Date:  1.6.12
Title:  10.2 Conics ‐ The Ellipse
Objective: To create Ellipses!
In:




                    Feb 5­7:22 PM




         Remember Circles?
                x2 + y2 = r2

         (x + 3)2 + (y - 2 )2 = 16

      Really, a    Circle           formula
                should read....


            (x-h)2 + (y-k)2 = 1
              r2       r2
                   Apr 15­2:13 PM

                                              1
An Ellipse is...
the set of all points (x, y)...the sum of whose distances from
two distinct fixed points (foci) is constant.

Eccentricity is the ratio c/a




                                 Apr 15­2:13 PM




                       Ellipse
                   An equation of the ellipse
  with center (0, 0) and foci at (-c, 0) and (c, 0) is




A equation of the ellipse with center (h, k),
changes to the following:



                   where a > b > 0 and c2 = a2 ‐ b2
                C is the distance from the center to the foci points.
                  (a is always the bigger number)
                                 Apr 15­2:13 PM

                                                                        2
Graph:

                    4x2 + y2 + 24x ­ 4 y + 24 = 0




                  HW: P 710  
                  12,15,17,18,20,22,30,32,33,40,48,49


                                    Nov 30­8:04 AM




4x2 + y2 ‐ 8x + 4y + 4 = 0

Parabola?  Ellipse?  Graph!




                                    Apr 15­2:13 PM

                                                        3
Ellipse
Find an equation of the ellipse with center at the origin, 
       one focus at (3, 0), and a vertex at (‐4, 0).




               Graph the ellipse by hand


                       Apr 15­2:13 PM




                    Ellipse
 
How will the graphs look different?


         x2 + y2 = 1                    x2 + y2 = 1
         25 9                           9 25




                       Apr 15­2:13 PM

                                                              4
Ellipse
 
Find an equation of the ellipse having one focus at (0, 2) 
and vertices at (0, ‐3) and (0, 3).  




                        Apr 15­2:13 PM




                                                              5

Section 10.2 ellipse