2, we obtain the desired result.
Theorem (3.3): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent close to
convex of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅3, where
𝑅3 = 𝑖𝑛𝑓
𝑛
[
(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑛(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
]
1
𝑛−𝑝
, (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘
∈ ℕ ).
The result is sharp for the function 𝑔(𝑡) given by (2.2).
Proof: It is sufficient to prove that
|
𝑔′(𝑡)
𝑡𝑝−1
− 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝),
for |𝑡| < 𝑅3, we have that
|
𝑔′(𝑡)
𝑡𝑝−1
− 𝑝| ≤ ∑ 𝑛𝑏𝑛|𝑡|𝑛−𝑝
.
∞
𝑛=𝑘+𝑝
Thus
|
𝑔′(𝑡)
𝑡𝑝−1
− 𝑝| ≤ 𝑝 − 𝛾,
if
∑
𝑛𝑏𝑛|𝑡|𝑛−𝑝
𝑝 − 𝛾
≤ 1. (3.3)
∞
𝑛=𝑘+𝑝
Therefore, by Theorem (2.1), (3.3) will be true if
𝑛
𝑝 − 𝛾
|𝑡|𝑛−𝑝
≤
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
,
and hence
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
191
|𝑡| ≤ [
(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑛(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)]
]
1
𝑛−𝑝
, (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘
∈ ℕ ).
The result is sharp for the function 𝑔(𝑡) given by (2.2).
4. Extreme Points
We get here an extreme points of the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Theorem (4.1): Let 𝑔𝑝(𝑡) = 𝑡𝑝
and
𝑔𝑛(𝑡)
= 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑛
, (4.1)
where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }.
Then 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) if and only if It can be written as:
𝑔(𝑡) = 𝛾𝑝𝑡𝑝
+ ∑ 𝛾𝑛𝑔𝑛(𝑡),
∞
𝑛=𝑘+𝑝
(4.2)
where ( 𝛾𝑝 ≥ 0, 𝛾𝑛 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝) and 𝛾𝑝 + ∑ 𝛾𝑛
∞
𝑛=𝑘+𝑝 = 1.
Proof: Consider this 𝑔(𝑡) is represented in the shape (4.2). Then
𝑔(𝑡) = 𝛾𝑝𝑡𝑝
+ ∑ 𝛾𝑛 [𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑛
]
∞
𝑛=𝑘+𝑝
= 𝑡𝑝
− ∑
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝛾𝑛𝑡𝑛
∞
𝑛=𝑘+𝑝
.
Hence
∑
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
∞
𝑛=𝑘+𝑝
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
192
×
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝛾𝑛
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
= ∑ 𝛾𝑛
∞
𝑛=𝑘+𝑝
= 1 − 𝛾𝑝 ≤ 1.
Then 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Conversely, suppose that 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). We may set
𝛾𝑛 =
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
𝑏𝑛,
where 𝑏𝑛 is given by (2.3). Then
𝑔(𝑡) = 𝑡𝑝
− ∑ 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
= 𝑡𝑝
− ∑
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝛾𝑛 𝑡𝑛
∞
𝑛=𝑘+𝑝
= 𝑡𝑝
− ∑ [
∞
𝑛=𝑘+𝑝
𝑡𝑝
− 𝑔𝑛(𝑡)]𝛾𝑛 = (1 − ∑ 𝛾𝑛
∞
𝑛=𝑘+𝑝
) 𝑡𝑝
+ ∑ 𝛾𝑛𝑔𝑛(𝑡)
∞
𝑛=𝑘+𝑝
= 𝛾𝑝𝑡𝑝
+ ∑ 𝛾𝑛𝑔𝑛(𝑡).
∞
𝑛=𝑘+𝑝
This completes the proof of Theorem (4.1).
5. Closure Theorems
Theorem (5.1): Let the functions 𝑔𝑠 defined by
𝑔𝑠(𝑡) = 𝑡𝑝
− ∑ 𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
𝑡𝑛
, (𝑏𝑛,𝑠 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ, 𝑠 = 1,2, … , 𝑞), ( 5.1 )
be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) for every 𝑠 = 1,2, … , 𝑞.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
193
Then the function 𝑚1(𝑡) defined by
𝑚1(𝑡) = 𝑡𝑝
− ∑ 𝑒𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
, (𝑒𝑛 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ),
also belongs to the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), where
𝑒𝑛 =
1
𝑞
∑ 𝑏𝑛,𝑠
𝑞
𝑠=1
, (𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ).
Proof: Since 𝑔𝑠 ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) it follows from Theorem (2.1) that
∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1],
for every 𝑠 = 1, 2, … , 𝑞. Hence
∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)]𝑒𝑛
∞
𝑛=𝑘+𝑝
= ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)] (
1
𝑞
∑ 𝑏𝑛,𝑠
𝑞
𝑠=1
)
∞
𝑛=𝑘+𝑝
=
1
𝑞
∑
𝑞
𝑠=1
( ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)]𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
)
≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1].
By Theorem (2.1), it follows that 𝑚1(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Theorem (5.2): Let the function 𝑔𝑠 defined by (5.1) be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) for
every 𝑠 = 1, 2, … , 𝑞. Then the function 𝑚2(𝑡) defined by
𝑚2(𝑡) = ∑ 𝑦𝑠
𝑞
𝑠=1
𝑔𝑠(𝑡)
is also in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), where
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
194
∑ 𝑦𝑠 = 1,
𝑞
𝑠=1
(𝑦𝑠 ≥ 0).
Proof: By Theorem (2.1), for every 𝑠 = 1,2, … , 𝑞, we have
∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1].
But
𝑚2(𝑡) = ∑ 𝑦𝑠
𝑞
𝑠=1
𝑔𝑠(𝑡) = ∑ 𝑦𝑠
𝑞
𝑠=1
(𝑡𝑝
− ∑ 𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
𝑡𝑛
) = 𝑡𝑝
− ∑ (∑ 𝑦𝑠 𝑏𝑛,𝑠
𝑞
𝑠=1
)
∞
𝑛=𝑘+𝑝
𝑡𝑛
.
Therefore
∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙) (∑ 𝑦𝑠𝑏𝑛,𝑠
𝑞
𝑠=1
)
∞
𝑛=𝑘+𝑝
= ∑ 𝑦𝑠
𝑞
𝑠=1
( ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠
∞
𝑛=𝑘+𝑝
)
≤ ∑ 𝑦𝑠
𝑞
𝑠=1
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] = (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
The proof is therefore complete.
Corollary (5.1): The class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) is close under convex linear combination.
6. Integral Operators
In this segment, we consider integral transforms of functions in the class
ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Theorem (6.1): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) be defined by (1.2) and 𝑐 be any real number
such that 𝑐 > −𝑝. Then the integral operator
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
195
𝐺(𝑡) =
𝑐 + 𝑝
𝑡𝑐
∫ 𝑧𝑐−1
𝑔(𝑧)𝑑𝑧 ( 𝑐 > −𝑝 ),
𝑡
0
(6.1)
also in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙).
Proof: By virtue of (6.1) it follows from (1.2) that
𝐺(𝑡) =
𝑐 + 𝑝
𝑡𝑐
∫ 𝑧𝑐−1
(𝑧𝑝
− ∑ 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑧𝑛
) 𝑑𝑧
𝑡
0
=
𝑐 + 𝑝
𝑡𝑐
∫ (𝑧𝑝+𝑐−1
− ∑ 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑧𝑛+𝑐−1
) 𝑑𝑧
𝑡
0
= 𝑡𝑝
− ∑ (
𝑐 + 𝑝
𝑐 + 𝑛
) 𝑏𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
= 𝑡𝑝
− ∑ ℎ𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
,
where ℎ𝑛 = (
𝑐+𝑝
𝑐+𝑛
) 𝑏𝑛.
But
∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)ℎ𝑛
∞
𝑛=𝑘+𝑝
= ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙) (
𝑐 + 𝑝
𝑐 + 𝑛
) 𝑏𝑛
∞
𝑛=𝑘+𝑝
.
Since (
𝑐+𝑝
𝑐+𝑛
) ≤ 1 and by (2.1), the last expression is less than or equal to
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]. So the proof is ends.
7. Integral Means Inequalities
By using Theorem (2.1) and Lemma (1.2), we show the following theorems.
