SlideShare a Scribd company logo
1 of 40
Download to read offline
Robust Control of
Rotor/Active Magnetic Bearing Systems
˙Ibrahim Sina Kuseyri
Bo˘gazic¸i University
15/03/2011
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 1 / 34
Outline
1 Introduction
Overview
Applications
2 System Dynamics
Magnetic Bearings
Rotordynamics
3 Robust Control
Controller Design
Model Uncertainty and Robustness
4 Numerical Results and Simulations
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 2 / 34
Outline
1 Introduction
Overview
Applications
2 System Dynamics
Magnetic Bearings
Rotordynamics
3 Robust Control
Controller Design
Model Uncertainty and Robustness
4 Numerical Results and Simulations
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 3 / 34
Overview
Radial magnetic (electromagnetic) bearing
50 100 150 200 250 300 350
50
100
150
200
250
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 4 / 34
Overview
Radial magnetic (electromagnetic) bearing
50 100 150 200 250 300 350
50
100
150
200
250
Horizontal rotor with active magnetic bearings (AMBs)
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 4 / 34
Advantages of rotor/AMB systems
No mechanical wear and friction.
No lubrication therefore non-polluting.
High circumferential speeds possible (more than 300 m/s).
Operation in severe and demanding environments.
Easily adjustable bearing characteristics (stiffness, damping).
Online balancing and unbalance compensation.
Online system parameter identification possible.
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 5 / 34
Applications
Satellite flywheels
Turbomachinery
High-speed milling and grinding spindles
Electric motors
Turbomolecular pumps
Blood pumps
Computer hard disk drives, x-ray devices, ...
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 6 / 34
Outline
1 Introduction
Overview
Applications
2 System Dynamics
Magnetic Bearings
Rotordynamics
3 Robust Control
Controller Design
Model Uncertainty and Robustness
4 Numerical Results and Simulations
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 7 / 34
Electromagnetic Bearings
The AMB model considered is based on the zero leakage assumption
which says that magnetic flux in a high permeability magnetic structure
with small air gaps is confined to the iron and gap volumes.
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 8 / 34
Electromagnetic bearings
Two opposing electromagnets at orthogonal directions cause the force
Fr = F+ − F− = kM
i+
s0 − r
2
−
i−
s0 + r
2
on the rotor. The magnetic bearing constant kM is
kM :=
µ0AAn2
c
4
cos αM
with αM denoting the angle between a pole and magnet centerline.
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 9 / 34
Electromagnetic bearings
The non-linearities of the magnetic force are generally reduced by
adding a high bias current i0 to the control currents ic in each control
axis. Hence electromagnetic force in one axis can be linearized
around the operating point as
Fr
∼= Fr |OP +
∂Fr
∂i OP
(ic − ic OP) +
∂Fr
∂r OP
(r − rOP) ·
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 10 / 34
Electromagnetic bearings
The non-linearities of the magnetic force are generally reduced by
adding a high bias current i0 to the control currents ic in each control
axis. Hence electromagnetic force in one axis can be linearized
around the operating point as
Fr
∼= Fr |OP +
∂Fr
∂i OP
(ic − ic OP) +
∂Fr
∂r OP
(r − rOP) ·
At ic OP = 0 and rOP = 0, the linearized magnetic bearing force of the
bearing for small currents and small displacements is given by
Fr,lin = kiic − ksr
with the actuator gain ki and the open loop negative stiffness ks
defined as
ki := 4kM
i0
s2
0
and ks := −4kM
i2
0
s3
0
·
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 10 / 34
Rotordynamics
Equations of motion for a rigid rotor may be derived from
F = ˙P =
d
dt
(Mr v) , and M = ˙H =
d
dt
(Iω) .
θ
a b
bearing A bearing B
φ
ψ
fa1
fa2
fa3
fa4
fb1
fb2
fb3
fb4
x, ζ
y, η
z, ξ
mub,s
mub,c
mub,c
CG d
2
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 11 / 34
Rotordynamics
The equations of motion for the four degrees of freedom are
¨x =
1
Mr
[fA,x + fB,x +
Mr
√
2
g +
mub,s
2
Ω2
d cos (Ωt + ϕs)] ,
¨y =
1
Mr
[fA,y + fB,y +
Mr
√
2
g +
mub,s
2
Ω2
d sin (Ωt + ϕs)] ,
¨ψ =
1
Ir
[−ΩIp
˙θ + a(−fA,y ) + b(fB,y ) +
(a + b)
2
mub,c Ω2
d sin (Ωt + ϕc)] ,
¨θ =
1
Ir
[ΩIp
˙ψ + a(fA,x ) + b(−fB,x ) −
(a + b)
2
mub,c Ω2
d cos (Ωt + ϕc)] .
