SlideShare a Scribd company logo
blog.tanelpoder.com	
   1	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Exadata	
  Performance:	
  Latest	
  Improvements	
  	
  
and	
  Less	
  Known	
  Features	
  
Tanel	
  Poder	
  
blog.tanelpoder.com	
   2	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Intro:	
  About	
  me	
  
•  Tanel	
  Põder	
  
•  Consultant,	
  Trainer,	
  Speaker,	
  Computer	
  Performance	
  Geek	
  
•  17+	
  years…	
  
•  Oracle	
  Database	
  Performance	
  
•  Exadata	
  Performance	
  
•  Hadoop	
  &	
  Linux	
  Performance	
  
•  Director	
  of	
  R&D	
  at	
  	
  
Accenture	
  Enkitec	
  Group	
  
•  We	
  rock!	
  J	
  
Expert	
  Oracle	
  Exadata	
  
book	
  
(with	
  Kerry	
  Osborne	
  and	
  
Randy	
  Johnson	
  of	
  Enkitec)	
  
blog.tanelpoder.com	
   3	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Prerequisites	
  
•  This	
  is	
  a	
  random	
  list	
  of	
  recent	
  Exadata	
  improvements	
  and	
  less	
  
known	
  features	
  
•  You	
  already	
  should	
  know	
  Exadata	
  fundamentals	
  (what	
  is	
  a	
  smart	
  
scan,	
  flash	
  cache,	
  storage	
  index	
  etc)	
  
blog.tanelpoder.com	
   4	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Agenda	
  
1.  Oracle	
  12c	
  SQL	
  Monitoring	
  Improvements	
  for	
  Exadata	
  
2.  Storage	
  Index	
  Improvements	
  
•  IO	
  pruning	
  with	
  Bloom	
  filters	
  
•  Min/Max	
  IO	
  pruning	
  
3.  Recent	
  Flash	
  Cache	
  Improvements	
  
•  Columnar	
  Flash	
  Caching	
  
4.  Metrics	
  Improvements	
  
•  Storage	
  Cell	
  Metrics	
  in	
  AWR	
  
5.  Q&A	
  
6.  Download	
  all	
  my	
  scripts,	
  tools	
  from:	
  
•  blog.tanelpoder.com/files/	
  
blog.tanelpoder.com	
   5	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Latest	
  Cellsrv	
  Documenta^on?	
  
•  Stored	
  in	
  storage	
  cell	
  filesystem:	
  
•  /opt/oracle/cell/doc/doc/	
  
•  Also	
  available	
  from	
  MOS	
  as	
  a	
  patch:	
  
blog.tanelpoder.com	
   6	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
SQL	
  Monitoring	
  Improvements	
  
blog.tanelpoder.com	
   7	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Exadata	
  Metrics	
  in	
  SQL	
  Monitoring	
  reports	
  (11g)	
  
blog.tanelpoder.com	
   8	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
SQL	
  Monitoring	
  Improvements	
  in	
  Oracle	
  12c	
  
•  Execu^on	
  plan	
  line	
  level	
  addi^onal	
  metrics	
  in	
  the	
  Other	
  column!!!	
  
blog.tanelpoder.com	
   9	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
SQL	
  Monitoring	
  Improvements	
  in	
  Oracle	
  12c	
  
HASH	
  JOIN	
  	
  
row	
  source	
  
JOIN	
  FILTER	
  
CREATE	
  
row	
  source	
  
Only	
  one	
  row	
  was	
  
used	
  for	
  building	
  
the	
  filter,	
  resul^ng	
  
in	
  one	
  bit	
  set	
  
blog.tanelpoder.com	
   10	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
SQL	
  Monitoring	
  Improvements	
  in	
  Oracle	
  12c	
  
TABLE	
  ACCESS	
  
FULL	
  on	
  orders	
  
TABLE	
  ACCESS	
  FULL	
  
on	
  customers	
  Only	
  115kB	
  was	
  
returned	
  out	
  of	
  
760MB	
  of	
  smart	
  IO	
  
issued.	
  All	
  IO	
  from	
  
Flash	
  Cache	
  
Storage	
  Indexes	
  
helped	
  to	
  skip	
  
424	
  MB	
  of	
  IOs	
  
blog.tanelpoder.com	
   11	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
v$sql_monitor_statname	
  in	
  Oracle	
  12c	
  
SQL> @sqlmon_sn
NAME DESCRIPTION
---------------------------------------- -------------------------------------------------------------------------
Build Size Size of the build input in bytes
Build Row Count Number of rows for the build
Fan-out Number of partitions used to split both inputs
Slot Size Size of an in-memory hash-join slot
Total Build Partitions Total number of build partitions
Total Cached Partitions Total number of build partitions left in-memory before probing
Multi-pass Partition Pairs Total number of partition pairs processed multi-pass
Total Spilled Probe Rows Total number of rows from the probe spilled to disk (excluding buffering)
Bitmap Size Size of the bitmap in bytes
...
Folded Bitmap Size Folded size of the bitmap in bytes
Bits Set Number of bits set in the bitmap
Total Creator Rows Total number of rows from the creator side
Total user Rows Total number of rows from the user side
Total Filtered Rows Total number of rows filtered by the bloom filter
Times hash func called Number of times hash func is called
Slow metadata bytes Size of slow metadata in bytes
Eligible bytes Total bytes eligible for offload
Filtered bytes Total bytes returned after offload
SI saved bytes Total bytes saved by storage index
Flash cache bytes Total bytes fetched from flash cache
Partial flash cache and disk bytes Total bytes where IO was partially fetched from flash cache and disk
Cell passthru IO bytes Total cell passthru IO bytes
Block IO bytes Total block IO bytes
Slow metadata bytes Size of slow metadata in bytes
This	
  is	
  just	
  a	
  glance,	
  the	
  
script	
  produces	
  more	
  
output	
  of	
  available	
  plan	
  
line	
  level	
  metrics	
  
blog.tanelpoder.com	
   12	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Flash	
  Cache	
  Improvements	
  
blog.tanelpoder.com	
   13	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Oracle	
  11.2.0.4	
  Cell	
  Flash	
  Cache	
  Write	
  Hit	
  Metrics	
  
SQL> @ses2 "select sid from v$session where program like '%DBW0%'" flash
SID NAME VALUE
---------- ---------------------------------------------------------------- ----------
296 cell writes to flash cache 50522
296 cell overwrites in flash cache 43998
296 cell flash cache read hits 36
SQL> @ses2 "select sid from v$session where program like '%DBW0%'" optimized
SID NAME VALUE
---------- ---------------------------------------------------------------- ----------
296 physical read requests optimized 36
296 physical read total bytes optimized 491520
296 physical write requests optimized 25565
296 physical write total bytes optimized 279920640
Previously	
  the	
  flash	
  write	
  hits	
  were	
  
also	
  accumulated	
  under	
  the	
  cell	
  flash	
  
read	
  hits	
  metric!	
  