Theorem (7.1): Let 𝜂 > 0. If 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) and suppose that 𝑔𝑠(𝑡) is defined
by
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
196
𝑔𝑠(𝑡) = 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠
, (𝑠 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ).
If there is a holomorphic function 𝑤(𝑡) defined by
(𝑤(𝑡))
𝑠−𝑝
=
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
∑ 𝑏𝑛 𝑡𝑛−𝑝
.
∞
𝑛=𝑘+𝑝
Then, for 𝑡 = 𝑟𝑒𝑖𝜃
and (0 < 𝑟 < 1),
∫ |𝑔(𝑡)|𝜂
𝑑𝜃 ≤
2𝜋
0
∫ |𝑔𝑠(𝑡)|𝜂
𝑑𝜃, (𝜂 > 0).
2𝜋
0
(7.1)
Proof: We must show that
∫ |1 − ∑ 𝑏𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
|
𝜂
𝑑𝜃
2𝜋
0
≤ ∫ |1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠−𝑝
|
𝜂
𝑑𝜃
2𝜋
0
.
By using Lemma (1.2), it suffices to show that
1 − ∑ 𝑏𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
≺ 1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠−𝑝
.
Put
1 − ∑ 𝑏𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
= 1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑤(𝑡))
𝑠−𝑝
.
We find that
(𝑤(𝑡))
𝑠−𝑝
=
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
∑ 𝑏𝑛 𝑡𝑛−𝑝
,
∞
𝑛=𝑘+𝑝
that yield easily 𝑤(0) = 0.
In addition by using (2.1), we get
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
197
|𝑤(𝑡)|𝑠−𝑝
= |
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
∑ 𝑏𝑛 𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
|
≤ |𝑡| | ∑
∞
𝑛=𝑘+𝑝
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
𝑏𝑛|
≤ |𝑡| < 1.
Next, the proof for the first derivative.
Theorem (7.2): Let 𝜂 > 0. If 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) and
𝑔𝑠(𝑡) = 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]Φ𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠
, (𝑠 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ).
Then, for 𝑡 = 𝑟𝑒𝑖𝜃
and (0 < 𝑟 < 1),
∫ |𝑔′(𝑡)|𝜂
𝑑𝜃 ≤
2𝜋
0
∫ |𝑔𝑠
′
(𝑡)|𝜂
𝑑𝜃, (𝜂 > 0). (7.
2𝜋
0
2)
Proof: It is sufficient to demonstrate that
1 − ∑
𝑛
𝑝
𝑏𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
≺ 1 −
𝑠((𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1])
𝑝[(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠−𝑝
.
This follows because
|𝑤(𝑡)|𝑠−𝑝
= |
𝑝[(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑠((𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1])
∑
𝑛
𝑝
𝑏𝑛 𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
|
≤ |𝑡| | ∑
∞
𝑛=𝑘+𝑝
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
𝑏𝑛|
≤ |𝑡| < 1.
Theorem (7.3): Let ℎ(𝑡) = 𝑡𝑝
− ∑ 𝑐𝑛
∞
𝑛=𝑘+𝑝 𝑡𝑛 (𝑡 ∈ ∆; 𝑐𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ =
{1,2,3 … }) and 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) be of the form (1.2) and let for some 𝑠 ∈ ℕ,
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
198
𝑄𝑠
𝑐𝑠
= min
𝑛≥𝑘+𝑝
𝑄𝑛
𝑐𝑛
,
where
𝑄𝑛 =
(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
.
Also, let for such 𝑠 ∈ ℕ, the functions 𝑔𝑠 and ℎ𝑠 be defined by
𝑔𝑠(𝑡) = 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠
,
ℎ𝑠(𝑡) = 𝑡𝑝
− 𝑐𝑠𝑡𝑠
. (7.3)
If there is a holomorphic function 𝑤(𝑡) defined by
(𝑤(𝑡))
𝑠−𝑝
=
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
∑ 𝑏𝑛𝑐𝑛 𝑡𝑛−𝑝
,
∞
𝑛=𝑘+𝑝
then, for 𝜂 > 0, 𝑡 = 𝑟𝑒𝑖𝜃
and (0 < 𝑟 < 1),
∫ |(𝑔 ∗ ℎ)(𝑡)|𝜂
𝑑𝜃 ≤
2𝜋
0
∫ |(𝑔𝑠 ∗ ℎ𝑠)(𝑡)|𝜂
𝑑𝜃, (𝜂 > 0).
2𝜋
0
Proof: Convolution of 𝑔(𝑡) and ℎ(𝑡) is defined by
(𝑔 ∗ ℎ)(𝑡) = 𝑡𝑝
− ∑ 𝑏𝑛 𝑐𝑛
∞
𝑛=𝑘+𝑝
𝑡𝑛
.
Similarly, from (7.3), we get
(𝑔𝑠 ∗ ℎ𝑠)(𝑡) = 𝑡𝑝
−
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠
.
To prove the theorem, we must show that for 𝜂 > 0, 𝑠 = 𝑟𝑒𝑖𝜃
and (0 < 𝑟 < 1),
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
199
∫ |1 − ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
|
𝜂
𝑑𝜃
2𝜋
0
≤ ∫ |1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠−𝑝
|
𝜂
𝑑𝜃
2𝜋
0
.
Therefore, using Lemma (1.2), it is sufficient to prove that
1 − ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
≺ 1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
𝑡𝑠−𝑝
. (7.4)
If the subordination (7.4) is valid, then there is a holomorphic function 𝑤(𝑡) with |𝑤(𝑡)| < 1
and 𝑤(0) = 0 such that
1 − ∑ 𝑏𝑛𝑐𝑛𝑠𝑛−𝑝
∞
𝑛=𝑘+𝑝
= 1 −
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑤(𝑡))
𝑠−𝑝
.
According to the assumption of the theorem, there is a holomorphic function 𝑤(𝑡) given by
(𝑤(𝑡))
𝑠−𝑝
=
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝
,
∞
𝑛=𝑘+𝑝
which readily yield 𝑤(0) = 0. So for such function 𝑤(𝑡), using the assumption in the coefficient
inequality for the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), we have
|𝑤(𝑡)|𝑠−𝑝
= |
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝
∞
𝑛=𝑘+𝑝
|
≤ |𝑡| |
(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝
𝑛(𝛿, 𝛽, 𝜈, 𝑙)
(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠
∑ 𝑏𝑛𝑐𝑛
∞
𝑛=𝑘+𝑝
|
≤ |𝑡| < 1.
Therefore, the subordination (7.4) holds true.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
200
References
[1] O. Altintaş, On a subclass of certain starlike functions with negative coefficients, Math.
Japon., 36(1991), 489-405.
[2] O. Altinaş, H. Irmak and H. M. Srivastava, Fractional calculus and certain starlike functions
with negative coefficients, Computers Math. Applic., 30(2)(1995), 9-16.
[3] E. S. Aqlan, Some problems connected with geometric Function Theory, Ph. D. Thesis
(2004), Pune University, Pune.
[4] W. G. Atshan and N. A. J. Al-Ziadi, A new subclass of harmonic univalent functions, J. Al-
Qadisiyah Comput. Sci. Math. 9(2) (2017), 26-32.
[5] E. Deniz and H. Orhan, Certain subclasses of multivalent functions defined by new
multiplier transformations, Arab J. Sci. Eng., 36(2011), 1091-1112.
[6] S. H. Hadi, M. Darus, C. Part and J. R. Lee, Some geometric properties of multivalent
functions associated with a new generalized q-Mittag-Leffler function, AIMS Mathematics,
7(7)(2022), 11772–11783.
[7] J. E. Littlewood, On inequality in the theory of functions, Proc. Londan Math. Soc.,
23(2)(1925), 481-519.
[8] S. S. Miller and P.T. Mocanu, Differential subordinations: Theory and Applications, Series
on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker,
New York and Basel, 2000.
[9] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin
25(4) (1985), 385-402.
[10]A. M. Ramadhan and N. A. J. Al-Ziadi, New class of multivalent functions with negative
coefficients, Earthline Journal of Mathematical Sciences, 10(2)(2022), 271-288.
[11]H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51
(1975), 109-116.
[12]A. K. Wanas and H. K. Radhi, A certain subclass of multivalent functions associated with
borel distribution series, Earthline Journal of Mathematical Sciences, 10(2)(2022), 341-353.