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 12 / 34
Rotor/AMB model in state-space
The equations of motion for the electromechanical system in the
state-space form are
˙xr =
0 I
AS AG(Ω)
xr + Bwr w + Bur u + ¯g ,
where xr := (x y ψ θ ˙x ˙y ˙ψ ˙θ )T , u = (icA,x icA,y icB,x icB,y )T ,
w = (1
2 mub,sd 1
2 mub,cd)T .
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 13 / 34
Rotor/AMB model in state-space
The equations of motion for the electromechanical system in the
state-space form are
˙xr =
0 I
AS AG(Ω)
xr + Bwr w + Bur u + ¯g ,
where xr := (x y ψ θ ˙x ˙y ˙ψ ˙θ )T , u = (icA,x icA,y icB,x icB,y )T ,
w = (1
2 mub,sd 1
2 mub,cd)T .
Control objective is to stabilize the system and to minimize the rotor
displacements (whirl) with moderate control effort.
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 13 / 34
Outline
1 Introduction
Overview
Applications
2 System Dynamics
Magnetic Bearings
Rotordynamics
3 Robust Control
Controller Design
Model Uncertainty and Robustness
4 Numerical Results and Simulations
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 14 / 34
Controller design
K
ym u
di
n+
+
v
di
n
w
+ +
z
yu
P
K
{
v ym
u
e}
G
G
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 15 / 34
Controller design
Controlled
Output
Input and/or
Disturbance
Measurement
(Feedback)Input
w z
u y
Manipulated
P
K
(Controller)
(Generalized Plant)
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
Controller design
Controlled
Output
Input and/or
Disturbance
Measurement
(Feedback)Input
w z
u y
Manipulated
P
K
(Controller)
(Generalized Plant)
Q: How to choose K?
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
Controller design
Controlled
Output
Input and/or
Disturbance
Measurement
(Feedback)Input
w z
u y
Manipulated
P
K
(Controller)
(Generalized Plant)
Q: How to choose K?
A: Minimize the “size” (e.g. H∞ or H2-norm) of the closed-loop
transfer function M from w to z.
w zM
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
H2 and H∞-norms
The definitions are
M ∞ := sup
ω
¯σ M(jω) Note : ¯σ(M) := λmax (M∗M)
M 2 :=
1
2π
∞
−∞
Trace M(jω)∗M(jω) dω
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 17 / 34
H2 and H∞-norms
The definitions are
M ∞ := sup
ω
¯σ M(jω) Note : ¯σ(M) := λmax (M∗M)
M 2 :=
1
2π
∞
−∞
Trace M(jω)∗M(jω) dω
For SISO LTI systems,
M ∞ = supω |M(jω)| = peak of the Bode plot
M 2 = 1
2π
∞
−∞
|M(jω)|2 dω ∼ area under the Bode plot
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 17 / 34
Frequency Weighting
Can fine-tune the solution by using frequency weights on w and z.
