SlideShare a Scribd company logo
1 of 63
1
Chapter 7:
MECHANICAL
PROPERTIES
Chapter Outline
 Terminology for Mechanical Properties
 The Tensile Test: Stress-Strain Diagram
 Properties Obtained from a Tensile Test
 True Stress and True Strain
 The Bend Test for Brittle Materials
 Hardness of Materials
3
Questions to Think About
• Stress and strain: What are they and why are they
used instead of load and deformation?
• Elastic behavior: When loads are small, how much
deformation occurs? What materials deform least?
• Plastic behavior: At what point do dislocations
cause permanent deformation? What materials are
most resistant to permanent deformation?
• Toughness and ductility: What are they and how
do we measure them?
• Ceramic Materials: What special provisions/tests
are made for ceramic materials?
4
Stress-Strain Test
specimen
machine
5
Tensile Test
6
Important Mechanical Properties
from a Tensile Test
• Young's Modulus: This is the slope of the linear
portion of the stress-strain curve, it is usually
specific to each material; a constant, known value.
• Yield Strength: This is the value of stress at the
yield point, calculated by plotting young's modulus
at a specified percent of offset (usually offset =
0.2%).
• Ultimate Tensile Strength: This is the highest
value of stress on the stress-strain curve.
• Percent Elongation: This is the change in gauge
length divided by the original gauge length.
Terminology
 Load - The force applied to a material during
testing.
 Strain gage or Extensometer - A device used for
measuring change in length (strain).
 Engineering stress - The applied load, or force,
divided by the original cross-sectional area of the
material.
 Engineering strain - The amount that a material
deforms per unit length in a tensile test.
8
F

bonds
stretch
return to
initial
1. Initial 2. Small load 3. Unload
Elastic means reversible.
Elastic Deformation
9
1. Initial 2. Small load 3. Unload
Plastic means permanent.
F

linear
elastic
linear
elastic
plastic
Plastic Deformation (Metals)
10
Typical stress-strain
behavior for a metal
showing elastic and
plastic deformations,
the proportional limit P
and the yield strength
σy, as determined
using the 0.002 strain
offset method (where there
is noticeable plastic deformation).
P is the gradual elastic
to plastic transition.
11
Plastic Deformation (permanent)
• From an atomic perspective, plastic
deformation corresponds to the breaking of
bonds with original atom neighbors and
then reforming bonds with new neighbors.
• After removal of the stress, the large
number of atoms that have relocated, do
not return to original position.
• Yield strength is a measure of resistance
to plastic deformation.
12
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
• Localized deformation of a ductile material during a
tensile test produces a necked region.
• The image shows necked region in a fractured sample
14
Permanent Deformation
• Permanent deformation for metals is
accomplished by means of a process called
slip, which involves the motion of
dislocations.
• Most structures are designed to ensure that
only elastic deformation results when stress
is applied.
• A structure that has plastically deformed, or
experienced a permanent change in shape,
may not be capable of functioning as
intended.
15
tensile stress, 
engineering strain, 
y
p = 0.002
Yield Strength, y
Stress-Strain Diagram
Strain ( ) (DL/Lo)
4
1
2
3
5
Elastic
Region
Plastic
Region
Strain
Hardening Fracture
ultimate
tensile
strength
Elastic region
slope =Young’s (elastic) modulus
yield strength
Plastic region
ultimate tensile strength
strain hardening
fracture
necking
yield
strength
UTS