More Related Content

Similar to publisher in research

Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
IJMER
 
E0561719
E0561719E0561719
E0561719
IOSR Journals
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Lossian Barbosa Bacelar Miranda
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
iosrjce
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
IOSR Journals
 
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONPROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
Journal For Research
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
IJMERJOURNAL
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
jyotidighole2
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
jyotidighole2
 
J256979
J256979J256979
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
iosrjce
 
lec23.ppt
lec23.pptlec23.ppt
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
BRNSS Publication Hub
 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
BRNSS Publication Hub
 
Z transforms
Z transformsZ transforms
Z transforms
sujathavvv
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
BRNSS Publication Hub
 
F04573843
F04573843F04573843
F04573843
IOSR-JEN
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Santhanam Krishnan
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Rai University
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
AbhayRupareliya1
 

Similar to publisher in research (20)

Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
 
E0561719
E0561719E0561719
E0561719
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
 
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONPROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
 
J256979
J256979J256979
J256979
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
 
Z transforms
Z transformsZ transforms
Z transforms
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
F04573843
F04573843F04573843
F04573843
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
 

More from rikaseorika

journalism research
journalism researchjournalism research
journalism research
rikaseorika
 
science research journal
science research journalscience research journal
science research journal
rikaseorika
 
scopus publications
scopus publicationsscopus publications
scopus publications
rikaseorika
 
research publish journal
research publish journalresearch publish journal
research publish journal
rikaseorika
 
ugc journal
ugc journalugc journal
ugc journal
rikaseorika
 
journalism research
journalism researchjournalism research
journalism research
rikaseorika
 
publishable paper
publishable paperpublishable paper
publishable paper
rikaseorika
 
journal publication
journal publicationjournal publication
journal publication
rikaseorika
 
published journals
published journalspublished journals
published journals
rikaseorika
 
journal for research
journal for researchjournal for research
journal for research
rikaseorika
 
research publish journal
research publish journalresearch publish journal
research publish journal
rikaseorika
 
mathematica journal
mathematica journalmathematica journal
mathematica journal
rikaseorika
 
research paper publication journals
research paper publication journalsresearch paper publication journals
research paper publication journals
rikaseorika
 
journal for research
journal for researchjournal for research
journal for research
rikaseorika
 
ugc journal
ugc journalugc journal
ugc journal
rikaseorika
 
ugc care list
ugc care listugc care list
ugc care list
rikaseorika
 
research paper publication
research paper publicationresearch paper publication
research paper publication
rikaseorika
 
published journals
published journalspublished journals
published journals
rikaseorika
 
journalism research paper
journalism research paperjournalism research paper
journalism research paper
rikaseorika
 
research on journaling
research on journalingresearch on journaling
research on journaling
rikaseorika
 

More from rikaseorika (20)

journalism research
journalism researchjournalism research
journalism research
 
science research journal
science research journalscience research journal
science research journal
 
scopus publications
scopus publicationsscopus publications
scopus publications
 
research publish journal
research publish journalresearch publish journal
research publish journal
 
ugc journal
ugc journalugc journal
ugc journal
 
journalism research
journalism researchjournalism research
journalism research
 
publishable paper
publishable paperpublishable paper
publishable paper
 
journal publication
journal publicationjournal publication
journal publication
 
published journals
published journalspublished journals
published journals
 
journal for research
journal for researchjournal for research
journal for research
 
research publish journal
research publish journalresearch publish journal
research publish journal
 
mathematica journal
mathematica journalmathematica journal
mathematica journal
 
research paper publication journals
research paper publication journalsresearch paper publication journals
research paper publication journals
 
journal for research
journal for researchjournal for research
journal for research
 
ugc journal
ugc journalugc journal
ugc journal
 
ugc care list
ugc care listugc care list
ugc care list
 
research paper publication
research paper publicationresearch paper publication
research paper publication
 
published journals
published journalspublished journals
published journals
 
journalism research paper
journalism research paperjournalism research paper
journalism research paper
 
research on journaling
research on journalingresearch on journaling
research on journaling
 

Recently uploaded

Discover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling ServiceDiscover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling Service
obriengroupinc04
 
Efficient PHP Development Solutions for Dynamic Web Applications
Efficient PHP Development Solutions for Dynamic Web ApplicationsEfficient PHP Development Solutions for Dynamic Web Applications
Efficient PHP Development Solutions for Dynamic Web Applications
Harwinder Singh
 
Pitch Deck Teardown: Kinnect's $250k Angel deck
Pitch Deck Teardown: Kinnect's $250k Angel deckPitch Deck Teardown: Kinnect's $250k Angel deck
Pitch Deck Teardown: Kinnect's $250k Angel deck
HajeJanKamps
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
valvereliz227
 
The Steadfast and Reliable Bull: Taurus Zodiac Sign
The Steadfast and Reliable Bull: Taurus Zodiac SignThe Steadfast and Reliable Bull: Taurus Zodiac Sign
The Steadfast and Reliable Bull: Taurus Zodiac Sign
my Pandit
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results
 
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
irhcs
 
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Stone Art Hub
 
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
taqyea
 
list of states and organizations .pdf
list of  states  and  organizations .pdflist of  states  and  organizations .pdf
list of states and organizations .pdf
Rbc Rbcua
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
Eternity Paralegal Services
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Kalyan Satta Matka Guessing Matka Result Main Bazar chart
 
Prescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPTPrescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPT
Freelance
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results
 
The latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from NewentideThe latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from Newentide
JoeYangGreatMachiner
 
Science Around Us Module 2 Matter Around Us
Science Around Us Module 2 Matter Around UsScience Around Us Module 2 Matter Around Us
Science Around Us Module 2 Matter Around Us
PennapaKeavsiri
 