K +
ym
u
di do
n
+
+
+
++
+
v
˜u
˜n
˜di ˜do
eWr
Wu Wi Wo We
Wn
+
−
˜e
˜ri ri ri − ym
G−
log ω
|W|dB
ωc log ω
|W|dB
ωuωl log ω
|W|dB
ωc
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 18 / 34
Model uncertainty
Uncertainty in Rotor/AMB Models
Model Parameter Uncertainty (such as AMB stiffness ks)
Neglected High Frequency Dynamics (high frequency flexible
modes of the rotor)
Nonlinearities (such as hysteresis effects in AMB)
Neglected Dynamics (such as vibrations of rotor blades)
Setup Variations (e.g., a controller for an AMB milling spindle
should function with tools of different mass)
Changing System Dynamics (gyroscopic effects change the
location of the poles at different operating speeds)
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 19 / 34
Closed-loop rotor/AMB system with uncertainty
K
WqWp
WzWw˜w ˜zw z
p q
yu
˜∆
˜P
˜p ˜q
¯P
σ W−1
p (jω) ∆(jω) W−1
q (jω) = σ ˜∆(jω) ≤ 1 ∀ ω ∈ Re
∆ :=
δksI 0
0 ΩI
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 20 / 34
Closed-loop rotor/AMB system with uncertainty
Overall system in the state-space form
K
WqWp
WzWw˜w ˜zw z
p q
yu
˜∆
˜P
˜p ˜q
¯P
˙x = Ax + Bp˜p + Bw ˜w + Buu
˜q = Cqx + Dqw ˜w
˜z = Czx + Dzuu
y = Cy x + Dyw ˜w
p = ∆q
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 21 / 34
Outline
1 Introduction
Overview
Applications
2 System Dynamics
Magnetic Bearings
Rotordynamics
3 Robust Control
Controller Design
Model Uncertainty and Robustness
4 Numerical Results and Simulations
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 22 / 34
Numerical Results - System Data
A
A
bearing A bearing B
touch-down bearing A touch-down bearing B
displacement sensors
magneticmagnetic
sA
a b
sB
LD
LS
dDSection A-A dS
g
Symbol Value Unit Symbol Value Unit Symbol Value Unit
MS 85.90 kg LS 1.50 m s0 2.0 · 10−3 m
MD 77.10 kg LD 0.05 m s1 0.5 · 10−3 m
Ir 17.28 kg·m2 dS 0.10 m i0 3.0 A
Ip 2.41 kg·m2 dD 0.50 m kM 7.8455 · 10−5 N·m2/A2
a 0.58 m sA 0.73 m ks −3.5305 · 105 N/m
b 0.58 m sB 0.73 m ki 235.4 N/A
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 23 / 34
Numerical Results - Weighting functions
Wu = 38
s + 1200
s + 50000
I4 We =
s + 0.05
s + 0.01
I4
10
−2
10
0
10
2
10
4
10
6
−5
0
5
10
15
20
25
30
35
Frequency [rad/s]
Gain[dB]
Wu
10
−2
10
0
10
2
10
4
10
6
0
2
4
6
8
10
12
Frequency [rad/s]
Gain[dB]
We
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 24 / 34
Results with the H∞ controllers for the nominal system
Maximum operation speed = 3000 rpm (≈ 314.2 rad/s)
10
−2
10
0
10
2
10
4
10
6
−100
−80
−60
−40
−20
0
20
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Singular values of controller K1
10
−2
10
0
10
2
10
4
10
6
−100
−80
−60
−40
−20
0
20
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Singular values of controller K2
10
−2
10
0
10
2
10
4
10
6
−140
−120
−100
−80
−60
−40
−20
0
20
40
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Closed−loop SVs with K1
10
−2
10
0
10
2
10
4
10
6
−140
−120
−100
−80
−60
−40
−20
0
20
40
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Closed−loop SVs with K2
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 25 / 34
Results with the H∞ controllers for the nominal system
Table : H∞ performance with K1 for different design parameters
Maximum speed (rpm) Maximum mass center displacement (m) γ
1500 0.25·10−3 70.96
3000 0.25·10−3 97.06
6000 0.25·10−3 99.81
1500 0.50·10−3 89.57
3000 0.50·10−3 99.24
6000 0.50·10−3 100.07
Table : H∞ performance with K2 for different design parameters
Maximum speed (rpm) Maximum mass center displacement (m) γ
1500 0.25·10−3 11.41
3000 0.25·10−3 15.42
6000 0.25·10−3 31.77
1500 0.50·10−3 12.62
3000 0.50·10−3 21.05
6000 0.50·10−3 52.01
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 26 / 34
Critical speeds (eigenfrequencies)
Pole−Zero Map
Real Axis
ImaginaryAxis
−250 −200 −150 −100 −50 0 50 100 150 200 250
−60
−40
−20
0
20
40
60
x: Openloop eigenfrequencies at standstill (rad/s)
−117
(x2)
117
(x2)
−65.8
(x2)
65.8
(x2)
10
0
10
1
10
2
10
3
10
4
−200
−150
−100
−50
0
50
100
Frequency (Speed) [rad/s]
ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel)
XA
YA
XB
YB
120
Phase shift with K1
10
0
10
1
10
2
10
3
10
4
−200
−180
−160
−140
−120
−100
−80
−60
−40
−20
0
Frequency[rad/s]
ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel)
XA
YA
XB
YB
150
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 27 / 34
Results with the reduced order H∞ controllers
The H∞ norm of the closed-loop system at 3000 rpm with the reduced
ordered controllers K1r and K2r (4 states are eliminated) increases
from 99.24 to 529.55 and from 21.05 to 62.07 respectively.
