SlideShare a Scribd company logo
Section 3

Nutrient Role in
 Bioenergetics
Bioenergetics

 Bioenergetics refers to the flow of energy within a living
  system.
 Energy is the capacity to do work.
 Aerobic reactions require oxygen.
 Anaerobic reactions do not require oxygen.
Light
            energy

ECOSYSTEM




                  Photosynthesis
                  in chloroplasts
  CO2 + H2O                             Organic
                                                +O
                                       molecules 2
                Cellular respiration
                 in mitochondria




                       ATP

        ATP powers most cellular work

              Heat
              energy
Overview




              Electrons                               Electrons carried
               carried                                  via NADH and
              via NADH                                      FADH2



                                                                      Oxidative
             Glycolysis                           Citric          phosphorylation:
                                                  acid            electron transport
     Glucose           Pyruvate                   cycle                  and
                                                                    chemiosmosis

                                  Mitochondrion
       Cytosol



                 ATP                          ATP                           ATP

            Substrate-level               Substrate-level                Oxidative
           phosphorylation               phosphorylation              phosphorylation
NADH

                                            50
                                                 2 e–
                                                        NAD+
                                                                           FADH2

                                                                         2 e–     FAD
                                                                                              Multiprotein
                                            40                  Ι          FAD                complexes
                                                 FMN
                                                         Fe•S           Fe•S Ι




Free energy (G) relative to O2 (kcal/mol)
                                                                             Ι
                                                                    Q
                                                                                         ΙΙ
                                                                          Cyt b          Ι
                                                                                  Fe•S
                                            30
                                                                                         Cyt c1                      IV
                                                                                                  Cyt c
                                                                                                          Cyt a
                                                                                                                  Cyt a3
                                            20




                                            10                                                                2 e–
                                                                                                      (from NADH
                                                                                                         or FADH2)




                                             0                                                       2 H+ + 1/2    O2




                                                                                                                      H2O
Energy Sources
 Sources for ATP formation include:
   •   Carbohydrates:
       • Glucose derived from liver glycogen
   •   Lipids:
       • Triacylglycerol and glycogen molecules stored within
         muscle cells
       • Free fatty acids derived from triacylglycerol (in liver and
         adipocytes) that enter the bloodstream for delivery to
         active muscle
   •   Protein:
       • Intramuscular and liver-derived carbon skeletons of
         amino acids
Energy Release from Carbohydrates

 The primary function of carbohydrates is to supply
  energy for cellular work.
 The complete breakdown of 1 mole of glucose liberates
  689 kCal of energy.
   •   Of this, ATP bonds conserve about 261 kCal (38%),
       with the remainder dissipated as heat.
Glucose Degradation

 Occurs in two stages:
   1. Anaerobic: Glucose breaks down relatively rapidly to
      2 molecules of pyruvate.
   2. Aerobic: Pyruvate degrades further to carbon dioxide
      and water.
NADH

                                            50
                                                 2 e–
                                                        NAD+
                                                                           FADH2

                                                                         2 e–     FAD
                                                                                              Multiprotein
                                            40                  Ι          FAD                complexes
                                                 FMN
                                                         Fe•S           Fe•S Ι




Free energy (G) relative to O2 (kcal/mol)
                                                                             Ι
                                                                    Q
                                                                                         ΙΙ
                                                                          Cyt b          Ι
                                                                                  Fe•S
                                            30
                                                                                         Cyt c1                      IV
                                                                                                  Cyt c
                                                                                                          Cyt a
                                                                                                                  Cyt a3
                                            20




                                            10                                                                2 e–
                                                                                                      (from NADH
                                                                                                         or FADH2)




                                             0                                                       2 H+ + 1/2    O2




                                                                                                                      H2O
Glycolysis           Energy investment phase

                                        Glucose
 Glycogen
  catabolism
                                 2 ADP + 2 P            2 ATP   used
 Substrate-level
  phosphorylation
  in glycolysis
                      Energy payoff phase
 Hydrogen                                                      formed
                                  4 ADP + 4 P           4 ATP
  release in
  glycolysis
                        2 NAD+ + 4 e– + 4 H+           2 NADH + 2 H+
 Lactate
  formation
                                                      2 Pyruvate + 2 H2O

                      Net
                                        Glucose    2 Pyruvate + 2 H2O
                    4 ATP formed – 2 ATP used      2 ATP
                            2 NAD+ + 4 e– + 4 H+   2 NADH + 2 H+
Production of Lactate