Enhancing Adoption of AI in Agri-food: Introduction
Enhancing Adoption of AI in Agri-food: IntroductionEnhancing Adoption of AI in Agri-food: Introduction
Enhancing Adoption of AI in Agri-food: Introduction
Cor Verdouw
 
GKohler - Retail Scavenger Hunt Presentation
GKohler - Retail Scavenger Hunt PresentationGKohler - Retail Scavenger Hunt Presentation
GKohler - Retail Scavenger Hunt Presentation
GraceKohler1
 
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
➑➌➋➑➒➎➑➑➊➍
 
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
dpbossdpboss69
 

Recently uploaded (20)

Discover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling ServiceDiscover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling Service
 
Efficient PHP Development Solutions for Dynamic Web Applications
Efficient PHP Development Solutions for Dynamic Web ApplicationsEfficient PHP Development Solutions for Dynamic Web Applications
Efficient PHP Development Solutions for Dynamic Web Applications
 
Pitch Deck Teardown: Kinnect's $250k Angel deck
Pitch Deck Teardown: Kinnect's $250k Angel deckPitch Deck Teardown: Kinnect's $250k Angel deck
Pitch Deck Teardown: Kinnect's $250k Angel deck
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
 
The Steadfast and Reliable Bull: Taurus Zodiac Sign
The Steadfast and Reliable Bull: Taurus Zodiac SignThe Steadfast and Reliable Bull: Taurus Zodiac Sign
The Steadfast and Reliable Bull: Taurus Zodiac Sign
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
1Q24_HYUNDAI CAPITAL SERVICES INC. AND SUBSIDIARIES
 
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666Best Competitive Marble Pricing in Dubai - ☎ 9928909666
Best Competitive Marble Pricing in Dubai - ☎ 9928909666
 
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
一比一原版(QMUE毕业证书)英国爱丁堡玛格丽特女王大学毕业证文凭如何办理
 
list of states and organizations .pdf
list of  states  and  organizations .pdflist of  states  and  organizations .pdf
list of states and organizations .pdf
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka Result Satta Matka Guessing Satta Fix jodi Kalyan Fin...
 
Prescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPTPrescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPT
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
The latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from NewentideThe latest Heat Pump Manual from Newentide
The latest Heat Pump Manual from Newentide
 
Science Around Us Module 2 Matter Around Us
Science Around Us Module 2 Matter Around UsScience Around Us Module 2 Matter Around Us
Science Around Us Module 2 Matter Around Us
 
Enhancing Adoption of AI in Agri-food: Introduction
Enhancing Adoption of AI in Agri-food: IntroductionEnhancing Adoption of AI in Agri-food: Introduction
Enhancing Adoption of AI in Agri-food: Introduction
 
GKohler - Retail Scavenger Hunt Presentation
GKohler - Retail Scavenger Hunt PresentationGKohler - Retail Scavenger Hunt Presentation
GKohler - Retail Scavenger Hunt Presentation
 
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
 
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
Call 8867766396 Dpboss Matka Guessing Satta Matta Matka Kalyan Chart Indian M...
 