y

ε
E
σ 
ε
σ
E 

1
2
y
ε
ε
σ
E


Stress-Strain Diagram (cont)
• Elastic Region (Point 1 –2)
- The material will return to its original shape
after the material is unloaded( like a rubber band).
- The stress is linearly proportional to the strain in
this region.
ε
E
σ 
: Stress(psi)
E : Elastic modulus (Young’s Modulus) (psi)
: Strain (in/in)
σ
ε
- Point 2 : Yield Strength : a point where permanent
deformation occurs. ( If it is passed, the material will
no longer return to its original length.)
ε
σ
E 
or
• Strain Hardening
- If the material is loaded again from Point 4, the
curve will follow back to Point 3 with the same
Elastic Modulus (slope).
- The material now has a higher yield strength of
Point 4.
- Raising the yield strength by permanently straining
the material is called Strain Hardening.
Stress-Strain Diagram (cont)
• Tensile Strength (Point 3)
- The largest value of stress on the diagram is called
Tensile Strength(TS) or Ultimate Tensile Strength
(UTS)
- It is the maximum stress which the material can
support without breaking.
• Fracture (Point 5)
- If the material is stretched beyond Point 3, the stress
decreases as necking and non-uniform deformation
occur.
- Fracture will finally occur at Point 5.
Stress-Strain Diagram (cont)
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
The stress-strain curve for an aluminum alloy.
21
• Stress-strain
behavior
found for
some steels
with yield
point
phenomenon.
22
T
E
N
S
I
L
E
P
R
O
P
E
R
T
I
E
S
23
Room T values
a = annealed
hr = hot rolled
ag = aged
cd = cold drawn
cw = cold worked
qt = quenched & tempered
Yield Strength: Comparison
24
• After yielding, the stress necessary to
continue plastic deformation in metals
increases to a maximum point (M) and
then decreases to the eventual fracture
point (F).
• All deformation up to the maximum
stress is uniform throughout the tensile
sample.
• However, at max stress, a small
constriction or neck begins to form.
• Subsequent deformation will be
confined to this neck area.
• Fracture strength corresponds to the
stress at fracture.
Region between M and F:
• Metals: occurs when noticeable necking starts.
• Ceramics: occurs when crack propagation starts.
• Polymers: occurs when polymer backbones are aligned and about to break.
Tensile Strength, TS
25
In an undeformed
thermoplastic polymer
tensile sample,
(a)the polymer chains
are randomly
oriented.
(b)When a stress is
applied, a neck
develops as chains
become aligned
locally. The neck
continues to grow
until the chains in the
entire gage length
have aligned.
(c) The strength of the
polymer is increased
26
Room T values
Based on data in Table B4, Callister 6e.
a = annealed
hr = hot rolled
ag = aged
cd = cold drawn
cw = cold worked
qt = quenched & tempered
AFRE, GFRE, & CFRE =
aramid, glass, & carbon
fiber-reinforced epoxy
composites, with 60 vol%
fibers.
Tensile Strength: Comparison
27
• Tensile stress, : • Shear stress, t:
 
Ft
Ao
original area
before loading
Stress has units: N/m2 or lb/in2
Engineering Stress
28
VMSE
http://www.wiley.com/college/callister/0470125373/vmse/strstr.htm
http://www.wiley.com/college/callister/0470125373/vmse/index.htm
Example 1
Tensile Testing of Aluminum Alloy
Convert the change in length data in the table to engineering
stress and strain and plot a stress-strain curve.
Example 1 SOLUTION
31
• Another ductility measure: 100
% x
A
A
A
AR
o
f
o 

• Ductility may be expressed as either percent elongation (%
plastic strain at fracture) or percent reduction in area.
• %AR > %EL is possible if internal voids form in neck.
100
% x
l
l
l
EL
o
o
f 