The	
  cell	
  write	
  hits	
  (of	
  IO	
  requests)	
  
metrics	
  can	
  be	
  2-­‐3x	
  higher	
  than	
  DB	
  write	
  
requests	
  due	
  to	
  ASM	
  mirroring	
  (each	
  cell	
  
reports	
  its	
  own	
  hits	
  back)	
  
hop://blog.tanelpoder.com/2013/12/04/cell-­‐flash-­‐cache-­‐read-­‐hits-­‐vs-­‐cell-­‐writes-­‐to-­‐flash-­‐cache-­‐sta^s^cs-­‐
on-­‐exadata/	
  
	
  
blog.tanelpoder.com	
   14	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Comments	
  on	
  Flash	
  Cache	
  (pre-­‐11.2.3.3.0	
  cellsrv)	
  
•  ALTER	
  TABLE	
  t	
  STORAGE	
  (CELL_FLASH_CACHE	
  KEEP);	
  
•  DEFAULT	
  
•  KEEP	
  
•  NONE	
  
•  Smart	
  Scans	
  bypass	
  the	
  Flash	
  Cache	
  regardless	
  of	
  I/O	
  size,	
  unless	
  
CELL_FLASH_CACHE	
  =	
  KEEP	
  
•  (even	
  if	
  the	
  table	
  data	
  is	
  already	
  cached	
  there)	
  
•  The	
  Flash	
  Cache	
  I/O	
  path	
  is	
  a	
  FIFO,	
  no	
  IORM	
  for	
  Flash	
  Cache	
  before	
  11.2.3.3.0	
  
•  With	
  DEFAULT,	
  buffered	
  I/O	
  opera^ons	
  will	
  cache	
  data	
  of	
  small	
  IOs	
  
•  Small	
  I/O	
  <	
  128kB	
  
•  This	
  includes	
  TEMP	
  IO	
  requests	
  smaller	
  than	
  128kB!	
  
•  Flash	
  cache	
  popula^on	
  is	
  done	
  asynchronously	
  by	
  separate	
  jobs	
  in	
  cellsrv	
  
The	
  KEEP	
  setng	
  works	
  at	
  the	
  table	
  level	
  (not	
  
par^^on	
  level).	
  Kept	
  segments	
  get	
  
automa^cally	
  unkept	
  auer	
  24	
  hrs	
  of	
  no	
  access:	
  
(	
  _cell_object_expira9on_hours	
  =	
  24	
  )	
  
blog.tanelpoder.com	
   15	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Automa^c	
  expiry	
  of	
  KEEP	
  objects	
  from	
  Flash	
  Cache	
  
CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName='DEMO' AND hoursToExpiration < 24 DETAIL;
cachedKeepSize: 23345496064
cachedSize: 23364829184
cachedWriteSize: 327680
dbID: 1538629110
dbUniqueName: DEMO
hitCount: 14116
hoursToExpiration: 14
missCount: 35955
objectNumber: 88330
tableSpaceNumber: 27
CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName='DEMO' AND objectNumber = 88330 DETAIL;
cachedKeepSize: 24099815424
cachedSize: 24119345152
cachedWriteSize: 327680
dbID: 1538629110
dbUniqueName: DEMO
hitCount: 20797
hoursToExpiration: 24
missCount: 36700
objectNumber: 88330
tableSpaceNumber: 27
The	
  KEEP	
  object	
  hasn't	
  been	
  
accessed	
  for	
  a	
  while	
  (~10	
  hours	
  
since	
  last	
  access)	
  
The	
  ^mer	
  back	
  to	
  24	
  hours	
  
auer	
  a	
  simple	
  COUNT(*)	
  query	
  
on	
  the	
  table	
  
blog.tanelpoder.com	
   16	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Flash	
  Cache	
  on	
  Cellsrv	
  11.2.3.3.0+	
  
•  Automa^c	
  –	
  even	
  the	
  CELL_FLASH_CACHE	
  DEFAULT	
  objects	
  can	
  be	
  
Smart	
  Scanned	
  from	
  Flash	
  Cache	
  
•  IORM	
  now	
  throoles	
  Flash	
  Cache	
  IOs	
  on	
  the	
  flash	
  disks	
  too	
  
•  Previously	
  only	
  IOs	
  on	
  hard	
  disks	
  and	
  disks	
  carved	
  out	
  of	
  flash	
  were	
  IORM-­‐ed	
  
•  Reduces	
  commit	
  latency	
  as	
  Smart	
  Flash	
  (Redo)	
  Logs	
  are	
  on	
  the	
  same	
  devices	
  	
  
blog.tanelpoder.com	
   17	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Cellsrv	
  12.1.2.1.0	
  (January	
  2015)	
  
•  Lots	
  of	
  improvements,	
  but	
  let's	
  look	
  into	
  columnar	
  flash	
  cache	
  
•  Independent	
  dual	
  format	
  caching	
  in	
  storage	
  cell	
  flash	
  
•  Smart	
  Scans	
  use	
  Columnar	
  Flash	
  Cache	
  (if	
  all	
  required	
  columns	
  are	
  cached)	
  
•  Block	
  IO	
  uses	
  tradi^onal	
  Flash	
  Cache	
  
•  Conceptual	
  overview	
  tradi^onal	
  vs.	
  columnar	
  Flash	
  Cache	
  
CU	
  1	
   col	
  1	
  
col	
  2	
  
col	
  3	
  
col	
  3	
  
col	
  4	
  
col	
  4	
  
col	
  5	
  
col	
  5	
  
col	
  6	
  
CU	
  2	
   col	
  1	
  
col	
  2	
  
col	
  3	
  
col	
  3	
  
col	
  4	
  
col	
  4	
  
col	
  5	
  
col	
  5	
  
col	
  6	
  
CU	
  x	
   col	
  1	
  
col	
  2	
  
col	
  3	
  
col	
  3	
  
col	
  4	
  
col	
  4	
  
col	
  5	
  
col	
  5	
  
col	
  6	
  
CU	
  1	
  ..	
  x	
   col	
  1	
   col	
  2	
  
col	
  3	
  
col	
  4	
  
col	
  5	
  
col	
  6	
  
col	
  2	
  
col	
  2	
  
col	
  3	
  
col	
  3	
  
col	
  4	
  
col	
  4	
  
col	
  5	
  
col	
  5	
  
col	
  5	
  
col	
  6	
  
compact	
  data	
  –	
  less	
  flash	
  IO	
  for	
  a	
  column	
  scan	
  
blog.tanelpoder.com	
   18	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Columnar	
  Flash	
  Cache	
  metrics	
  –	
  1	
  