publisher in research

  • 1. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 182 New Class of p-valent Functions Defined by Multiplier Transformations Lafta Hussain Hassan1, Najah Ali Jiben Al-Ziadi2 1 Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq, laftaalnaeely@gmail.com 2 Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq, najah.ali@qu.edu.iq Abstract The object of this paper to study the new class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) of p-valent functions defined by multiplier transformations 𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)(𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0; 𝑝 ∈ ℕ) in the open unit disk ∆ = {𝑡 ∶ 𝑡 ∈ ℂ and |𝑡| < 1}. We obtain some geometric properties for this class, like, coefficient estimate, radii of convexity, starlikeness and close-to-convexity, extreme points, closure theorems, integral operators and integral means inequalities. Keywords: Holomorphic function, p-valent functions, multiplier transformations, coefficient inequality, radii of convexity and starlikeness, extreme points, closure theorem. 1. Introduction Let 𝒜(𝑝, 𝑘) symbolize the class of functions normalized by 𝑔(𝑡) = 𝑡𝑝 + ∑ 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 (𝑡 ∈ ∆; 𝑝, 𝑘 ∈ ℕ = { 1, 2, 3, … }), (1.1) which are holomorphic and p-valent in the open unit disk ∆ = {𝑡 ∶ 𝑡 ∈ ℂ and |𝑡| < 1}. Let ℳ(𝑝, 𝑘) symbolize the function subclass of 𝒜(𝑝, 𝑘) consisting of functions of the shape: 𝑔(𝑡) = 𝑡𝑝 − ∑ 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 (𝑡 ∈ ∆; 𝑏𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.2) For function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘), given by (1.2), and ℎ(𝑡) ∈ ℳ(𝑝, 𝑘) given by
  • 2. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 183 ℎ(𝑡) = 𝑡𝑝 − ∑ 𝑐𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 (𝑡 ∈ ∆; 𝑐𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }), (1.3) the Hadamard product (or convolution) of 𝑔(𝑡) and ℎ(𝑡) is defined by (𝑔 ∗ ℎ)(𝑡) = 𝑡𝑝 − ∑ 𝑏𝑛𝑐𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 = (ℎ ∗ 𝑔)(𝑡). (1.4) A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent starlike of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡) fulfills the condition: 𝑅𝑒 ( 𝑡𝑔′(𝑡) 𝑔(𝑡) ) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.5) Also, a function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent convex of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡) fulfills the condition: 𝑅𝑒 (1 + 𝑡𝑔′′(𝑡) 𝑔′(𝑡) ) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.6) Symbolize by 𝑆𝑛 ∗(𝑝, 𝛼) the class of p-valent starlike functions of order 𝛼. Symbolize by 𝐶𝑛(𝑝, 𝛼) the class of p-valent convex functions of order𝛼, which were studied by Owa [9]. It is noted that 𝑔(𝑡) ∈ 𝐶𝑛(𝑝, 𝛼) if and only if 𝑡𝑔′(𝑡) 𝑝 ∈ 𝑆𝑛 ∗(𝑝, 𝛼). A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) is called p-valent close to convex of order 𝛼 (0 ≤ 𝛼 < 𝑝), if 𝑔(𝑡) fulfills the condition: 𝑅𝑒 ( 𝑔′(𝑡) 𝑡𝑝−1 ) > 𝛼 (𝑡 ∈ ∆; 0 ≤ 𝛼 < 𝑝; 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }). (1.7) Let the functions 𝑔(𝑡) and ℎ(𝑡) be holomorphic in Δ. We say that the function 𝑔(𝑡) is subordinate to ℎ(𝑡), if there exists a Schwarz function 𝑤(𝑡) holomorphic in 𝛥 with 𝑤(0) = 0 and |𝑤(𝑡)| < 1, 𝑡 ∈ 𝛥 such that 𝑔(𝑡) = ℎ(𝑤(𝑡)). This subordinate is denoted by 𝑔 ≺ ℎ or 𝑔(𝑡) ≺ ℎ(𝑡) (𝑡 ∈ 𝛥). It is well known that (see [8]), if the function 𝑔(𝑡) is univalent in 𝛥, then 𝑔(𝑡) ≺ ℎ(𝑡) if and only if 𝑔(0) = ℎ(0) and 𝑔(𝛥) ⊂ ℎ(𝛥).
  • 3. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 184 For a function 𝑔(𝑡) in 𝒜(𝑝, 𝑘), Deniz and Orhan [5] define the multiplier transformations 𝒥𝑝 𝛿(𝛽, 𝑣, 𝑙) as follows: Definition (1.1)[ 5]: Let 𝑔(𝑡) ∈ 𝒜(𝑝, 𝑘). For the parameters 𝛿, 𝛽, 𝜈, 𝑙 ∈ ℝ, 𝛽 ≥ 𝜈 ≥ 0 and 𝛿, 𝑙 ≥ 0, we realize the multiplier transformations 𝒥𝑝 𝛿(𝛽, 𝑣, 𝑙) on 𝒜(𝑝, 𝑘) as 𝒥𝑝 0(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝑔(𝑡) (𝑝 + 𝑙)𝒥𝑝 1(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝛽𝜈𝑡2 𝑔′′(𝑡) + (𝛽 − 𝜈 + (1 − 𝑝)𝛽𝜈)𝑡𝑔′(𝑡) + (𝑝(1 − 𝛽 + 𝜈) + 𝑙)𝑔(𝑡) (𝑝 + 𝑙)𝒥𝑝 2(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝛽𝜈𝑡2 [𝒥𝑝 1(𝛽, 𝜈, 𝑙)𝑔(𝑡)] ′′ + (𝛽 − 𝜈 + (1 − 𝑝)𝛽𝜈)𝑡[𝒥𝑝 1(𝛽, 𝜈, 𝑙)𝑔(𝑡)] ′ +(𝑝(1 − 𝛽 + 𝜈) + 𝑙)𝒥𝑝 1(𝛽, 𝜈, 𝑙)𝑔(𝑡) 𝒥𝑝 δ1 (𝛽, 𝜈, 𝑙) (𝒥𝑝 δ2 (𝛽, 𝜈, 𝑙)𝑔(𝑡)) = 𝒥𝑝 δ2 (𝛽, 𝜈, 𝑙) (𝒥𝑝 δ1 (𝛽, 𝜈, 𝑙)𝑔(𝑡)) for 𝑡 ∈ 𝛥 and 𝑝, 𝑘 ∈ ℕ = {1,2, … }. (1.8) If 𝑔(𝑡) is given by (1.1), then from the definition of the multiplier transformations 𝒥𝑝 𝛿(𝛽, 𝑣, 𝑙), we see that 𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡) = 𝑡𝑝 + ∑ 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 , (1.9) where 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) = [ (𝑛 − 𝑝)(𝛽𝜈𝑛 + 𝛽 − 𝜈) + 𝑝 + 𝑙 𝑝 + 𝑙 ] 𝛿 (𝛿, 𝛽, 𝜈, 𝑙 ∈ ℝ, 𝛽 ≥ 𝜈 ≥ 0 and 𝛿, 𝑙 ≥ 0). (1.10) With a view to derive our main outcomes, we have to recall here the following lemmas. Lemma (1.1) [3]: Let 𝛼 ≥ 0. Then 𝑅𝑒(𝑤) > 𝛼 if and only if |𝑤 − (𝑝 + 𝛼)| < |𝑤 + (𝑝 − 𝛼)|, where 𝑤 be any complex number. Lemma (1.2) [7]: If 𝑔 and ℎ are holomorphic in ∆ with 𝑔 ≺ ℎ, then ∫ |𝑔(𝑟𝑒𝑖𝜃 )| 𝜂 2𝜋 0 𝑑𝜃 ≤ ∫ |ℎ(𝑟𝑒𝑖𝜃 )| 𝜂 2𝜋 0 𝑑𝜃, where 𝜂 > 0, 𝑡 = 𝑟𝑒𝑖𝜃 and (0 < 𝑟 < 1).
  • 4. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 185 Definition (1.2): A function 𝑔(𝑡) ∈ ℳ(𝑝, 𝑘) of the shape (1.2), is told to be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) if and only if satisfies the following condition: 𝑅𝑒 { 𝜆𝜇𝑡3 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′′′ + (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + 𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ 𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + (𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ + (1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡) } > 𝛼, (1.11) where 𝑡 ∈ ∆ , 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1,2, 3, … }. Noting that by customizing the parameter 𝛿, 𝜇, 𝜆, 𝑝 and 𝑘, we obtain the following various subclasses investigated by different investigators: 1) If 𝛿 = 0 and 𝜇 = 0, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝒯 𝑛(𝑝, 𝛼, 𝜆) which is introduced by Altintaş et al. [2]. 2) If 𝛿 = 0, 𝜇 = 0 and 𝑝 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class Р(𝑛, 𝛼, 𝜆) which is introduced by Altintaş [1]. 3) If 𝛿 = 0, 𝜇 = 0 and 𝜆 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝐶𝑛(𝑝, 𝛼) which is introduced by Owa [9]. 4) If 𝛿 = 0, 𝜇 = 0, 𝜆 = 1, 𝑝 = 1 and 𝑘 = 1, the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝐶(𝛼) which is introduced Silverman [11]. 5) If 𝛿 = 0, 𝜇 = 0 and 𝜆 = 0, the class ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝑆𝑛 ∗(𝑝, 𝛼) which is introduced by Owa [9]. 6) If 𝛿 = 0, 𝜇 = 0, 𝜆 = 0, 𝑝 = 1 and 𝑘 = 1, the class ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) shortens to the class 𝒯∗(𝛼) which is introduced Silverman [11]. Several of the upcoming characteristics were researched for different classes in [4, 5, 6, 10, 12]. 2. Coefficient Inequality From the following theorem, we get the necessary and sufficient condition for the function 𝑔(𝑡) to be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Theorem (2.1): Let 𝑔(𝑡) be in the shape (1.2). Then 𝑔(𝑡) is in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) if and only if
