By Javed Ali Buller
Scientificnotationisa valuewrittenas asimplenumbermultipliedbya power
of ten.It isanother wayof writingnumbers.Italsomakes calculatingthese
numberseasier.
Correct scientificnotationhas acoefficientthat islessthan10and greater
thanorequalto 1.Thatcoefficientisthenmultipliedbya power often.
Example:
46000=4.6x104
The steps for writingscientific notationare rather simple. Let's
go over themby actuallychangingnumbers into scientific
notation.
Example:
The distance betweenEarth and Neptuneis
4,600,000,000,000 meters. How do we write it in Scientific
Notation?
Placethe decimal pointafter the first whole number digit
and dropthe zeros. The number "4" is the first whole
number.
So:
4.600,000,000,000
Findtheexponent.To do this,count thenumberofplaces fromthe
new decimalpointtotheendofthe number.This decimalpointis
12 placesfrom theendofthenumberor wherethe decimalwas
originally.
So:
4.600,000,000,000.
NewDecimal Point Original Decimal Point
Rewritethenumberbymultiplyingitbya poweroften.
*Drop allzeros andwriteyour number.Thisnumbermustbemultipliedbya
powerof10.
4.600,000,000,000=4.6x 10
*Yourexponentwillbethenumberofplacesthatthedecimalpointwas
moved. Sincethedecimalpointwasmoved12 places,theexponentwillbe
"12".
4.6x 1012
The term significant figures refers to the numberof
importantsingle digits
(0 through 9)inthe coefficientof an expressionin
ScientificNotation.
1. All nonzero digits aresignificant:
1.234 g - has4 significantfigures,
1.2 g - has2 significantfigures.
2. Zeroesbetweennonzero digits are significant:
1002 kg -has 4 significantfigures,
3.07 mL -has 3 significantfigures.
3. Leading zeros to the left of the first nonzerodigits are not
significant;such zeroes merely indicatethe position of the
decimalpoint:
0.001mg- hasonly1significantfigure
0.012g-has2significantfigures.
4. Trailingzeroes that arealso to the right of a decimal point
ina number are significant:
0.0230ml- has3significantfigures
0.20g -has2significantfigures.
5. When a number ends in zeroes that are not to the
right of a decimalpoint, the zeroes arenot
necessarilysignificant:
190 miles may be 2 or 3 significantfigures
50,600 calories may be 3, 4, or 5 significantfigures.
1. In addition and subtraction, the result is roundedoff to the last
commondigit occurringfurthest to the right in all components.
Another way to state this ruleis as follows:in addition and
subtraction, the result is roundedoff so that it has the same
number ofdigits as the measurement having the fewestdecimal
places (counting fromleft to right). Forexample,
100 – 3 SF
+ 23.645 – 5 SF
123.645 = 124
2. In multiplicationanddivision, theresultshouldberounded
off so asto havethesamenumberof significantfigures asin
thecomponent withthe leastnumberof significantfigures.
Forexample,
12.25 – 4 SF
X 3.0 – 2 SF
36.75 = 37
Scientific notation and significant figures

Scientific notation and significant figures

  • 1.
  • 2.
    Scientificnotationisa valuewrittenas asimplenumbermultipliedbyapower of ten.It isanother wayof writingnumbers.Italsomakes calculatingthese numberseasier. Correct scientificnotationhas acoefficientthat islessthan10and greater thanorequalto 1.Thatcoefficientisthenmultipliedbya power often. Example: 46000=4.6x104
  • 3.
    The steps forwritingscientific notationare rather simple. Let's go over themby actuallychangingnumbers into scientific notation. Example: The distance betweenEarth and Neptuneis 4,600,000,000,000 meters. How do we write it in Scientific Notation?
  • 4.
    Placethe decimal pointafterthe first whole number digit and dropthe zeros. The number "4" is the first whole number. So: 4.600,000,000,000
  • 5.
    Findtheexponent.To do this,countthenumberofplaces fromthe new decimalpointtotheendofthe number.This decimalpointis 12 placesfrom theendofthenumberor wherethe decimalwas originally. So: 4.600,000,000,000. NewDecimal Point Original Decimal Point
  • 6.
    Rewritethenumberbymultiplyingitbya poweroften. *Drop allzerosandwriteyour number.Thisnumbermustbemultipliedbya powerof10. 4.600,000,000,000=4.6x 10 *Yourexponentwillbethenumberofplacesthatthedecimalpointwas moved. Sincethedecimalpointwasmoved12 places,theexponentwillbe "12". 4.6x 1012
  • 7.
    The term significantfigures refers to the numberof importantsingle digits (0 through 9)inthe coefficientof an expressionin ScientificNotation.
  • 8.
    1. All nonzerodigits aresignificant: 1.234 g - has4 significantfigures, 1.2 g - has2 significantfigures. 2. Zeroesbetweennonzero digits are significant: 1002 kg -has 4 significantfigures, 3.07 mL -has 3 significantfigures.
  • 9.
    3. Leading zerosto the left of the first nonzerodigits are not significant;such zeroes merely indicatethe position of the decimalpoint: 0.001mg- hasonly1significantfigure 0.012g-has2significantfigures. 4. Trailingzeroes that arealso to the right of a decimal point ina number are significant: 0.0230ml- has3significantfigures 0.20g -has2significantfigures.
  • 10.
    5. When anumber ends in zeroes that are not to the right of a decimalpoint, the zeroes arenot necessarilysignificant: 190 miles may be 2 or 3 significantfigures 50,600 calories may be 3, 4, or 5 significantfigures.
  • 11.
    1. In additionand subtraction, the result is roundedoff to the last commondigit occurringfurthest to the right in all components. Another way to state this ruleis as follows:in addition and subtraction, the result is roundedoff so that it has the same number ofdigits as the measurement having the fewestdecimal places (counting fromleft to right). Forexample, 100 – 3 SF + 23.645 – 5 SF 123.645 = 124
  • 12.
    2. In multiplicationanddivision,theresultshouldberounded off so asto havethesamenumberof significantfigures asin thecomponent withthe leastnumberof significantfigures. Forexample, 12.25 – 4 SF X 3.0 – 2 SF 36.75 = 37