SQL> @snapper all 5 1 1234
--------------------------------------------------------------------------------------------
TYPE, STATISTIC , DELTA, HDELTA/SEC
--------------------------------------------------------------------------------------------
STAT, physical read IO requests , 6416, 1.26k
STAT, physical read bytes , 6717366272, 1.32G
STAT, cell physical IO bytes eligible for predicate offload , 6717366272, 1.32G
STAT, cell physical IO interconnect bytes returned by smart scan, 445177024, 87.68M
STAT, cell physical IO bytes saved by columnar cache , 5128519680, 1.01G
STAT, cell blocks processed by cache layer , 250366, 49.31k
STAT, cell blocks processed by txn layer , 250366, 49.31k
STAT, cell blocks processed by data layer , 50327, 9.91k
STAT, cell flash cache read hits , 6416, 1.26k
WAIT, enq: KO - fast object checkpoint , 747, 147.12us
WAIT, cell smart table scan , 315077, 62.05ms
WAIT, SQL*Net message to client , 8, 1.58us
WAIT, SQL*Net message from client , 2668093, 525.48ms
WAIT, events in waitclass Other , 1136, 223.73us
Stats snap 1, end=2015-02-11 10:57:34, seconds=5.1
blog.tanelpoder.com	
   19	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Columnar	
  Flash	
  Cache	
  metrics	
  -­‐	
  2	
  
blog.tanelpoder.com	
   20	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Lis^ng	
  Columnar	
  Flash	
  Cache	
  usage	
  in	
  cell	
  
CellCLI> LIST METRICCURRENT FC_COL_BY_USED DETAIL;
name: FC_COL_BY_USED
alertState: normal
collectionTime: 2015-02-10T23:24:44-06:00
metricObjectName: FLASHCACHE
metricType: Instantaneous
metricValue: 2,059 MB
objectType: FLASHCACHE
CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName = 'DW' AND objectNumber = 101821 DETAIL;
cachedKeepSize: 0
cachedSize: 4418445312
cachedWriteSize: 18243584
columnarCacheSize: 2159017984
columnarKeepSize: 0
dbID: 1996233620
dbUniqueName: DW
hitCount: 48176
missCount: 5238
objectNumber: 101821
tableSpaceNumber: 8
"Number	
  of	
  megabytes	
  used	
  in	
  
Columnar	
  FlashCache"	
  
You	
  can	
  experiment	
  with	
  it	
  using	
  
_enable_columnar_cache	
  
session	
  parameter	
  
blog.tanelpoder.com	
   21	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Storage	
  Index	
  Improvements	
  
blog.tanelpoder.com	
   22	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Skipping	
  IOs	
  via	
  Bloom	
  Filters	
  +	
  Storage	
  Indexes	
  
•  hops://blog.tanelpoder.com/2014/05/17/combining-­‐bloom-­‐filter-­‐
offloading-­‐and-­‐storage-­‐indexes-­‐on-­‐exadata/	
  
	
  
SQL> SELECT
2 *
3 FROM
4 soe.customers c
5 , soe.orders o
6 WHERE
7 o.customer_id = c.customer_id
8 AND c.cust_email = 'florencio@ivtboge.com'
9 /
We	
  have	
  a	
  direct	
  filter	
  only	
  on	
  
the	
  CUSTOMERS	
  table,	
  but	
  a	
  
Bloom	
  filter	
  constructed	
  from	
  it	
  
may	
  allow	
  to	
  skip	
  IOs	
  on	
  the	
  
ORDERS	
  table	
  too!	
  
1.  Remember	
  the	
  join	
  column's	
  MIN/MAX	
  in	
  the	
  driving	
  row-­‐source	
  
2.  Push	
  the	
  MIN/MAX	
  of	
  the	
  join	
  column	
  to	
  storage	
  with	
  Bloom	
  filter	
  
3.  Compare	
  the	
  MIN/MAX	
  value	
  to	
  the	
  storage	
  index	
  to	
  skip	
  IOs	
  on	
  the	
  joined	
  
table	
  	
  
blog.tanelpoder.com	
   23	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Skipping	
  IOs	
  for	
  MIN/MAX	
  calcula^on	
  
•  If	
  both	
  projected	
  and	
  filtering	
  column	
  are	
  in	
  storage	
  indexes…	
  
•  …skip	
  storage	
  regions	
  where	
  it's	
  known	
  no	
  bigger	
  MAX	
  (or	
  min)	
  values	
  exist	
  
•  Works	
  if	
  you	
  don't	
  actually	
  need	
  to	
  access	
  the	
  values	
  (COUNT,	
  SUM,	
  AVG…)	
  
•  Controlled	
  by	
  _cell_storidx_minmax_enabled	
  parameter	
  
SELECT MAX(cust_postal_code)
FROM customers_nocache
WHERE cust_id > 1234;
blog.tanelpoder.com	
   24	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
What	
  else?	
  
•  MOS	
  Note	
  1947476.1	
  
•  Exadata	
  12.1.2.1.0	
  release	
  and	
  patch	
  (17885582)	
  	
  
•  Sparse	
  Grid	
  Disks	
  
•  Snapshot	
  Databases	
  for	
  Dev/Test	
  (Thin	
  Cloning	
  in	
  Exadata!)	
  
•  V$ASM_DISKGROUP_SPARSE,	
  V$ASM_DISK_SPARSE,	
  etc	
  
	
  
•  Limi^ng	
  Flash	
  Cache	
  space	
  usage	
  per	
  DB	
  
•  IORM	
  interdatabase	
  resource	
  plan	
  
•  12c	
  AWR	
  reports	
  contain	
  storage	
  cell	
  performance	
  data!	
  
•  V$CELL_DB,	
  DBA_HIST_CELL_DB	
  and	
  many	
  others	
  
blog.tanelpoder.com	
   25	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Further	
  Reading	
  –	
  Smart	
  Scans	
  	
  
•  My	
  Exadata	
  blog	
  entries:	
  
•  hop://blog.tanelpoder.com/category/exadata/	
  
•  Frits	
  Hoogland's	
  Exadata	
  ar^cles:	
  
•  hop://fritshoogland.wordpress.com/category/oracle/exadata/	
  
•  The	
  Expert	
  Oracle	
  Exadata	
  book	
  
•  We	
  are	
  working	
  on	
  a	
  2nd	
  edi^on	
  of	
  this	
  book	
  (Andy,Karl,Mar^n,Frits)	
  
blog.tanelpoder.com	
   26	
  	
  	
  
©	
  2015	
  Tanel	
  Poder	
  
Thank	
  You!	
  
Ques^ons?	
  