                                         Glucose


                                              Glycolysis
                        CYTOSOL

                                         Pyruvate

                        No O2 present:          O2 present:
                        Anaerobic                Aerobic cellular
                                                  respiration



                                                                 MITOCHONDRION
                         lactate                    Acetyl CoA


                                                                 Citric
                                                                 acid
                                                                 cycle
Energy Release from Fat
 Stored fat represents the body’s most plentiful source of
  potential energy.
 Energy sources for fat catabolism include:
   •   Triacylglycerol stored directly within the muscle fiber
   •   Circulating triacylglycerol in lipoprotein complexes
   •   Circulating free fatty acids
Breakdown of Glycerol and Fatty Acids

 Glycerol
   •   Provides carbon skeletons for glucose synthesis
 Fatty acids
   •   Beta (ß)-oxidation converts a free fatty acid to
       multiple acetyl-CoA molecules.
   •   Hydrogens released during fatty acid catabolism
       oxidize through the respiratory chain.
Adipocytes

 Adipose tissue serves as an active and major supplier of
  fatty acid molecules.
 Triacylglycerol fat droplets occupy up to 95% of the
  adipocyte cell’s volume.
 Free fatty acids either form intracellular triacylglycerols
  or bind with intramuscular proteins and enter the
  mitochondria for energy metabolism.
Lipogenesis

 The formation of fat, mostly in the cytoplasm of liver cells
 Occurs when excess glucose or protein is not used
  immediately to sustain metabolism, so it converts into
  stored triacylglycerol
 The lipogenic process requires ATP energy and the B
  vitamins biotin, niacin, and pantothenic acid.
Energy Release from Protein

 Protein plays a role as an energy substrate during
  endurance activities and heavy trainings.
 Deamination: Nitrogen is removed from the amino acid
  molecule.
 Transamination: When an amino acid is passed to another
  compound.
 The remaining carbon skeletons enter metabolic pathways
  to produce ATP.
Overview




              Electrons                               Electrons carried
               carried                                  via NADH and
              via NADH                                      FADH2



                                                                      Oxidative
             Glycolysis                           Citric          phosphorylation:
                                                  acid            electron transport
     Glucose           Pyruvate                   cycle                  and
                                                                    chemiosmosis

                                  Mitochondrion
       Cytosol



                 ATP                          ATP                           ATP

            Substrate-level               Substrate-level                Oxidative
           phosphorylation               phosphorylation              phosphorylation

More Related Content

What's hot

alkohol-eter
alkohol-eteralkohol-eter
alkohol-eter
elfisusanti
 
11 complex formation-titrations
11 complex formation-titrations11 complex formation-titrations
11 complex formation-titrations
mohamed_elkayal
 
Fireflies & superbugs: when science & nature collide
Fireflies & superbugs: when science & nature collideFireflies & superbugs: when science & nature collide
Fireflies & superbugs: when science & nature collide
Siouxsie Wiles
 
Ch01 cont.
Ch01 cont.Ch01 cont.
Ch01 cont.
Nur Izzati
 
Cellular respiration
Cellular respiration Cellular respiration
Cellular respiration
marlasrud
 
Aerobic respiration
Aerobic respirationAerobic respiration
Aerobic respiration
giotrebrivera
 
Hipoperfusao oculta
Hipoperfusao oculta Hipoperfusao oculta
Hipoperfusao oculta
wruivo
 
Chapt08 lecture
Chapt08 lectureChapt08 lecture
Chapt08 lecture
cdobrow
 
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padole
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padoleHeterocyclic compounds part-I (Pyridine) by dr pramod r. padole
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padole
pramod padole
 
New progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactionsNew progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactions
Yiming Chen
 
Electrolysis
ElectrolysisElectrolysis
Electrolysis
lisa14hazel
 
Aldehid Keton
Aldehid KetonAldehid Keton
Aldehid Keton
elfisusanti
 
Unit 4 energy
Unit 4 energyUnit 4 energy
Unit 4 energy
Deb
 
Organometallics
OrganometallicsOrganometallics
Organometallics
MattSmith321834
 

What's hot (14)

alkohol-eter
alkohol-eteralkohol-eter
alkohol-eter
 
11 complex formation-titrations
11 complex formation-titrations11 complex formation-titrations
11 complex formation-titrations
 
Fireflies & superbugs: when science & nature collide
Fireflies & superbugs: when science & nature collideFireflies & superbugs: when science & nature collide
Fireflies & superbugs: when science & nature collide
 
Ch01 cont.
Ch01 cont.Ch01 cont.
Ch01 cont.
 