Ductility, %EL
Ductility is a measure of the
plastic deformation that has
been sustained at fracture:
A material that
suffers very
little plastic
deformation is
brittle.
32
Toughness
Lower toughness: ceramics
Higher toughness: metals
Toughness is
the ability to
absorb
energy up to
fracture (energy
per unit volume of
material).
A “tough”
material has
strength and
ductility.
Approximated
by the area
under the
stress-strain
curve.
• Energy to break a unit volume of material
• Approximate by the area under the stress-strain
curve.
21
smaller toughness-
unreinforced
polymers
Engineering tensile strain, 
Engineering
tensile
stress, 
smaller toughness (ceramics)
larg er toughness
(metals, PMCs)
Toughness
34
Linear Elastic Properties
Modulus of Elasticity, E:
(Young's modulus)
• Hooke's Law:  = E 
• Poisson's ratio:
metals: n ~ 0.33
ceramics: n ~0.25
polymers: n ~0.40
Units:
E: [GPa] or [psi]
n: dimensionless
n  x/y
35
Engineering Strain
Strain is dimensionless.
36
Axial (z) elongation (positive strain) and lateral (x and y)
contractions (negative strains) in response to an imposed
tensile stress.
True Stress and True Strain
 True stress The load divided by the actual cross-sectional
area of the specimen at that load.
 True strain The strain calculated using actual and not
original dimensions, given by εt ln(l/l0).
•The relation between the true stress-
true strain diagram and engineering
stress-engineering strain diagram.
•The curves are identical to the yield
point.
38
Stress-Strain Results for Steel Sample
Example 2:
Young’s Modulus - Aluminum Alloy
From the data in Example 1, calculate the modulus of
elasticity of the aluminum alloy.
• Use the modulus to determine the length after
deformation of a bar of initial length of 50 in.
• Assume that a level of stress of 30,000 psi is applied.
Example 2: Young’s Modulus - Aluminum Alloy - continued
41
0.2
8
0.6
1
Magnesium,
Aluminum
Platinum
Silver, Gold
Tantalum
Zinc, Ti
Steel, Ni
Molybdenum
Graphite
Sicrystal
Glass -soda
Concrete
Sinitride
Aloxide
PC
Wood( grain)
AFRE( fibers) *
CFRE *
GFRE*
Glass fibers only
Carbon fibers only
Aramid fibers only
Epoxy only
0.4
0.8
2
4
6
10
20
40
60
80
10 0
200
600
800
10 00
1200
400
Tin
Cu alloys
Tungsten
<100>
<111>
Sicarbide
Diamond
PTF E
HDP E
LDPE
PP
Polyester
PS
PET
CFRE( fibers) *
GFRE( fibers)*
GFRE(|| fibers)*
AFRE(|| fibers)*
CFRE(|| fibers)*
Metals
Alloys
Graphite
Ceramics
Semicond
Polymers
Composites
/fibers
E(GPa)
10 9 Pa Composite data based on
reinforced epoxy with 60 vol%
of aligned carbon (CFRE),
aramid (AFRE), or glass (GFRE)
fibers.
Young’s Moduli: Comparison
Example 3: True Stress and True Strain
Calculation
Compare engineering stress and strain with true stress and
strain for the aluminum alloy in Example 1 at (a) the
maximum load. The diameter at maximum load is 0.497
in. and at fracture is 0.398 in.
Example 3 SOLUTION
Strain Hardening
An increase in y due to
plastic deformation.
44
Strain Hardening (n, K or C values)
47
Mechanical Behavior - Ceramics
• The stress-strain behavior of brittle
ceramics is not usually obtained by a
tensile test.
1. It is difficult to prepare and test
specimens with specific geometry.
2. It is difficult to grip brittle materials without
fracturing them.
3. Ceramics fail after roughly 0.1% strain;
specimen have to be perfectly aligned.
The Bend Test for Brittle Materials
 Bend test - Application of a force to the center of a bar
that is supported on each end to determine the
resistance of the material to a static or slowly applied
load.
 Flexural strength or modulus of rupture -The stress
required to fracture a specimen in a bend test.
 Flexural modulus - The modulus of elasticity calculated
from the results of a bend test, giving the slope of the
stress-deflection curve.
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
The stress-strain behavior of brittle materials compared with
that of more ductile materials
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
(a) The bend test often used for measuring the strength
of brittle materials, and (b) the deflection δ obtained by
bending
51
• Schematic for a 3-
point bending test.
• Able to measure the
stress-strain behavior
and flexural strength
of brittle ceramics.
• Flexural strength
(modulus of rupture or
bend strength) is the
stress at fracture.
Flexural Strength
See Table 7.2 for more values.
23
• Room T behavior is usually elastic, with brittle failure.
• 3-Point Bend Testing often used.
--tensile tests are difficult for brittle materials.
• Determine elastic modulus according to:
E 
F

L3
4bd 3

F

L3
12 R4
rect.
cross
section
circ.
cross
section
MEASURING ELASTIC MODULUS
24
• 3-point bend test to measure room T strength.
F
L/2 L/2
cross section
R
b
d
rect. circ.
location of max tension
• Flexural strength:
rect.
fs  m
fail