	
  
tanel@tanelpoder.com	
  
blog.tanelpoder.com	
  
@tanelpoder	
  
	
  
	
  
	
  
www.enkitec.com	
  
	
  

More Related Content

What's hot

Sun Oracle Exadata Technical Overview V1
Sun Oracle Exadata Technical Overview V1Sun Oracle Exadata Technical Overview V1
Sun Oracle Exadata Technical Overview V1
jenkin
 
SQL Monitoring in Oracle Database 12c
SQL Monitoring in Oracle Database 12cSQL Monitoring in Oracle Database 12c
SQL Monitoring in Oracle Database 12c
Tanel Poder
 
Modern Linux Performance Tools for Application Troubleshooting
Modern Linux Performance Tools for Application TroubleshootingModern Linux Performance Tools for Application Troubleshooting
Modern Linux Performance Tools for Application Troubleshooting
Tanel Poder
 
Advanced Oracle Troubleshooting
Advanced Oracle TroubleshootingAdvanced Oracle Troubleshooting
Advanced Oracle Troubleshooting
Hector Martinez
 
Drilling Deep Into Exadata Performance
Drilling Deep Into Exadata PerformanceDrilling Deep Into Exadata Performance
Drilling Deep Into Exadata Performance
Enkitec
 
Exadata 12c New Features RMOUG
Exadata 12c New Features RMOUGExadata 12c New Features RMOUG
Exadata 12c New Features RMOUG
Fuad Arshad
 
Christo kutrovsky oracle rac solving common scalability problems
Christo kutrovsky   oracle rac solving common scalability problemsChristo kutrovsky   oracle rac solving common scalability problems
Christo kutrovsky oracle rac solving common scalability problems
Christo Kutrovsky
 
Intro to Exadata
Intro to ExadataIntro to Exadata
Intro to Exadata
Moin Khalid
 
Aioug vizag oracle12c_new_features
Aioug vizag oracle12c_new_featuresAioug vizag oracle12c_new_features
Aioug vizag oracle12c_new_features
AiougVizagChapter
 
SQL in the Hybrid World
SQL in the Hybrid WorldSQL in the Hybrid World
SQL in the Hybrid World
Tanel Poder
 
Oracle Exadata X2-8: A Critical Review
Oracle Exadata X2-8: A Critical ReviewOracle Exadata X2-8: A Critical Review
Oracle Exadata X2-8: A Critical Review
Texas Memory Systems, and IBM Company
 
Parallel Query on Exadata
Parallel Query on ExadataParallel Query on Exadata
Parallel Query on Exadata
Enkitec
 
Moving Data Between Exadata and Hadoop
Moving Data Between Exadata and HadoopMoving Data Between Exadata and Hadoop
Moving Data Between Exadata and Hadoop
Enkitec
 
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Kristofferson A
 
Sun Oracle Exadata V2 For OLTP And DWH
Sun Oracle Exadata V2 For OLTP And DWHSun Oracle Exadata V2 For OLTP And DWH
Sun Oracle Exadata V2 For OLTP And DWH
Mark Rabne
 
OGG Architecture Performance
OGG Architecture PerformanceOGG Architecture Performance
OGG Architecture Performance
Enkitec
 
Python and Oracle : allies for best of data management
Python and Oracle : allies for best of data managementPython and Oracle : allies for best of data management
Python and Oracle : allies for best of data management
Laurent Leturgez
 
Oaktable World 2014 Kevin Closson: SLOB – For More Than I/O!
Oaktable World 2014 Kevin Closson:  SLOB – For More Than I/O!Oaktable World 2014 Kevin Closson:  SLOB – For More Than I/O!
Oaktable World 2014 Kevin Closson: SLOB – For More Than I/O!
Kyle Hailey
 
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
Alex Zaballa
 
Using VirtualBox - Learn Oracle Database 12c and EBS R12
Using VirtualBox - Learn Oracle Database 12c and EBS R12Using VirtualBox - Learn Oracle Database 12c and EBS R12
Using VirtualBox - Learn Oracle Database 12c and EBS R12
Biju Thomas
 

What's hot (20)

Sun Oracle Exadata Technical Overview V1
Sun Oracle Exadata Technical Overview V1Sun Oracle Exadata Technical Overview V1
Sun Oracle Exadata Technical Overview V1
 
SQL Monitoring in Oracle Database 12c
SQL Monitoring in Oracle Database 12cSQL Monitoring in Oracle Database 12c
SQL Monitoring in Oracle Database 12c
 
Modern Linux Performance Tools for Application Troubleshooting
Modern Linux Performance Tools for Application TroubleshootingModern Linux Performance Tools for Application Troubleshooting
Modern Linux Performance Tools for Application Troubleshooting
 
Advanced Oracle Troubleshooting
Advanced Oracle TroubleshootingAdvanced Oracle Troubleshooting
Advanced Oracle Troubleshooting
 
Drilling Deep Into Exadata Performance
Drilling Deep Into Exadata PerformanceDrilling Deep Into Exadata Performance
Drilling Deep Into Exadata Performance
 
Exadata 12c New Features RMOUG
Exadata 12c New Features RMOUGExadata 12c New Features RMOUG
Exadata 12c New Features RMOUG
 
Christo kutrovsky oracle rac solving common scalability problems
Christo kutrovsky   oracle rac solving common scalability problemsChristo kutrovsky   oracle rac solving common scalability problems
Christo kutrovsky oracle rac solving common scalability problems
 
Intro to Exadata
Intro to ExadataIntro to Exadata
Intro to Exadata
 
Aioug vizag oracle12c_new_features
Aioug vizag oracle12c_new_featuresAioug vizag oracle12c_new_features
Aioug vizag oracle12c_new_features
 
SQL in the Hybrid World
SQL in the Hybrid WorldSQL in the Hybrid World
SQL in the Hybrid World
 
Oracle Exadata X2-8: A Critical Review
Oracle Exadata X2-8: A Critical ReviewOracle Exadata X2-8: A Critical Review
Oracle Exadata X2-8: A Critical Review
 
Parallel Query on Exadata
Parallel Query on ExadataParallel Query on Exadata
Parallel Query on Exadata
 
Moving Data Between Exadata and Hadoop
Moving Data Between Exadata and HadoopMoving Data Between Exadata and Hadoop
Moving Data Between Exadata and Hadoop
 
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
 
Sun Oracle Exadata V2 For OLTP And DWH
Sun Oracle Exadata V2 For OLTP And DWHSun Oracle Exadata V2 For OLTP And DWH
Sun Oracle Exadata V2 For OLTP And DWH
 
OGG Architecture Performance
OGG Architecture PerformanceOGG Architecture Performance
OGG Architecture Performance
 
Python and Oracle : allies for best of data management
Python and Oracle : allies for best of data managementPython and Oracle : allies for best of data management
Python and Oracle : allies for best of data management
 
Oaktable World 2014 Kevin Closson: SLOB – For More Than I/O!
Oaktable World 2014 Kevin Closson:  SLOB – For More Than I/O!Oaktable World 2014 Kevin Closson:  SLOB – For More Than I/O!
Oaktable World 2014 Kevin Closson: SLOB – For More Than I/O!
 
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
Oracle Database 12c - The Best Oracle Database 12c Tuning Features for Develo...
 