Cellular respiration
Cellular respiration Cellular respiration
Cellular respiration
 
Aerobic respiration
Aerobic respirationAerobic respiration
Aerobic respiration
 
Hipoperfusao oculta
Hipoperfusao oculta Hipoperfusao oculta
Hipoperfusao oculta
 
Chapt08 lecture
Chapt08 lectureChapt08 lecture
Chapt08 lecture
 
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padole
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padoleHeterocyclic compounds part-I (Pyridine) by dr pramod r. padole
Heterocyclic compounds part-I (Pyridine) by dr pramod r. padole
 
New progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactionsNew progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactions
 
Electrolysis
ElectrolysisElectrolysis
Electrolysis
 
Aldehid Keton
Aldehid KetonAldehid Keton
Aldehid Keton
 
Unit 4 energy
Unit 4 energyUnit 4 energy
Unit 4 energy
 
Organometallics
OrganometallicsOrganometallics
Organometallics
 

Viewers also liked

Respiratory chain
Respiratory chainRespiratory chain
Respiratory chain
MUBOSScz
 
Chemical properties of monosaccharides
Chemical properties of monosaccharidesChemical properties of monosaccharides
Chemical properties of monosaccharides
IIDC
 
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATIONELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
Dr.M.Prasad Naidu
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
Dr Syed Ismail Ibrahim
 
Biological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylationBiological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylation
Namrata Chhabra
 

Viewers also liked (6)

Formulas
FormulasFormulas
Formulas
 
Respiratory chain
Respiratory chainRespiratory chain
Respiratory chain
 
Chemical properties of monosaccharides
Chemical properties of monosaccharidesChemical properties of monosaccharides
Chemical properties of monosaccharides
 
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATIONELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Biological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylationBiological oxidation and oxidative phosphorylation
Biological oxidation and oxidative phosphorylation
 

Similar to Section+3+bioenergetics (1)

ETCs
ETCsETCs
Cellular respiration 2012
Cellular respiration 2012Cellular respiration 2012
Cellular respiration 2012
Carla
 
2. cellular respiration
2. cellular respiration2. cellular respiration
2. cellular respiration
biobuddy
 
การสลายสารอาหารโดยใช้ออกซิเจน
การสลายสารอาหารโดยใช้ออกซิเจนการสลายสารอาหารโดยใช้ออกซิเจน
การสลายสารอาหารโดยใช้ออกซิเจน
Thanyamon Chat.
 
การหายใจระดับเซลล์
การหายใจระดับเซลล์การหายใจระดับเซลล์
การหายใจระดับเซลล์
PANUWAT TANGPUNCHAROEN
 
Biological oxidation i
Biological oxidation iBiological oxidation i
Biological oxidation i
govt of maharastra
 
Oxidative Phosphorylation
Oxidative PhosphorylationOxidative Phosphorylation
Oxidative Phosphorylation
Nicky Burt
 
ETC and Oxidative Phosphorylation
ETC and Oxidative PhosphorylationETC and Oxidative Phosphorylation
ETC and Oxidative Phosphorylation
WardahShah2
 
oxidative phosphorylation
oxidative phosphorylation oxidative phosphorylation
oxidative phosphorylation
P. Meenalokshini
 
Cell resp notes
Cell resp notesCell resp notes
Cell resp notes
farrellw
 
The introduction of Electron Transport Chain
The introduction of Electron Transport ChainThe introduction of Electron Transport Chain
The introduction of Electron Transport Chain
HusseinHanibah1
 
Etc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phosEtc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phos
Kamal Singh Khadka
 
Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5
nahomyitbarek
 
Biological oxidation -3
Biological oxidation -3Biological oxidation -3
Electron transport chain and Oxidative phosphorylation
Electron transport chain and Oxidative phosphorylationElectron transport chain and Oxidative phosphorylation
Electron transport chain and Oxidative phosphorylation
meghna91
 
Biol221 24a energy currency to be taught
Biol221 24a energy currency to be taughtBiol221 24a energy currency to be taught
Biol221 24a energy currency to be taught
Vedpal Yadav
 
13301817.ppt
13301817.ppt13301817.ppt
13301817.ppt
Arun Nt
 
Week 9
Week 9Week 9
Week 9
kristenw3
 
Biol221 24a metabolism
Biol221 24a metabolismBiol221 24a metabolism
Biol221 24a metabolism
Vedpal Yadav
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
mrsteven
 

Similar to Section+3+bioenergetics (1) (20)