1.5Fmax L
bd 2

Fmax L
R3
• Typ. values:
Material fs (MPa) E(GPa)
Si nitride
Si carbide
Al oxide
glass (soda)
700-1000
550-860
275-550
69
300
430
390
69
Data from Table 12.5, Callister 6e.
MEASURING STRENGTH
54
--brittle response (aligned chain, cross linked & networked case)
--plastic response (semi-crystalline case)
Stress-Strain Behavior: Elastomers
3 different responses:
A – brittle failure
B – plastic failure
C - highly elastic (elastomer)
Hardness of Materials
 Hardness test - Measures the resistance of a material to
penetration by a sharp object.
 Macrohardness - Overall bulk hardness of materials
measured using loads >2 N.
 Microhardness Hardness of materials typically measured
using loads less than 2 N using such test as Knoop
(HK).
 Nano-hardness - Hardness of materials measured at 1–
10 nm length scale using extremely small (~100 µN)
forces.
56
Hardness
• Hardness is a measure of a material’s resistance
to localized plastic deformation (a small dent or
scratch).
• Quantitative hardness techniques have been
developed where a small indenter is forced into
the surface of a material.
• The depth or size of the indentation is measured,
and corresponds to a hardness number.
• The softer the material, the larger and deeper the
indentation (and lower hardness number).
57
• Resistance to permanently indenting the surface.
• Large hardness means:
--resistance to plastic deformation or cracking in
compression.
--better wear properties.
Adapted from Fig. 6.18, Callister 6e. (Fig. 6.18 is adapted from G.F. Kinney, Engineering Properties and Applications of Plastics, p. 202, John Wiley and Sons, 1957.)
Hardness
58
Hardness Testers
59
60
Conversion of
Hardness
Scales
Also see: ASTM E140 - 07
Volume 03.01
Standard Hardness Conversion
Tables for Metals Relationship
Among Brinell Hardness, Vickers
Hardness, Rockwell Hardness,
Superficial Hardness, Knoop
Hardness, and Scleroscope
Hardness
61
Correlation
between
Hardness and
Tensile
Strength
• Both hardness and tensile
strength are indicators of
a metal’s resistance to
plastic deformation.
• For cast iron, steel and
brass, the two are roughly
proportional.
• Tensile strength (psi) =
500*BHR
63
• Stress and strain: These are size-independent
measures of load and displacement, respectively.
• Elastic behavior: This reversible behavior often
shows a linear relation between stress and strain.
To minimize deformation, select a material with a
large elastic modulus (E or G).
• Plastic behavior: This permanent deformation
behavior occurs when the tensile (or compressive)
uniaxial stress reaches y.
• Toughness: The energy needed to break a unit
volume of material.
• Ductility: The plastic strain at failure.
Summary

More Related Content

Similar to Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The Bend Test for Brittle Materials Hardness of Materials

Mechanical properties of materials (lecture+2).pdf
Mechanical properties of materials (lecture+2).pdfMechanical properties of materials (lecture+2).pdf
Mechanical properties of materials (lecture+2).pdfHeshamBakr3
 
1.3_Strength properties.pptx
1.3_Strength properties.pptx1.3_Strength properties.pptx
1.3_Strength properties.pptxMalithMadushan1
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Dr. Gaurav Kumar Gugliani
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Dr.Gaurav Kumar Gugliani
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Dr.Gaurav Kumar Gugliani
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile StrengthVICTOR ROY
 
Tensile Strengthy
Tensile StrengthyTensile Strengthy
Tensile StrengthyVICTOR ROY
 
Mechanic of materials 1 lecture 1
Mechanic of materials 1 lecture 1Mechanic of materials 1 lecture 1
Mechanic of materials 1 lecture 1JunaidMasood15
 
Strength of materials_I
Strength of materials_IStrength of materials_I
Strength of materials_IPralhad Kore
 
Strength of Materials _Simple Strees and Stains _Unit-1.pptx
Strength of Materials _Simple Strees and Stains _Unit-1.pptxStrength of Materials _Simple Strees and Stains _Unit-1.pptx
Strength of Materials _Simple Strees and Stains _Unit-1.pptxSivarajuR
 
Simple stresses and Stain
Simple stresses and StainSimple stresses and Stain
Simple stresses and StainHamood Saif
 
Chapter 8 Splash Mechanical Properties Hard Materials
Chapter 8 Splash Mechanical Properties Hard MaterialsChapter 8 Splash Mechanical Properties Hard Materials
Chapter 8 Splash Mechanical Properties Hard MaterialsPem(ເປ່ມ) PHAKVISETH
 
lecture 1introduction 1.ppt
lecture 1introduction 1.pptlecture 1introduction 1.ppt
lecture 1introduction 1.pptssuserb4074f
 