Using VirtualBox - Learn Oracle Database 12c and EBS R12
Using VirtualBox - Learn Oracle Database 12c and EBS R12Using VirtualBox - Learn Oracle Database 12c and EBS R12
Using VirtualBox - Learn Oracle Database 12c and EBS R12
 

Viewers also liked

Connecting Hadoop and Oracle
Connecting Hadoop and OracleConnecting Hadoop and Oracle
Connecting Hadoop and Oracle
Tanel Poder
 
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
Tanel Poder
 
Exadata and the Oracle Optimizer: The Untold Story
Exadata and the Oracle Optimizer: The Untold StoryExadata and the Oracle Optimizer: The Untold Story
Exadata and the Oracle Optimizer: The Untold Story
Enkitec
 
Oracle LOB Internals and Performance Tuning
Oracle LOB Internals and Performance TuningOracle LOB Internals and Performance Tuning
Oracle LOB Internals and Performance Tuning
Tanel Poder
 
Oracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention TroubleshootingOracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention Troubleshooting
Tanel Poder
 
Oracle Database In-Memory Option in Action
Oracle Database In-Memory Option in ActionOracle Database In-Memory Option in Action
Oracle Database In-Memory Option in Action
Tanel Poder
 
Exadata MAA Best Practices
Exadata MAA Best PracticesExadata MAA Best Practices
Exadata MAA Best Practices
Rui Sousa
 
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdfDatabase & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
InSync2011
 
Best Practices for Oracle Exadata and the Oracle Optimizer
Best Practices for Oracle Exadata and the Oracle OptimizerBest Practices for Oracle Exadata and the Oracle Optimizer
Best Practices for Oracle Exadata and the Oracle Optimizer
Edgar Alejandro Villegas
 
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
 Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo... Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
Enkitec
 
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Mark Rittman
 
SQLcl overview - A new Command Line Interface for Oracle Database
SQLcl overview - A new Command Line Interface for Oracle DatabaseSQLcl overview - A new Command Line Interface for Oracle Database
SQLcl overview - A new Command Line Interface for Oracle Database
Jeff Smith
 
Accenture Enkitec Group: Oracle database and Engineered Systems
Accenture Enkitec Group: Oracle database and Engineered SystemsAccenture Enkitec Group: Oracle database and Engineered Systems
Accenture Enkitec Group: Oracle database and Engineered Systems
Accenture Operations
 
SQL to Hive Cheat Sheet
SQL to Hive Cheat SheetSQL to Hive Cheat Sheet
SQL to Hive Cheat Sheet
Hortonworks
 
The Impala Cookbook
The Impala CookbookThe Impala Cookbook
The Impala Cookbook
Cloudera, Inc.
 

Viewers also liked (16)

Connecting Hadoop and Oracle
Connecting Hadoop and OracleConnecting Hadoop and Oracle
Connecting Hadoop and Oracle
 
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
Tanel Poder - Troubleshooting Complex Oracle Performance Issues - Part 2
 
Exadata and the Oracle Optimizer: The Untold Story
Exadata and the Oracle Optimizer: The Untold StoryExadata and the Oracle Optimizer: The Untold Story
Exadata and the Oracle Optimizer: The Untold Story
 
Oracle LOB Internals and Performance Tuning
Oracle LOB Internals and Performance TuningOracle LOB Internals and Performance Tuning
Oracle LOB Internals and Performance Tuning
 
Oracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention TroubleshootingOracle Latch and Mutex Contention Troubleshooting
Oracle Latch and Mutex Contention Troubleshooting
 
Oracle Database In-Memory Option in Action
Oracle Database In-Memory Option in ActionOracle Database In-Memory Option in Action
Oracle Database In-Memory Option in Action
 
Exadata MAA Best Practices
Exadata MAA Best PracticesExadata MAA Best Practices
Exadata MAA Best Practices
 
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdfDatabase & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
Database & Technology 1 | Andrew Holdsworth | Orace Database Performance.pdf
 
Best Practices for Oracle Exadata and the Oracle Optimizer
Best Practices for Oracle Exadata and the Oracle OptimizerBest Practices for Oracle Exadata and the Oracle Optimizer
Best Practices for Oracle Exadata and the Oracle Optimizer
 
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
 Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo... Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
 
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
 
SQLcl overview - A new Command Line Interface for Oracle Database
SQLcl overview - A new Command Line Interface for Oracle DatabaseSQLcl overview - A new Command Line Interface for Oracle Database
SQLcl overview - A new Command Line Interface for Oracle Database
 
Contoh jurnal
Contoh jurnalContoh jurnal
Contoh jurnal
 
Accenture Enkitec Group: Oracle database and Engineered Systems
Accenture Enkitec Group: Oracle database and Engineered SystemsAccenture Enkitec Group: Oracle database and Engineered Systems
Accenture Enkitec Group: Oracle database and Engineered Systems
 
SQL to Hive Cheat Sheet
SQL to Hive Cheat SheetSQL to Hive Cheat Sheet
SQL to Hive Cheat Sheet
 
The Impala Cookbook
The Impala CookbookThe Impala Cookbook
The Impala Cookbook
 

Similar to Oracle Exadata Performance: Latest Improvements and Less Known Features

Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL ServerGeek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
IDERA Software
 
MySQL Performance Metrics that Matter
MySQL Performance Metrics that MatterMySQL Performance Metrics that Matter
MySQL Performance Metrics that Matter
Morgan Tocker
 
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
Insight Technology, Inc.
 
Caching and tuning fun for high scalability
Caching and tuning fun for high scalabilityCaching and tuning fun for high scalability
Caching and tuning fun for high scalability
Wim Godden
 
How should I monitor my idaa
How should I monitor my idaaHow should I monitor my idaa
How should I monitor my idaa
Cuneyt Goksu
 
DBCC - Dubi Lebel
DBCC - Dubi LebelDBCC - Dubi Lebel
DBCC - Dubi Lebel
sqlserver.co.il
 
Investigate SQL Server Memory Like Sherlock Holmes
Investigate SQL Server Memory Like Sherlock HolmesInvestigate SQL Server Memory Like Sherlock Holmes
Investigate SQL Server Memory Like Sherlock Holmes
Richard Douglas
 
Performance tuning intro
Performance tuning introPerformance tuning intro
Performance tuning intro
aioughydchapter
 
ORACLE 12C-New-Features
ORACLE 12C-New-FeaturesORACLE 12C-New-Features
ORACLE 12C-New-Features
Navneet Upneja
 
COUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_FeaturesCOUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_Features
Alfredo Abate
 
Oracle DB In-Memory technologie v kombinaci s procesorem M7
Oracle DB In-Memory technologie v kombinaci s procesorem M7Oracle DB In-Memory technologie v kombinaci s procesorem M7
Oracle DB In-Memory technologie v kombinaci s procesorem M7
MarketingArrowECS_CZ
 
Performance Tuning intro
Performance Tuning introPerformance Tuning intro
Performance Tuning intro
AiougVizagChapter
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
Databricks
 
SQL Server It Just Runs Faster
SQL Server It Just Runs FasterSQL Server It Just Runs Faster
SQL Server It Just Runs Faster
Bob Ward
 
KSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success StoryKSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success Story
Kristofferson A
 
In-memory ColumnStore Index
In-memory ColumnStore IndexIn-memory ColumnStore Index
In-memory ColumnStore Index
SolidQ
 
GLOC 2014 NEOOUG - Oracle Database 12c New Features
GLOC 2014 NEOOUG - Oracle Database 12c New FeaturesGLOC 2014 NEOOUG - Oracle Database 12c New Features
GLOC 2014 NEOOUG - Oracle Database 12c New Features
Biju Thomas
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
Carlos Sierra
 
Novedades SQL Server 2014
Novedades SQL Server 2014Novedades SQL Server 2014
Novedades SQL Server 2014
netmind
 
Flashback in OCI
Flashback in OCIFlashback in OCI
Flashback in OCI
Tércio Costa
 

Similar to Oracle Exadata Performance: Latest Improvements and Less Known Features (20)

Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL ServerGeek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
Geek Sync I Need for Speed: In-Memory Databases in Oracle and SQL Server
 
MySQL Performance Metrics that Matter
MySQL Performance Metrics that MatterMySQL Performance Metrics that Matter
MySQL Performance Metrics that Matter
 
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
[db tech showcase Tokyo 2018] #dbts2018 #B17 『オラクル パフォーマンス チューニング - 神話、伝説と解決策』
 
Caching and tuning fun for high scalability
Caching and tuning fun for high scalabilityCaching and tuning fun for high scalability
Caching and tuning fun for high scalability
 
How should I monitor my idaa
How should I monitor my idaaHow should I monitor my idaa
How should I monitor my idaa
 
DBCC - Dubi Lebel
DBCC - Dubi LebelDBCC - Dubi Lebel
DBCC - Dubi Lebel
 
Investigate SQL Server Memory Like Sherlock Holmes
Investigate SQL Server Memory Like Sherlock HolmesInvestigate SQL Server Memory Like Sherlock Holmes
Investigate SQL Server Memory Like Sherlock Holmes
 
Performance tuning intro
Performance tuning introPerformance tuning intro
Performance tuning intro
 
ORACLE 12C-New-Features
ORACLE 12C-New-FeaturesORACLE 12C-New-Features
ORACLE 12C-New-Features
 
COUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_FeaturesCOUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_Features
 
Oracle DB In-Memory technologie v kombinaci s procesorem M7
Oracle DB In-Memory technologie v kombinaci s procesorem M7Oracle DB In-Memory technologie v kombinaci s procesorem M7
Oracle DB In-Memory technologie v kombinaci s procesorem M7
 
Performance Tuning intro
Performance Tuning introPerformance Tuning intro
Performance Tuning intro
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
 
SQL Server It Just Runs Faster
SQL Server It Just Runs FasterSQL Server It Just Runs Faster
SQL Server It Just Runs Faster
 
KSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success StoryKSCOPE 2013: Exadata Consolidation Success Story
KSCOPE 2013: Exadata Consolidation Success Story
 
In-memory ColumnStore Index
In-memory ColumnStore IndexIn-memory ColumnStore Index
In-memory ColumnStore Index
 
GLOC 2014 NEOOUG - Oracle Database 12c New Features
GLOC 2014 NEOOUG - Oracle Database 12c New FeaturesGLOC 2014 NEOOUG - Oracle Database 12c New Features
GLOC 2014 NEOOUG - Oracle Database 12c New Features
 
Oracle Performance Tuning Fundamentals
Oracle Performance Tuning FundamentalsOracle Performance Tuning Fundamentals
Oracle Performance Tuning Fundamentals
 
Novedades SQL Server 2014
Novedades SQL Server 2014Novedades SQL Server 2014
Novedades SQL Server 2014
 
Flashback in OCI
Flashback in OCIFlashback in OCI
Flashback in OCI
 

Recently uploaded

Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Muhammad Ali
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
softsuave
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
shyamraj55
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
DianaGray10
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
Google Developer Group - Harare
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
alexjohnson7307
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
janagijoythi
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
Baishakhi Ray
 
Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
Safe Software
 
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
Priyanka Aash
 
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
Priyanka Aash
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
maigasapphire
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
DianaGray10
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
SubhamMandal40
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
Priyanka Aash
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
Bhajan Mehta
 

Recently uploaded (20)

Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
 
Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
 
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
(CISOPlatform Summit & SACON 2024) Regulation & Response In Banks.pdf
 
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
(CISOPlatform Summit & SACON 2024) Orientation by CISO Platform_ Using CISO P...
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
 