ETCs
ETCsETCs
ETCs
 
Cellular respiration 2012
Cellular respiration 2012Cellular respiration 2012
Cellular respiration 2012
 
2. cellular respiration
2. cellular respiration2. cellular respiration
2. cellular respiration
 
การสลายสารอาหารโดยใช้ออกซิเจน
การสลายสารอาหารโดยใช้ออกซิเจนการสลายสารอาหารโดยใช้ออกซิเจน
การสลายสารอาหารโดยใช้ออกซิเจน
 
การหายใจระดับเซลล์
การหายใจระดับเซลล์การหายใจระดับเซลล์
การหายใจระดับเซลล์
 
Biological oxidation i
Biological oxidation iBiological oxidation i
Biological oxidation i
 
Oxidative Phosphorylation
Oxidative PhosphorylationOxidative Phosphorylation
Oxidative Phosphorylation
 
ETC and Oxidative Phosphorylation
ETC and Oxidative PhosphorylationETC and Oxidative Phosphorylation
ETC and Oxidative Phosphorylation
 
oxidative phosphorylation
oxidative phosphorylation oxidative phosphorylation
oxidative phosphorylation
 
Cell resp notes
Cell resp notesCell resp notes
Cell resp notes
 
The introduction of Electron Transport Chain
The introduction of Electron Transport ChainThe introduction of Electron Transport Chain
The introduction of Electron Transport Chain
 
Etc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phosEtc and-oxd-phos-n-substrate-level-phos
Etc and-oxd-phos-n-substrate-level-phos
 
Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5
 
Biological oxidation -3
Biological oxidation -3Biological oxidation -3
Biological oxidation -3
 
Electron transport chain and Oxidative phosphorylation
Electron transport chain and Oxidative phosphorylationElectron transport chain and Oxidative phosphorylation
Electron transport chain and Oxidative phosphorylation
 
Biol221 24a energy currency to be taught
Biol221 24a energy currency to be taughtBiol221 24a energy currency to be taught
Biol221 24a energy currency to be taught
 
13301817.ppt
13301817.ppt13301817.ppt
13301817.ppt
 
Week 9
Week 9Week 9
Week 9
 
Biol221 24a metabolism
Biol221 24a metabolismBiol221 24a metabolism
Biol221 24a metabolism
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 

Section+3+bioenergetics (1)