Similar to Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The Bend Test for Brittle Materials Hardness of Materials (20)

Mechanical properties of materials (lecture+2).pdf
Mechanical properties of materials (lecture+2).pdfMechanical properties of materials (lecture+2).pdf
Mechanical properties of materials (lecture+2).pdf
 
1.3_Strength properties.pptx
1.3_Strength properties.pptx1.3_Strength properties.pptx
1.3_Strength properties.pptx
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
 
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach Demonstration of Mechanical Behaviour of Material Using a Practical Approach
Demonstration of Mechanical Behaviour of Material Using a Practical Approach
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile Strength
 
Tensile Strengthy
Tensile StrengthyTensile Strengthy
Tensile Strengthy
 
Mechanic of materials 1 lecture 1
Mechanic of materials 1 lecture 1Mechanic of materials 1 lecture 1
Mechanic of materials 1 lecture 1
 
Strength of materials_I
Strength of materials_IStrength of materials_I
Strength of materials_I
 
Ch03
Ch03Ch03
Ch03
 
MEE1005 Materials Engineering and Technology s2- l9 -12
MEE1005 Materials Engineering and Technology s2- l9 -12MEE1005 Materials Engineering and Technology s2- l9 -12
MEE1005 Materials Engineering and Technology s2- l9 -12
 
Strength of Materials _Simple Strees and Stains _Unit-1.pptx
Strength of Materials _Simple Strees and Stains _Unit-1.pptxStrength of Materials _Simple Strees and Stains _Unit-1.pptx
Strength of Materials _Simple Strees and Stains _Unit-1.pptx
 
stress strain sm
stress strain smstress strain sm
stress strain sm
 
Manufacturing Processes - mechanical.ppt
Manufacturing Processes - mechanical.pptManufacturing Processes - mechanical.ppt
Manufacturing Processes - mechanical.ppt
 
Stress strain curve
Stress strain curveStress strain curve
Stress strain curve
 
Simple stresses and Stain
Simple stresses and StainSimple stresses and Stain
Simple stresses and Stain
 
Chapter 8 Splash Mechanical Properties Hard Materials
Chapter 8 Splash Mechanical Properties Hard MaterialsChapter 8 Splash Mechanical Properties Hard Materials
Chapter 8 Splash Mechanical Properties Hard Materials
 
FRACTURE PPT.pptx
FRACTURE PPT.pptxFRACTURE PPT.pptx
FRACTURE PPT.pptx
 
lecture 1introduction 1.ppt
lecture 1introduction 1.pptlecture 1introduction 1.ppt
lecture 1introduction 1.ppt
 
Structures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of MaterialsStructures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of Materials
 

Recently uploaded

21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological universityMohd Saifudeen
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisDr.Costas Sachpazis
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1T.D. Shashikala
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New HorizonMorshed Ahmed Rahath
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfJNTUA
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashidFaiyazSheikh
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksIJECEIAES
 
Intro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney UniIntro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney UniR. Sosa
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdfKamal Acharya
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfssuser5c9d4b1
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...drjose256
 

Recently uploaded (20)

21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
 
Intro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney UniIntro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney Uni
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 

Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The Bend Test for Brittle Materials Hardness of Materials