  • 5. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 186 ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 ≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1], (2.1) where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }. The result is sharp for the function 𝑔(𝑡) given by 𝑔(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑛 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝 , 𝑘 ∈ ℕ). (2.2) Proof: Assume that 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), so we have 𝑅𝑒 { 𝜆𝜇𝑡3 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′′′ + (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + 𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ 𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + (𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ + (1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡) } > 𝛼. Then 𝑅𝑒 { 𝑝[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1 ]𝑡𝑝 − ∑ 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑛[(𝑛 − 1)(𝜆𝜇 + 𝜆 − 𝜇) + 1]𝑏𝑛𝑡𝑛 ∞ 𝑛=𝑘+𝑝 [𝑝(𝜆𝜇𝑝 − 𝜆𝜇 + 𝜆 − 𝜇) + (1 − 𝜆 + 𝜇)]𝑡𝑝 − ∑ 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)[𝑛(𝜆𝜇𝑛 − 𝜆𝜇 + 𝜆 − 𝜇) ∞ 𝑛=𝑘+𝑝 + 1 − 𝜆 + 𝜇]𝑏𝑛𝑡𝑛 } > 𝛼. Or equivalently 𝑅𝑒 { (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑡𝑝 − ∑ 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝑏𝑛𝑡𝑛 ∞ 𝑛=𝑘+𝑝 [𝑝(𝜆𝜇𝑝 − 𝜆𝜇 + 𝜆 − 𝜇) + (1 − 𝜆 + 𝜇)]𝑡𝑝 − ∑ 𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)[𝑛(𝜆𝜇𝑛 − 𝜆𝜇 + 𝜆 − 𝜇) ∞ 𝑛=𝑘+𝑝 + 1 − 𝜆 + 𝜇]𝑏𝑛𝑡𝑛 } > 0. This inequality is valid for 𝑡 ∈ ∆. Letting 𝑡 → 1− yields 𝑅𝑒 {(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] − ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛 ∞ 𝑛=𝑘+𝑝 } > 0.
  • 6. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 187 Therefore ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛 ∞ 𝑛=𝑘+𝑝 ≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]. Conversely, let (2.1) hold. We will show that (1.11) is valid and then 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). By Lemma (1.1), we set 𝑤 = 𝜆𝜇𝑡3 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′′′ + (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + 𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ 𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + (𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ + (1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡) Or show that 𝑇 = 1 |𝑁(𝑡)| |𝜆𝜇𝑡3 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′′′ + (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + 𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ − (𝑝 + 𝛼)𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ − (𝑝 + 𝛼)(𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ − (𝑝 + 𝛼)(1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)| < 1 |𝑁(𝑡)| |𝜆𝜇𝑡3 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′′′ + (2𝜆𝜇 + 𝜆 − 𝜇)𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + 𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ + (𝑝 − 𝛼)𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙) 𝑔(𝑡)) ′′ + (𝑝 − 𝛼)(𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)) ′ + (𝑝 − 𝛼)(1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝑙)𝑔(𝑡)| = 𝑄, where 𝑁(𝑡) = 𝜆𝜇𝑡2 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝜄) 𝑔(𝑡)) ′′ + (𝜆 − 𝜇)𝑡 (𝒥𝑝 𝛿(𝛽, 𝜈, 𝜄)𝑔(𝑡)) ′ + (1 − 𝜆 + 𝜇)𝒥𝑝 𝛿(𝛽, 𝜈, 𝜄)𝑔(𝑡) and it is simple to prove that 𝑄 − 𝑇 > 0. The proof is therefore complete. Corollary (2.1): Let 𝑔(𝑡) be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then 𝑏𝑛 ≤ (𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) , (2.3)
  • 7. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 188 where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 1, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }. 3. Radii of Convexity, Starlikeness and Close-to-Convexity In the next theorems, we will find the radii of convexity, starlikeness and close-to-convexity for the functions in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Theorem (3.1): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent convex of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅1, where 𝑅1 = 𝑖𝑛𝑓 𝑛 [ 𝑝(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝜄) 𝑛(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ). The outcome is sharp for the function 𝑔(𝑡) given by (2.2). Proof: It is sufficient to prove that |1 + 𝑡𝑔′′(𝑡) 𝑔′(𝑡) − 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝), for |𝑡| < 𝑅1, we have |1 + 𝑡𝑔′′(𝑡) 𝑔′(𝑡) − 𝑝| ≤ ∑ 𝑛(𝑛 − 𝑝)𝑏𝑛 |𝑡|𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 𝑝 − ∑ 𝑛𝑏𝑛 |𝑡|𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 . Thus |1 + 𝑡𝑔′′(𝑡) 𝑔′(𝑡) − 𝑝| ≤ 𝑝 − 𝛾, if ∑ 𝑛(𝑛 − 𝛾) 𝑝(𝑝 − 𝛾) 𝑏𝑛 |𝑡|𝑛−𝑝 ≤ 1. (3.1) ∞ 𝑛=𝑘+𝑝 Therefore, by Theorem (2.1), (3.1) will be true if 𝑛(𝑛 − 𝛾) 𝑝(𝑝 − 𝛾) |𝑡|𝑛−𝑝 ≤ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ,
  • 8. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 189 and hence |𝑡| ≤ [ 𝑝(𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑛(𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ). Setting |𝑡| = 𝑅1, we get the desired result. Theorem (3.2): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent starlike of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅2, where 𝑅2 = 𝑖𝑛𝑓 𝑛 [ (𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ). The outcome is sharp for the function 𝑔(𝑡) given by (2.2). Proof: It is sufficient to prove that | 𝑡𝑔′(𝑡) 𝑔(𝑡) − 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝), for |𝑡| < 𝑅2, we have | 𝑡𝑔′(𝑡) 𝑔(𝑡) − 𝑝| ≤ ∑ (𝑛 − 𝑝)𝑏𝑛 |𝑡|𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 1 − ∑ 𝑏𝑛 |𝑡|𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 . Thus | 𝑡𝑔′(𝑡) 𝑔(𝑡) − 𝑝| ≤ 𝑝 − 𝛾, if ∑ 𝑛 − 𝛾 𝑝 − 𝛾 𝑏𝑛 |𝑡|𝑛−𝑝 ≤ 1. (3.2) ∞ 𝑛=𝑘+𝑝 Therefore, by Theorem (2.1), (3.2) will be true if 𝑛 − 𝛾 𝑝 − 𝛾 |𝑡|𝑛−𝑝 ≤ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] . and hence