Oracle Exadata Performance: Latest Improvements and Less Known Features

  • 1. blog.tanelpoder.com   1       ©  2015  Tanel  Poder   Exadata  Performance:  Latest  Improvements     and  Less  Known  Features   Tanel  Poder  
  • 2. blog.tanelpoder.com   2       ©  2015  Tanel  Poder   Intro:  About  me   •  Tanel  Põder   •  Consultant,  Trainer,  Speaker,  Computer  Performance  Geek   •  17+  years…   •  Oracle  Database  Performance   •  Exadata  Performance   •  Hadoop  &  Linux  Performance   •  Director  of  R&D  at     Accenture  Enkitec  Group   •  We  rock!  J   Expert  Oracle  Exadata   book   (with  Kerry  Osborne  and   Randy  Johnson  of  Enkitec)  
  • 3. blog.tanelpoder.com   3       ©  2015  Tanel  Poder   Prerequisites   •  This  is  a  random  list  of  recent  Exadata  improvements  and  less   known  features   •  You  already  should  know  Exadata  fundamentals  (what  is  a  smart   scan,  flash  cache,  storage  index  etc)  
  • 4. blog.tanelpoder.com   4       ©  2015  Tanel  Poder   Agenda   1.  Oracle  12c  SQL  Monitoring  Improvements  for  Exadata   2.  Storage  Index  Improvements   •  IO  pruning  with  Bloom  filters   •  Min/Max  IO  pruning   3.  Recent  Flash  Cache  Improvements   •  Columnar  Flash  Caching   4.  Metrics  Improvements   •  Storage  Cell  Metrics  in  AWR   5.  Q&A   6.  Download  all  my  scripts,  tools  from:   •  blog.tanelpoder.com/files/  
  • 5. blog.tanelpoder.com   5       ©  2015  Tanel  Poder   Latest  Cellsrv  Documenta^on?   •  Stored  in  storage  cell  filesystem:   •  /opt/oracle/cell/doc/doc/   •  Also  available  from  MOS  as  a  patch:  
  • 6. blog.tanelpoder.com   6       ©  2015  Tanel  Poder   SQL  Monitoring  Improvements  
  • 7. blog.tanelpoder.com   7       ©  2015  Tanel  Poder   Exadata  Metrics  in  SQL  Monitoring  reports  (11g)  
  • 8. blog.tanelpoder.com   8       ©  2015  Tanel  Poder   SQL  Monitoring  Improvements  in  Oracle  12c   •  Execu^on  plan  line  level  addi^onal  metrics  in  the  Other  column!!!  
  • 9. blog.tanelpoder.com   9       ©  2015  Tanel  Poder   SQL  Monitoring  Improvements  in  Oracle  12c   HASH  JOIN     row  source   JOIN  FILTER   CREATE   row  source   Only  one  row  was   used  for  building   the  filter,  resul^ng   in  one  bit  set  
  • 10. blog.tanelpoder.com   10       ©  2015  Tanel  Poder   SQL  Monitoring  Improvements  in  Oracle  12c   TABLE  ACCESS   FULL  on  orders   TABLE  ACCESS  FULL   on  customers  Only  115kB  was   returned  out  of   760MB  of  smart  IO   issued.  All  IO  from   Flash  Cache   Storage  Indexes   helped  to  skip   424  MB  of  IOs  
  • 11. blog.tanelpoder.com   11       ©  2015  Tanel  Poder   v$sql_monitor_statname  in  Oracle  12c   SQL> @sqlmon_sn NAME DESCRIPTION ---------------------------------------- ------------------------------------------------------------------------- Build Size Size of the build input in bytes Build Row Count Number of rows for the build Fan-out Number of partitions used to split both inputs Slot Size Size of an in-memory hash-join slot Total Build Partitions Total number of build partitions Total Cached Partitions Total number of build partitions left in-memory before probing Multi-pass Partition Pairs Total number of partition pairs processed multi-pass Total Spilled Probe Rows Total number of rows from the probe spilled to disk (excluding buffering) Bitmap Size Size of the bitmap in bytes ... Folded Bitmap Size Folded size of the bitmap in bytes Bits Set Number of bits set in the bitmap Total Creator Rows Total number of rows from the creator side Total user Rows Total number of rows from the user side Total Filtered Rows Total number of rows filtered by the bloom filter Times hash func called Number of times hash func is called Slow metadata bytes Size of slow metadata in bytes Eligible bytes Total bytes eligible for offload Filtered bytes Total bytes returned after offload SI saved bytes Total bytes saved by storage index Flash cache bytes Total bytes fetched from flash cache Partial flash cache and disk bytes Total bytes where IO was partially fetched from flash cache and disk Cell passthru IO bytes Total cell passthru IO bytes Block IO bytes Total block IO bytes Slow metadata bytes Size of slow metadata in bytes This  is  just  a  glance,  the   script  produces  more   output  of  available  plan   line  level  metrics  
  • 12. blog.tanelpoder.com   12       ©  2015  Tanel  Poder   Flash  Cache  Improvements  
  • 13. blog.tanelpoder.com   13       ©  2015  Tanel  Poder   Oracle  11.2.0.4  Cell  Flash  Cache  Write  Hit  Metrics   SQL> @ses2 "select sid from v$session where program like '%DBW0%'" flash SID NAME VALUE ---------- ---------------------------------------------------------------- ---------- 296 cell writes to flash cache 50522 296 cell overwrites in flash cache 43998 296 cell flash cache read hits 36 SQL> @ses2 "select sid from v$session where program like '%DBW0%'" optimized SID NAME VALUE ---------- ---------------------------------------------------------------- ---------- 296 physical read requests optimized 36 296 physical read total bytes optimized 491520 296 physical write requests optimized 25565 296 physical write total bytes optimized 279920640 Previously  the  flash  write  hits  were   also  accumulated  under  the  cell  flash   read  hits  metric!   The  cell  write  hits  (of  IO  requests)   metrics  can  be  2-­‐3x  higher  than  DB  write   requests  due  to  ASM  mirroring  (each  cell   reports  its  own  hits  back)   hop://blog.tanelpoder.com/2013/12/04/cell-­‐flash-­‐cache-­‐read-­‐hits-­‐vs-­‐cell-­‐writes-­‐to-­‐flash-­‐cache-­‐sta^s^cs-­‐ on-­‐exadata/    
  • 14. blog.tanelpoder.com   14       ©  2015  Tanel  Poder   Comments  on  Flash  Cache  (pre-­‐11.2.3.3.0  cellsrv)   •  ALTER  TABLE  t  STORAGE  (CELL_FLASH_CACHE  KEEP);   •  DEFAULT   •  KEEP   •  NONE   •  Smart  Scans  bypass  the  Flash  Cache  regardless  of  I/O  size,  unless   CELL_FLASH_CACHE  =  KEEP   •  (even  if  the  table  data  is  already  cached  there)   •  The  Flash  Cache  I/O  path  is  a  FIFO,  no  IORM  for  Flash  Cache  before  11.2.3.3.0   •  With  DEFAULT,  buffered  I/O  opera^ons  will  cache  data  of  small  IOs   •  Small  I/O  <  128kB   •  This  includes  TEMP  IO  requests  smaller  than  128kB!   •  Flash  cache  popula^on  is  done  asynchronously  by  separate  jobs  in  cellsrv   The  KEEP  setng  works  at  the  table  level  (not   par^^on  level).  Kept  segments  get   automa^cally  unkept  auer  24  hrs  of  no  access:   (  _cell_object_expira9on_hours  =  24  )  