  • 2. Chapter Outline  Terminology for Mechanical Properties  The Tensile Test: Stress-Strain Diagram  Properties Obtained from a Tensile Test  True Stress and True Strain  The Bend Test for Brittle Materials  Hardness of Materials
  • 3. 3 Questions to Think About • Stress and strain: What are they and why are they used instead of load and deformation? • Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? • Plastic behavior: At what point do dislocations cause permanent deformation? What materials are most resistant to permanent deformation? • Toughness and ductility: What are they and how do we measure them? • Ceramic Materials: What special provisions/tests are made for ceramic materials?
  • 6. 6 Important Mechanical Properties from a Tensile Test • Young's Modulus: This is the slope of the linear portion of the stress-strain curve, it is usually specific to each material; a constant, known value. • Yield Strength: This is the value of stress at the yield point, calculated by plotting young's modulus at a specified percent of offset (usually offset = 0.2%). • Ultimate Tensile Strength: This is the highest value of stress on the stress-strain curve. • Percent Elongation: This is the change in gauge length divided by the original gauge length.
  • 7. Terminology  Load - The force applied to a material during testing.  Strain gage or Extensometer - A device used for measuring change in length (strain).  Engineering stress - The applied load, or force, divided by the original cross-sectional area of the material.  Engineering strain - The amount that a material deforms per unit length in a tensile test.
  • 8. 8 F  bonds stretch return to initial 1. Initial 2. Small load 3. Unload Elastic means reversible. Elastic Deformation
  • 9. 9 1. Initial 2. Small load 3. Unload Plastic means permanent. F  linear elastic linear elastic plastic Plastic Deformation (Metals)
  • 10. 10 Typical stress-strain behavior for a metal showing elastic and plastic deformations, the proportional limit P and the yield strength σy, as determined using the 0.002 strain offset method (where there is noticeable plastic deformation). P is the gradual elastic to plastic transition.
  • 11. 11 Plastic Deformation (permanent) • From an atomic perspective, plastic deformation corresponds to the breaking of bonds with original atom neighbors and then reforming bonds with new neighbors. • After removal of the stress, the large number of atoms that have relocated, do not return to original position. • Yield strength is a measure of resistance to plastic deformation.
  • 12. 12
  • 13. (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. • Localized deformation of a ductile material during a tensile test produces a necked region. • The image shows necked region in a fractured sample
  • 14. 14 Permanent Deformation • Permanent deformation for metals is accomplished by means of a process called slip, which involves the motion of dislocations. • Most structures are designed to ensure that only elastic deformation results when stress is applied. • A structure that has plastically deformed, or experienced a permanent change in shape, may not be capable of functioning as intended.
  • 15. 15 tensile stress,  engineering strain,  y p = 0.002 Yield Strength, y
  • 16. Stress-Strain Diagram Strain ( ) (DL/Lo) 4 1 2 3 5 Elastic Region Plastic Region Strain Hardening Fracture ultimate tensile strength Elastic region slope =Young’s (elastic) modulus yield strength Plastic region ultimate tensile strength strain hardening fracture necking yield strength UTS  y  ε E σ  ε σ E   1 2 y ε ε σ E  
  • 17. Stress-Strain Diagram (cont) • Elastic Region (Point 1 –2) - The material will return to its original shape after the material is unloaded( like a rubber band). - The stress is linearly proportional to the strain in this region. ε E σ  : Stress(psi) E : Elastic modulus (Young’s Modulus) (psi) : Strain (in/in) σ ε - Point 2 : Yield Strength : a point where permanent deformation occurs. ( If it is passed, the material will no longer return to its original length.) ε σ E  or
  • 18. • Strain Hardening - If the material is loaded again from Point 4, the curve will follow back to Point 3 with the same Elastic Modulus (slope). - The material now has a higher yield strength of Point 4. - Raising the yield strength by permanently straining the material is called Strain Hardening. Stress-Strain Diagram (cont)
  • 19. • Tensile Strength (Point 3) - The largest value of stress on the diagram is called Tensile Strength(TS) or Ultimate Tensile Strength (UTS) - It is the maximum stress which the material can support without breaking. • Fracture (Point 5) - If the material is stretched beyond Point 3, the stress decreases as necking and non-uniform deformation occur. - Fracture will finally occur at Point 5. Stress-Strain Diagram (cont)