  • 9. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 190 |𝑡| ≤ [ (𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑛 − 𝛾)(𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ). Setting |𝑡| = 𝑅2, we obtain the desired result. Theorem (3.3): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Then the function 𝑔(𝑡) is p-valent close to convex of order 𝛾 (0 ≤ 𝛾 < 𝑝) in the disk |𝑡| < 𝑅3, where 𝑅3 = 𝑖𝑛𝑓 𝑛 [ (𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑛(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ). The result is sharp for the function 𝑔(𝑡) given by (2.2). Proof: It is sufficient to prove that | 𝑔′(𝑡) 𝑡𝑝−1 − 𝑝| ≤ 𝑝 − 𝛾 (0 ≤ 𝛾 < 𝑝), for |𝑡| < 𝑅3, we have that | 𝑔′(𝑡) 𝑡𝑝−1 − 𝑝| ≤ ∑ 𝑛𝑏𝑛|𝑡|𝑛−𝑝 . ∞ 𝑛=𝑘+𝑝 Thus | 𝑔′(𝑡) 𝑡𝑝−1 − 𝑝| ≤ 𝑝 − 𝛾, if ∑ 𝑛𝑏𝑛|𝑡|𝑛−𝑝 𝑝 − 𝛾 ≤ 1. (3.3) ∞ 𝑛=𝑘+𝑝 Therefore, by Theorem (2.1), (3.3) will be true if 𝑛 𝑝 − 𝛾 |𝑡|𝑛−𝑝 ≤ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] , and hence
  • 10. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 191 |𝑡| ≤ [ (𝑝 − 𝛾)(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑛(𝑝 − 𝛼)[(𝑝 − 1)((𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1)] ] 1 𝑛−𝑝 , (𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ ). The result is sharp for the function 𝑔(𝑡) given by (2.2). 4. Extreme Points We get here an extreme points of the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Theorem (4.1): Let 𝑔𝑝(𝑡) = 𝑡𝑝 and 𝑔𝑛(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑛 , (4.1) where 𝑡 ∈ ∆, 0 ≤ 𝛼 < 𝑝, 0 ≤ 𝜇 ≤ 𝜆 ≤ 1, 𝛿, 𝑙 ≥ 0, 𝛽 ≥ 𝜈 ≥ 0, 𝑝, 𝑘 ∈ ℕ = {1, 2, 3, … }. Then 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) if and only if It can be written as: 𝑔(𝑡) = 𝛾𝑝𝑡𝑝 + ∑ 𝛾𝑛𝑔𝑛(𝑡), ∞ 𝑛=𝑘+𝑝 (4.2) where ( 𝛾𝑝 ≥ 0, 𝛾𝑛 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝) and 𝛾𝑝 + ∑ 𝛾𝑛 ∞ 𝑛=𝑘+𝑝 = 1. Proof: Consider this 𝑔(𝑡) is represented in the shape (4.2). Then 𝑔(𝑡) = 𝛾𝑝𝑡𝑝 + ∑ 𝛾𝑛 [𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑛 ] ∞ 𝑛=𝑘+𝑝 = 𝑡𝑝 − ∑ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝛾𝑛𝑡𝑛 ∞ 𝑛=𝑘+𝑝 . Hence ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ∞ 𝑛=𝑘+𝑝
  • 11. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 192 × (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝛾𝑛 (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) = ∑ 𝛾𝑛 ∞ 𝑛=𝑘+𝑝 = 1 − 𝛾𝑝 ≤ 1. Then 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Conversely, suppose that 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). We may set 𝛾𝑛 = (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] 𝑏𝑛, where 𝑏𝑛 is given by (2.3). Then 𝑔(𝑡) = 𝑡𝑝 − ∑ 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 = 𝑡𝑝 − ∑ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 1) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝛾𝑛 𝑡𝑛 ∞ 𝑛=𝑘+𝑝 = 𝑡𝑝 − ∑ [ ∞ 𝑛=𝑘+𝑝 𝑡𝑝 − 𝑔𝑛(𝑡)]𝛾𝑛 = (1 − ∑ 𝛾𝑛 ∞ 𝑛=𝑘+𝑝 ) 𝑡𝑝 + ∑ 𝛾𝑛𝑔𝑛(𝑡) ∞ 𝑛=𝑘+𝑝 = 𝛾𝑝𝑡𝑝 + ∑ 𝛾𝑛𝑔𝑛(𝑡). ∞ 𝑛=𝑘+𝑝 This completes the proof of Theorem (4.1). 5. Closure Theorems Theorem (5.1): Let the functions 𝑔𝑠 defined by 𝑔𝑠(𝑡) = 𝑡𝑝 − ∑ 𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 , (𝑏𝑛,𝑠 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ, 𝑠 = 1,2, … , 𝑞), ( 5.1 ) be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) for every 𝑠 = 1,2, … , 𝑞.
  • 12. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 193 Then the function 𝑚1(𝑡) defined by 𝑚1(𝑡) = 𝑡𝑝 − ∑ 𝑒𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 , (𝑒𝑛 ≥ 0, 𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ), also belongs to the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), where 𝑒𝑛 = 1 𝑞 ∑ 𝑏𝑛,𝑠 𝑞 𝑠=1 , (𝑛 ≥ 𝑘 + 𝑝, 𝑝, 𝑘 ∈ ℕ). Proof: Since 𝑔𝑠 ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) it follows from Theorem (2.1) that ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 ≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1], for every 𝑠 = 1, 2, … , 𝑞. Hence ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)]𝑒𝑛 ∞ 𝑛=𝑘+𝑝 = ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)] ( 1 𝑞 ∑ 𝑏𝑛,𝑠 𝑞 𝑠=1 ) ∞ 𝑛=𝑘+𝑝 = 1 𝑞 ∑ 𝑞 𝑠=1 ( ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)]𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 ) ≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]. By Theorem (2.1), it follows that 𝑚1(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Theorem (5.2): Let the function 𝑔𝑠 defined by (5.1) be in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) for every 𝑠 = 1, 2, … , 𝑞. Then the function 𝑚2(𝑡) defined by 𝑚2(𝑡) = ∑ 𝑦𝑠 𝑞 𝑠=1 𝑔𝑠(𝑡) is also in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), where
  • 13. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 194 ∑ 𝑦𝑠 = 1, 𝑞 𝑠=1 (𝑦𝑠 ≥ 0). Proof: By Theorem (2.1), for every 𝑠 = 1,2, … , 𝑞, we have ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 ≤ (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]. But 𝑚2(𝑡) = ∑ 𝑦𝑠 𝑞 𝑠=1 𝑔𝑠(𝑡) = ∑ 𝑦𝑠 𝑞 𝑠=1 (𝑡𝑝 − ∑ 𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 ) = 𝑡𝑝 − ∑ (∑ 𝑦𝑠 𝑏𝑛,𝑠 𝑞 𝑠=1 ) ∞ 𝑛=𝑘+𝑝 𝑡𝑛 . Therefore ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (∑ 𝑦𝑠𝑏𝑛,𝑠 𝑞 𝑠=1 ) ∞ 𝑛=𝑘+𝑝 = ∑ 𝑦𝑠 𝑞 𝑠=1 ( ∑ (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)𝑏𝑛,𝑠 ∞ 𝑛=𝑘+𝑝 ) ≤ ∑ 𝑦𝑠 𝑞 𝑠=1 (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] = (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] The proof is therefore complete. Corollary (5.1): The class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) is close under convex linear combination. 6. Integral Operators In this segment, we consider integral transforms of functions in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Theorem (6.1): Let 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) be defined by (1.2) and 𝑐 be any real number such that 𝑐 > −𝑝. Then the integral operator
  • 14. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 195 𝐺(𝑡) = 𝑐 + 𝑝 𝑡𝑐 ∫ 𝑧𝑐−1 𝑔(𝑧)𝑑𝑧 ( 𝑐 > −𝑝 ), 𝑡 0 (6.1) also in the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙). Proof: By virtue of (6.1) it follows from (1.2) that 𝐺(𝑡) = 𝑐 + 𝑝 𝑡𝑐 ∫ 𝑧𝑐−1 (𝑧𝑝 − ∑ 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑧𝑛 ) 𝑑𝑧 𝑡 0 = 𝑐 + 𝑝 𝑡𝑐 ∫ (𝑧𝑝+𝑐−1 − ∑ 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑧𝑛+𝑐−1 ) 𝑑𝑧 𝑡 0 = 𝑡𝑝 − ∑ ( 𝑐 + 𝑝 𝑐 + 𝑛 ) 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 = 𝑡𝑝 − ∑ ℎ𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 , where ℎ𝑛 = ( 𝑐+𝑝 𝑐+𝑛 ) 𝑏𝑛. But ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙)ℎ𝑛 ∞ 𝑛=𝑘+𝑝 = ∑ [(𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) ( 𝑐 + 𝑝 𝑐 + 𝑛 ) 𝑏𝑛 ∞ 𝑛=𝑘+𝑝 . Since ( 𝑐+𝑝 𝑐+𝑛 ) ≤ 1 and by (2.1), the last expression is less than or equal to (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]. So the proof is ends. 7. Integral Means Inequalities By using Theorem (2.1) and Lemma (1.2), we show the following theorems. Theorem (7.1): Let 𝜂 > 0. If 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) and suppose that 𝑔𝑠(𝑡) is defined by