  • 15. blog.tanelpoder.com   15       ©  2015  Tanel  Poder   Automa^c  expiry  of  KEEP  objects  from  Flash  Cache   CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName='DEMO' AND hoursToExpiration < 24 DETAIL; cachedKeepSize: 23345496064 cachedSize: 23364829184 cachedWriteSize: 327680 dbID: 1538629110 dbUniqueName: DEMO hitCount: 14116 hoursToExpiration: 14 missCount: 35955 objectNumber: 88330 tableSpaceNumber: 27 CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName='DEMO' AND objectNumber = 88330 DETAIL; cachedKeepSize: 24099815424 cachedSize: 24119345152 cachedWriteSize: 327680 dbID: 1538629110 dbUniqueName: DEMO hitCount: 20797 hoursToExpiration: 24 missCount: 36700 objectNumber: 88330 tableSpaceNumber: 27 The  KEEP  object  hasn't  been   accessed  for  a  while  (~10  hours   since  last  access)   The  ^mer  back  to  24  hours   auer  a  simple  COUNT(*)  query   on  the  table  
  • 16. blog.tanelpoder.com   16       ©  2015  Tanel  Poder   Flash  Cache  on  Cellsrv  11.2.3.3.0+   •  Automa^c  –  even  the  CELL_FLASH_CACHE  DEFAULT  objects  can  be   Smart  Scanned  from  Flash  Cache   •  IORM  now  throoles  Flash  Cache  IOs  on  the  flash  disks  too   •  Previously  only  IOs  on  hard  disks  and  disks  carved  out  of  flash  were  IORM-­‐ed   •  Reduces  commit  latency  as  Smart  Flash  (Redo)  Logs  are  on  the  same  devices    
  • 17. blog.tanelpoder.com   17       ©  2015  Tanel  Poder   Cellsrv  12.1.2.1.0  (January  2015)   •  Lots  of  improvements,  but  let's  look  into  columnar  flash  cache   •  Independent  dual  format  caching  in  storage  cell  flash   •  Smart  Scans  use  Columnar  Flash  Cache  (if  all  required  columns  are  cached)   •  Block  IO  uses  tradi^onal  Flash  Cache   •  Conceptual  overview  tradi^onal  vs.  columnar  Flash  Cache   CU  1   col  1   col  2   col  3   col  3   col  4   col  4   col  5   col  5   col  6   CU  2   col  1   col  2   col  3   col  3   col  4   col  4   col  5   col  5   col  6   CU  x   col  1   col  2   col  3   col  3   col  4   col  4   col  5   col  5   col  6   CU  1  ..  x   col  1   col  2   col  3   col  4   col  5   col  6   col  2   col  2   col  3   col  3   col  4   col  4   col  5   col  5   col  5   col  6   compact  data  –  less  flash  IO  for  a  column  scan  
  • 18. blog.tanelpoder.com   18       ©  2015  Tanel  Poder   Columnar  Flash  Cache  metrics  –  1   SQL> @snapper all 5 1 1234 -------------------------------------------------------------------------------------------- TYPE, STATISTIC , DELTA, HDELTA/SEC -------------------------------------------------------------------------------------------- STAT, physical read IO requests , 6416, 1.26k STAT, physical read bytes , 6717366272, 1.32G STAT, cell physical IO bytes eligible for predicate offload , 6717366272, 1.32G STAT, cell physical IO interconnect bytes returned by smart scan, 445177024, 87.68M STAT, cell physical IO bytes saved by columnar cache , 5128519680, 1.01G STAT, cell blocks processed by cache layer , 250366, 49.31k STAT, cell blocks processed by txn layer , 250366, 49.31k STAT, cell blocks processed by data layer , 50327, 9.91k STAT, cell flash cache read hits , 6416, 1.26k WAIT, enq: KO - fast object checkpoint , 747, 147.12us WAIT, cell smart table scan , 315077, 62.05ms WAIT, SQL*Net message to client , 8, 1.58us WAIT, SQL*Net message from client , 2668093, 525.48ms WAIT, events in waitclass Other , 1136, 223.73us Stats snap 1, end=2015-02-11 10:57:34, seconds=5.1
  • 19. blog.tanelpoder.com   19       ©  2015  Tanel  Poder   Columnar  Flash  Cache  metrics  -­‐  2  
  • 20. blog.tanelpoder.com   20       ©  2015  Tanel  Poder   Lis^ng  Columnar  Flash  Cache  usage  in  cell   CellCLI> LIST METRICCURRENT FC_COL_BY_USED DETAIL; name: FC_COL_BY_USED alertState: normal collectionTime: 2015-02-10T23:24:44-06:00 metricObjectName: FLASHCACHE metricType: Instantaneous metricValue: 2,059 MB objectType: FLASHCACHE CellCLI> LIST FLASHCACHECONTENT WHERE dbUniqueName = 'DW' AND objectNumber = 101821 DETAIL; cachedKeepSize: 0 cachedSize: 4418445312 cachedWriteSize: 18243584 columnarCacheSize: 2159017984 columnarKeepSize: 0 dbID: 1996233620 dbUniqueName: DW hitCount: 48176 missCount: 5238 objectNumber: 101821 tableSpaceNumber: 8 "Number  of  megabytes  used  in   Columnar  FlashCache"   You  can  experiment  with  it  using   _enable_columnar_cache   session  parameter  
  • 21. blog.tanelpoder.com   21       ©  2015  Tanel  Poder   Storage  Index  Improvements  
  • 22. blog.tanelpoder.com   22       ©  2015  Tanel  Poder   Skipping  IOs  via  Bloom  Filters  +  Storage  Indexes   •  hops://blog.tanelpoder.com/2014/05/17/combining-­‐bloom-­‐filter-­‐ offloading-­‐and-­‐storage-­‐indexes-­‐on-­‐exadata/     SQL> SELECT 2 * 3 FROM 4 soe.customers c 5 , soe.orders o 6 WHERE 7 o.customer_id = c.customer_id 8 AND c.cust_email = 'florencio@ivtboge.com' 9 / We  have  a  direct  filter  only  on   the  CUSTOMERS  table,  but  a   Bloom  filter  constructed  from  it   may  allow  to  skip  IOs  on  the   ORDERS  table  too!   1.  Remember  the  join  column's  MIN/MAX  in  the  driving  row-­‐source   2.  Push  the  MIN/MAX  of  the  join  column  to  storage  with  Bloom  filter   3.  Compare  the  MIN/MAX  value  to  the  storage  index  to  skip  IOs  on  the  joined   table    
  • 23. blog.tanelpoder.com   23       ©  2015  Tanel  Poder   Skipping  IOs  for  MIN/MAX  calcula^on   •  If  both  projected  and  filtering  column  are  in  storage  indexes…   •  …skip  storage  regions  where  it's  known  no  bigger  MAX  (or  min)  values  exist   •  Works  if  you  don't  actually  need  to  access  the  values  (COUNT,  SUM,  AVG…)   •  Controlled  by  _cell_storidx_minmax_enabled  parameter   SELECT MAX(cust_postal_code) FROM customers_nocache WHERE cust_id > 1234;
  • 24. blog.tanelpoder.com   24       ©  2015  Tanel  Poder   What  else?   •  MOS  Note  1947476.1   •  Exadata  12.1.2.1.0  release  and  patch  (17885582)     •  Sparse  Grid  Disks   •  Snapshot  Databases  for  Dev/Test  (Thin  Cloning  in  Exadata!)   •  V$ASM_DISKGROUP_SPARSE,  V$ASM_DISK_SPARSE,  etc     •  Limi^ng  Flash  Cache  space  usage  per  DB   •  IORM  interdatabase  resource  plan   •  12c  AWR  reports  contain  storage  cell  performance  data!   •  V$CELL_DB,  DBA_HIST_CELL_DB  and  many  others  
  • 25. blog.tanelpoder.com   25       ©  2015  Tanel  Poder   Further  Reading  –  Smart  Scans     •  My  Exadata  blog  entries:   •  hop://blog.tanelpoder.com/category/exadata/   •  Frits  Hoogland's  Exadata  ar^cles:   •  hop://fritshoogland.wordpress.com/category/oracle/exadata/   •  The  Expert  Oracle  Exadata  book   •  We  are  working  on  a  2nd  edi^on  of  this  book  (Andy,Karl,Mar^n,Frits)  
  • 26. blog.tanelpoder.com   26       ©  2015  Tanel  Poder   Thank  You!   Ques^ons?     tanel@tanelpoder.com   blog.tanelpoder.com   @tanelpoder         www.enkitec.com