  • 20. (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. The stress-strain curve for an aluminum alloy.
  • 21. 21 • Stress-strain behavior found for some steels with yield point phenomenon.
  • 23. 23 Room T values a = annealed hr = hot rolled ag = aged cd = cold drawn cw = cold worked qt = quenched & tempered Yield Strength: Comparison
  • 24. 24 • After yielding, the stress necessary to continue plastic deformation in metals increases to a maximum point (M) and then decreases to the eventual fracture point (F). • All deformation up to the maximum stress is uniform throughout the tensile sample. • However, at max stress, a small constriction or neck begins to form. • Subsequent deformation will be confined to this neck area. • Fracture strength corresponds to the stress at fracture. Region between M and F: • Metals: occurs when noticeable necking starts. • Ceramics: occurs when crack propagation starts. • Polymers: occurs when polymer backbones are aligned and about to break. Tensile Strength, TS
  • 25. 25 In an undeformed thermoplastic polymer tensile sample, (a)the polymer chains are randomly oriented. (b)When a stress is applied, a neck develops as chains become aligned locally. The neck continues to grow until the chains in the entire gage length have aligned. (c) The strength of the polymer is increased
  • 26. 26 Room T values Based on data in Table B4, Callister 6e. a = annealed hr = hot rolled ag = aged cd = cold drawn cw = cold worked qt = quenched & tempered AFRE, GFRE, & CFRE = aramid, glass, & carbon fiber-reinforced epoxy composites, with 60 vol% fibers. Tensile Strength: Comparison
  • 27. 27 • Tensile stress, : • Shear stress, t:   Ft Ao original area before loading Stress has units: N/m2 or lb/in2 Engineering Stress
  • 29. Example 1 Tensile Testing of Aluminum Alloy Convert the change in length data in the table to engineering stress and strain and plot a stress-strain curve.
  • 31. 31 • Another ductility measure: 100 % x A A A AR o f o   • Ductility may be expressed as either percent elongation (% plastic strain at fracture) or percent reduction in area. • %AR > %EL is possible if internal voids form in neck. 100 % x l l l EL o o f   Ductility, %EL Ductility is a measure of the plastic deformation that has been sustained at fracture: A material that suffers very little plastic deformation is brittle.
  • 32. 32 Toughness Lower toughness: ceramics Higher toughness: metals Toughness is the ability to absorb energy up to fracture (energy per unit volume of material). A “tough” material has strength and ductility. Approximated by the area under the stress-strain curve.
  • 33. • Energy to break a unit volume of material • Approximate by the area under the stress-strain curve. 21 smaller toughness- unreinforced polymers Engineering tensile strain,  Engineering tensile stress,  smaller toughness (ceramics) larg er toughness (metals, PMCs) Toughness
  • 34. 34 Linear Elastic Properties Modulus of Elasticity, E: (Young's modulus) • Hooke's Law:  = E  • Poisson's ratio: metals: n ~ 0.33 ceramics: n ~0.25 polymers: n ~0.40 Units: E: [GPa] or [psi] n: dimensionless n  x/y
  • 36. 36 Axial (z) elongation (positive strain) and lateral (x and y) contractions (negative strains) in response to an imposed tensile stress.
  • 37. True Stress and True Strain  True stress The load divided by the actual cross-sectional area of the specimen at that load.  True strain The strain calculated using actual and not original dimensions, given by εt ln(l/l0). •The relation between the true stress- true strain diagram and engineering stress-engineering strain diagram. •The curves are identical to the yield point.
  • 39. Example 2: Young’s Modulus - Aluminum Alloy From the data in Example 1, calculate the modulus of elasticity of the aluminum alloy.
  • 40. • Use the modulus to determine the length after deformation of a bar of initial length of 50 in. • Assume that a level of stress of 30,000 psi is applied. Example 2: Young’s Modulus - Aluminum Alloy - continued
  • 41. 41 0.2 8 0.6 1 Magnesium, Aluminum Platinum Silver, Gold Tantalum Zinc, Ti Steel, Ni Molybdenum Graphite Sicrystal Glass -soda Concrete Sinitride Aloxide PC Wood( grain) AFRE( fibers) * CFRE * GFRE* Glass fibers only Carbon fibers only Aramid fibers only Epoxy only 0.4 0.8 2 4 6 10 20 40 60 80 10 0 200 600 800 10 00 1200 400 Tin Cu alloys Tungsten <100> <111> Sicarbide Diamond PTF E HDP E LDPE PP Polyester PS PET CFRE( fibers) * GFRE( fibers)* GFRE(|| fibers)* AFRE(|| fibers)* CFRE(|| fibers)* Metals Alloys Graphite Ceramics Semicond Polymers Composites /fibers E(GPa) 10 9 Pa Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers. Young’s Moduli: Comparison