  • 1. Section 3 Nutrient Role in Bioenergetics
  • 2. Bioenergetics  Bioenergetics refers to the flow of energy within a living system.  Energy is the capacity to do work.  Aerobic reactions require oxygen.  Anaerobic reactions do not require oxygen.
  • 3. Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Organic +O molecules 2 Cellular respiration in mitochondria ATP ATP powers most cellular work Heat energy
  • 4.
  • 5. Overview Electrons Electrons carried carried via NADH and via NADH FADH2 Oxidative Glycolysis Citric phosphorylation: acid electron transport Glucose Pyruvate cycle and chemiosmosis Mitochondrion Cytosol ATP ATP ATP Substrate-level Substrate-level Oxidative phosphorylation phosphorylation phosphorylation
  • 6. NADH 50 2 e– NAD+ FADH2 2 e– FAD Multiprotein 40 Ι FAD complexes FMN Fe•S Fe•S Ι Free energy (G) relative to O2 (kcal/mol) Ι Q ΙΙ Cyt b Ι Fe•S 30 Cyt c1 IV Cyt c Cyt a Cyt a3 20 10 2 e– (from NADH or FADH2) 0 2 H+ + 1/2 O2 H2O
  • 7.
  • 8. Energy Sources  Sources for ATP formation include: • Carbohydrates: • Glucose derived from liver glycogen • Lipids: • Triacylglycerol and glycogen molecules stored within muscle cells • Free fatty acids derived from triacylglycerol (in liver and adipocytes) that enter the bloodstream for delivery to active muscle • Protein: • Intramuscular and liver-derived carbon skeletons of amino acids
  • 9. Energy Release from Carbohydrates  The primary function of carbohydrates is to supply energy for cellular work.  The complete breakdown of 1 mole of glucose liberates 689 kCal of energy. • Of this, ATP bonds conserve about 261 kCal (38%), with the remainder dissipated as heat.
  • 10. Glucose Degradation  Occurs in two stages: 1. Anaerobic: Glucose breaks down relatively rapidly to 2 molecules of pyruvate. 2. Aerobic: Pyruvate degrades further to carbon dioxide and water.
  • 11. NADH 50 2 e– NAD+ FADH2 2 e– FAD Multiprotein 40 Ι FAD complexes FMN Fe•S Fe•S Ι Free energy (G) relative to O2 (kcal/mol) Ι Q ΙΙ Cyt b Ι Fe•S 30 Cyt c1 IV Cyt c Cyt a Cyt a3 20 10 2 e– (from NADH or FADH2) 0 2 H+ + 1/2 O2 H2O
  • 12. Glycolysis Energy investment phase Glucose  Glycogen catabolism 2 ADP + 2 P 2 ATP used  Substrate-level phosphorylation in glycolysis Energy payoff phase  Hydrogen formed 4 ADP + 4 P 4 ATP release in glycolysis 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+  Lactate formation 2 Pyruvate + 2 H2O Net Glucose 2 Pyruvate + 2 H2O 4 ATP formed – 2 ATP used 2 ATP 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+
  • 13. Production of Lactate Glucose Glycolysis CYTOSOL Pyruvate No O2 present: O2 present: Anaerobic Aerobic cellular respiration MITOCHONDRION lactate Acetyl CoA Citric acid cycle
  • 14. Energy Release from Fat  Stored fat represents the body’s most plentiful source of potential energy.  Energy sources for fat catabolism include: • Triacylglycerol stored directly within the muscle fiber • Circulating triacylglycerol in lipoprotein complexes • Circulating free fatty acids
  • 15. Breakdown of Glycerol and Fatty Acids  Glycerol • Provides carbon skeletons for glucose synthesis  Fatty acids • Beta (ß)-oxidation converts a free fatty acid to multiple acetyl-CoA molecules. • Hydrogens released during fatty acid catabolism oxidize through the respiratory chain.
  • 16.
  • 17. Adipocytes  Adipose tissue serves as an active and major supplier of fatty acid molecules.  Triacylglycerol fat droplets occupy up to 95% of the adipocyte cell’s volume.  Free fatty acids either form intracellular triacylglycerols or bind with intramuscular proteins and enter the mitochondria for energy metabolism.
  • 18.
  • 19. Lipogenesis  The formation of fat, mostly in the cytoplasm of liver cells  Occurs when excess glucose or protein is not used immediately to sustain metabolism, so it converts into stored triacylglycerol  The lipogenic process requires ATP energy and the B vitamins biotin, niacin, and pantothenic acid.
  • 20. Energy Release from Protein  Protein plays a role as an energy substrate during endurance activities and heavy trainings.  Deamination: Nitrogen is removed from the amino acid molecule.  Transamination: When an amino acid is passed to another compound.  The remaining carbon skeletons enter metabolic pathways to produce ATP.
  • 21.
  • 22. Overview Electrons Electrons carried carried via NADH and via NADH FADH2 Oxidative Glycolysis Citric phosphorylation: acid electron transport Glucose Pyruvate cycle and chemiosmosis Mitochondrion Cytosol ATP ATP ATP Substrate-level Substrate-level Oxidative phosphorylation phosphorylation phosphorylation

Editor's Notes

  1. Anaerobic and aerobic breakdown of ingested food nutrients provides the energy source for synthesizing the chemical fuel that powers all forms of biologic work.
  2. ATP and PCr provide anaerobic sources of phosphate-bond energy. The energy liberated from the hydrolysis of PCr rebonds ATP and P to form ATP.
  3. Figure 9.6 An overview of cellular respiration
  4. Glycolysis, a series of 10 enzymatically controlled chemical reactions creates two molecules of pyruvate from the anaerobic breakdown of glucose.
  5. Glycolysis, a series of 10 enzymatically controlled chemical reactions creates two molecules of pyruvate from the anaerobic breakdown of glucose.
  6. Glycogenolysis describes the cleavage of glucose from stored glycogen. Energy transfers directly via phosphate bonds in the anaerobic reactions called substrate-level phosphorylation. During glycolysis, two pairs of hydrogen atoms are stripped from the substrate (glucose), and their electrons are passed to NAD+ to form NADH . Lactate provides a valuable source of chemical energy that accumulates in the body during heavy exercise.
  7. Prior to energy release from fat, hydrolysis ( lipolysis or fat breakdown) splits the triacylglycerol molecule into glycerol and three water-insoluble fatty acid molecules.
  8. Lipogenesis begins with carbons from glucose and the carbon skeletons from amino acid molecules that metabolize to acetyl-CoA.
  9. Once an amino acid loses its nitrogen-containing amine group, the remaining compound (usually a component of the citric acid cycle’s reactive compounds) contributes to ATP formation. Excessive intake of protein is converted to body fat.
  10. Figure 9.6 An overview of cellular respiration