  • 15. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 196 𝑔𝑠(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠 , (𝑠 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ). If there is a holomorphic function 𝑤(𝑡) defined by (𝑤(𝑡)) 𝑠−𝑝 = (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ∑ 𝑏𝑛 𝑡𝑛−𝑝 . ∞ 𝑛=𝑘+𝑝 Then, for 𝑡 = 𝑟𝑒𝑖𝜃 and (0 < 𝑟 < 1), ∫ |𝑔(𝑡)|𝜂 𝑑𝜃 ≤ 2𝜋 0 ∫ |𝑔𝑠(𝑡)|𝜂 𝑑𝜃, (𝜂 > 0). 2𝜋 0 (7.1) Proof: We must show that ∫ |1 − ∑ 𝑏𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 | 𝜂 𝑑𝜃 2𝜋 0 ≤ ∫ |1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠−𝑝 | 𝜂 𝑑𝜃 2𝜋 0 . By using Lemma (1.2), it suffices to show that 1 − ∑ 𝑏𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 ≺ 1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠−𝑝 . Put 1 − ∑ 𝑏𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 = 1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑤(𝑡)) 𝑠−𝑝 . We find that (𝑤(𝑡)) 𝑠−𝑝 = (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ∑ 𝑏𝑛 𝑡𝑛−𝑝 , ∞ 𝑛=𝑘+𝑝 that yield easily 𝑤(0) = 0. In addition by using (2.1), we get
  • 16. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 197 |𝑤(𝑡)|𝑠−𝑝 = | (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] ∑ 𝑏𝑛 𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 | ≤ |𝑡| | ∑ ∞ 𝑛=𝑘+𝑝 (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] 𝑏𝑛| ≤ |𝑡| < 1. Next, the proof for the first derivative. Theorem (7.2): Let 𝜂 > 0. If 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) and 𝑔𝑠(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]Φ𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠 , (𝑠 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ). Then, for 𝑡 = 𝑟𝑒𝑖𝜃 and (0 < 𝑟 < 1), ∫ |𝑔′(𝑡)|𝜂 𝑑𝜃 ≤ 2𝜋 0 ∫ |𝑔𝑠 ′ (𝑡)|𝜂 𝑑𝜃, (𝜂 > 0). (7. 2𝜋 0 2) Proof: It is sufficient to demonstrate that 1 − ∑ 𝑛 𝑝 𝑏𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 ≺ 1 − 𝑠((𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]) 𝑝[(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠−𝑝 . This follows because |𝑤(𝑡)|𝑠−𝑝 = | 𝑝[(𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑠((𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]) ∑ 𝑛 𝑝 𝑏𝑛 𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 | ≤ |𝑡| | ∑ ∞ 𝑛=𝑘+𝑝 (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] 𝑏𝑛| ≤ |𝑡| < 1. Theorem (7.3): Let ℎ(𝑡) = 𝑡𝑝 − ∑ 𝑐𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 (𝑡 ∈ ∆; 𝑐𝑛 ≥ 0; 𝑛 ≥ 𝑘 + 𝑝; 𝑝, 𝑘 ∈ ℕ = {1,2,3 … }) and 𝑔(𝑡) ∈ ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙) be of the form (1.2) and let for some 𝑠 ∈ ℕ,
  • 17. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 198 𝑄𝑠 𝑐𝑠 = min 𝑛≥𝑘+𝑝 𝑄𝑛 𝑐𝑛 , where 𝑄𝑛 = (𝑛 − 𝛼)[(𝑛 − 1)(𝜆𝜇𝑛 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] . Also, let for such 𝑠 ∈ ℕ, the functions 𝑔𝑠 and ℎ𝑠 be defined by 𝑔𝑠(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1] (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠 , ℎ𝑠(𝑡) = 𝑡𝑝 − 𝑐𝑠𝑡𝑠 . (7.3) If there is a holomorphic function 𝑤(𝑡) defined by (𝑤(𝑡)) 𝑠−𝑝 = (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 ∑ 𝑏𝑛𝑐𝑛 𝑡𝑛−𝑝 , ∞ 𝑛=𝑘+𝑝 then, for 𝜂 > 0, 𝑡 = 𝑟𝑒𝑖𝜃 and (0 < 𝑟 < 1), ∫ |(𝑔 ∗ ℎ)(𝑡)|𝜂 𝑑𝜃 ≤ 2𝜋 0 ∫ |(𝑔𝑠 ∗ ℎ𝑠)(𝑡)|𝜂 𝑑𝜃, (𝜂 > 0). 2𝜋 0 Proof: Convolution of 𝑔(𝑡) and ℎ(𝑡) is defined by (𝑔 ∗ ℎ)(𝑡) = 𝑡𝑝 − ∑ 𝑏𝑛 𝑐𝑛 ∞ 𝑛=𝑘+𝑝 𝑡𝑛 . Similarly, from (7.3), we get (𝑔𝑠 ∗ ℎ𝑠)(𝑡) = 𝑡𝑝 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠 . To prove the theorem, we must show that for 𝜂 > 0, 𝑠 = 𝑟𝑒𝑖𝜃 and (0 < 𝑟 < 1),
  • 18. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 199 ∫ |1 − ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 | 𝜂 𝑑𝜃 2𝜋 0 ≤ ∫ |1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠−𝑝 | 𝜂 𝑑𝜃 2𝜋 0 . Therefore, using Lemma (1.2), it is sufficient to prove that 1 − ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 ≺ 1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) 𝑡𝑠−𝑝 . (7.4) If the subordination (7.4) is valid, then there is a holomorphic function 𝑤(𝑡) with |𝑤(𝑡)| < 1 and 𝑤(0) = 0 such that 1 − ∑ 𝑏𝑛𝑐𝑛𝑠𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 = 1 − (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑤(𝑡)) 𝑠−𝑝 . According to the assumption of the theorem, there is a holomorphic function 𝑤(𝑡) given by (𝑤(𝑡)) 𝑠−𝑝 = (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝 , ∞ 𝑛=𝑘+𝑝 which readily yield 𝑤(0) = 0. So for such function 𝑤(𝑡), using the assumption in the coefficient inequality for the class ℳ𝒜(𝑝, 𝑘, 𝛼, 𝜆, 𝜇, 𝛽, 𝜈, 𝑙), we have |𝑤(𝑡)|𝑠−𝑝 = | (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 ∑ 𝑏𝑛𝑐𝑛𝑡𝑛−𝑝 ∞ 𝑛=𝑘+𝑝 | ≤ |𝑡| | (𝑠 − 𝛼)[(𝑠 − 1)(𝜆𝜇𝑠 + 𝜆 − 𝜇) + 1]𝛷𝑝 𝑛(𝛿, 𝛽, 𝜈, 𝑙) (𝑝 − 𝛼)[(𝑝 − 1)(𝜆𝜇𝑝 + 𝜆 − 𝜇) + 1]𝑐𝑠 ∑ 𝑏𝑛𝑐𝑛 ∞ 𝑛=𝑘+𝑝 | ≤ |𝑡| < 1. Therefore, the subordination (7.4) holds true.
  • 19. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 200 References [1] O. Altintaş, On a subclass of certain starlike functions with negative coefficients, Math. Japon., 36(1991), 489-405. [2] O. Altinaş, H. Irmak and H. M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Computers Math. Applic., 30(2)(1995), 9-16. [3] E. S. Aqlan, Some problems connected with geometric Function Theory, Ph. D. Thesis (2004), Pune University, Pune. [4] W. G. Atshan and N. A. J. Al-Ziadi, A new subclass of harmonic univalent functions, J. Al- Qadisiyah Comput. Sci. Math. 9(2) (2017), 26-32. [5] E. Deniz and H. Orhan, Certain subclasses of multivalent functions defined by new multiplier transformations, Arab J. Sci. Eng., 36(2011), 1091-1112. [6] S. H. Hadi, M. Darus, C. Part and J. R. Lee, Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function, AIMS Mathematics, 7(7)(2022), 11772–11783. [7] J. E. Littlewood, On inequality in the theory of functions, Proc. Londan Math. Soc., 23(2)(1925), 481-519. [8] S. S. Miller and P.T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, 2000. [9] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 25(4) (1985), 385-402. [10]A. M. Ramadhan and N. A. J. Al-Ziadi, New class of multivalent functions with negative coefficients, Earthline Journal of Mathematical Sciences, 10(2)(2022), 271-288. [11]H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116. [12]A. K. Wanas and H. K. Radhi, A certain subclass of multivalent functions associated with borel distribution series, Earthline Journal of Mathematical Sciences, 10(2)(2022), 341-353.