  • 42. Example 3: True Stress and True Strain Calculation Compare engineering stress and strain with true stress and strain for the aluminum alloy in Example 1 at (a) the maximum load. The diameter at maximum load is 0.497 in. and at fracture is 0.398 in. Example 3 SOLUTION
  • 43. Strain Hardening An increase in y due to plastic deformation.
  • 44. 44 Strain Hardening (n, K or C values)
  • 45.
  • 46.
  • 47. 47 Mechanical Behavior - Ceramics • The stress-strain behavior of brittle ceramics is not usually obtained by a tensile test. 1. It is difficult to prepare and test specimens with specific geometry. 2. It is difficult to grip brittle materials without fracturing them. 3. Ceramics fail after roughly 0.1% strain; specimen have to be perfectly aligned.
  • 48. The Bend Test for Brittle Materials  Bend test - Application of a force to the center of a bar that is supported on each end to determine the resistance of the material to a static or slowly applied load.  Flexural strength or modulus of rupture -The stress required to fracture a specimen in a bend test.  Flexural modulus - The modulus of elasticity calculated from the results of a bend test, giving the slope of the stress-deflection curve.
  • 49. (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. The stress-strain behavior of brittle materials compared with that of more ductile materials
  • 50. (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license. (a) The bend test often used for measuring the strength of brittle materials, and (b) the deflection δ obtained by bending
  • 51. 51 • Schematic for a 3- point bending test. • Able to measure the stress-strain behavior and flexural strength of brittle ceramics. • Flexural strength (modulus of rupture or bend strength) is the stress at fracture. Flexural Strength See Table 7.2 for more values.
  • 52. 23 • Room T behavior is usually elastic, with brittle failure. • 3-Point Bend Testing often used. --tensile tests are difficult for brittle materials. • Determine elastic modulus according to: E  F  L3 4bd 3  F  L3 12 R4 rect. cross section circ. cross section MEASURING ELASTIC MODULUS
  • 53. 24 • 3-point bend test to measure room T strength. F L/2 L/2 cross section R b d rect. circ. location of max tension • Flexural strength: rect. fs  m fail  1.5Fmax L bd 2  Fmax L R3 • Typ. values: Material fs (MPa) E(GPa) Si nitride Si carbide Al oxide glass (soda) 700-1000 550-860 275-550 69 300 430 390 69 Data from Table 12.5, Callister 6e. MEASURING STRENGTH
  • 54. 54 --brittle response (aligned chain, cross linked & networked case) --plastic response (semi-crystalline case) Stress-Strain Behavior: Elastomers 3 different responses: A – brittle failure B – plastic failure C - highly elastic (elastomer)
  • 55. Hardness of Materials  Hardness test - Measures the resistance of a material to penetration by a sharp object.  Macrohardness - Overall bulk hardness of materials measured using loads >2 N.  Microhardness Hardness of materials typically measured using loads less than 2 N using such test as Knoop (HK).  Nano-hardness - Hardness of materials measured at 1– 10 nm length scale using extremely small (~100 µN) forces.
  • 56. 56 Hardness • Hardness is a measure of a material’s resistance to localized plastic deformation (a small dent or scratch). • Quantitative hardness techniques have been developed where a small indenter is forced into the surface of a material. • The depth or size of the indentation is measured, and corresponds to a hardness number. • The softer the material, the larger and deeper the indentation (and lower hardness number).
  • 57. 57 • Resistance to permanently indenting the surface. • Large hardness means: --resistance to plastic deformation or cracking in compression. --better wear properties. Adapted from Fig. 6.18, Callister 6e. (Fig. 6.18 is adapted from G.F. Kinney, Engineering Properties and Applications of Plastics, p. 202, John Wiley and Sons, 1957.) Hardness
  • 59. 59
  • 60. 60 Conversion of Hardness Scales Also see: ASTM E140 - 07 Volume 03.01 Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness
  • 61. 61 Correlation between Hardness and Tensile Strength • Both hardness and tensile strength are indicators of a metal’s resistance to plastic deformation. • For cast iron, steel and brass, the two are roughly proportional. • Tensile strength (psi) = 500*BHR
  • 62.
  • 63. 63 • Stress and strain: These are size-independent measures of load and displacement, respectively. • Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (E or G). • Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches y. • Toughness: The energy needed to break a unit volume of material. • Ductility: The plastic strain at failure. Summary