10
−2
10
0
10
2
10
4
10
6
−140
−120
−100
−80
−60
−40
−20
0
20
40
60
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Closed−loop SVs with K1r
10
−2
10
0
10
2
10
4
10
6
−140
−120
−100
−80
−60
−40
−20
0
20
40
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Closed−loop SVs with K2r
10
−2
10
−1
10
0
10
1
10
2
10
3
10
4
−200
−150
−100
−50
0
50
Frequency[rad/s]
ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel)
XA
YA
XB
YB
170
10
−2
10
−1
10
0
10
1
10
2
10
3
10
4
−200
−180
−160
−140
−120
−100
−80
−60
−40
−20
0
Frequency[rad/s]
ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel)
XA
YA
XB
YB
185
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 28 / 34
Robust stability of the uncertain closed-loop system
Using the model incorporating parametric uncertainty structure,
nominal bearing stiffness is set to the nominal value with 25%
uncertainty. Nominal speed is selected as half of the maximum speed
of operation. Keeping the uncertainty on the bearing stiffness constant
(25%), robust stability of the closed-loop system is tested for several
maximum operating speeds with µ-analysis. Moreover, keeping the
operation speed constant (3000 rpm), robust stability is tested for
uncertainty in bearing stiffness.
3000 3500 4000 4500 5000 5500 6000
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
Maximum rotor speed (RPM)
mu
0 5 10 15 20 25
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Uncertainty in bearing stiffness (%)
mu
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 29 / 34
Results with the robust H∞ controller
Singular values of the controller and the closed-loop system for a
maximum operating speed of 4085 rpm (∼= 418 rad/s) are shown
below. H∞ performance γ of the closed-loop system for Ωmax = 4085
rpm is 47.86. Note that the closed-loop system with K3 have
twenty-nine inputs and thirty-two outputs, whereas the closed-loop
systems with K1 and K2 have five inputs and eight outputs. Order of
the controller K3 (which is twelve) can not be reduced since it leads to
the instability of the closed-loop system.
10
−2
10
0
10
2
10
4
10
6
−100
−80
−60
−40
−20
0
20
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Singular values of controller K3
10
−2
10
0
10
2
10
4
10
6
−1000
−800
−600
−400
−200
0
200
Singular Values
Frequency (rad/sec)
SingularValues(dB)
Closed−loop SVs with K3
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 30 / 34
Simulations
Simulation Environment in SIMULINK (Rotor/AMB)
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 31 / 34
Simulations
We analyze the H∞ performance of the closed-loop system using the
controller K2 in the simulations. Disturbance acting on the system, i.e.,
unbalance force and sensor/electronic noise, are shown below.
0 0.1 0.2 0.3 0.4 0.5
−100
−80
−60
−40
−20
0
20
40
60
80
100
Time (sec)
UnbalanceForce(Newtons)
0 100 200 300 400 500 600
−0.03
−0.02
−0.01
0
0.01
0.02
0.03
0.04
Time (msec)
Volts
Sensor Noise
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 32 / 34
Simulation Results
0 0.1 0.2 0.3 0.4 0.5
−2
−1
0
1
2
3
4
5
6
Time (sec)
X
A
(Volts)
Rotor displacement in Bearing A
(x−direction)
0 0.1 0.2 0.3 0.4 0.5
−6
−5
−4
−3
−2
−1
0
1
2
Time (sec)
Y
A
(Volts)
Rotor displacement in Bearing A
(y−direction)
0 0.1 0.2 0.3 0.4 0.5
−4
−3
−2
−1
0
1
2
Time (sec)
ic,Ax(Amperes)
Control current for Bearing A
(x−axis)
0 0.1 0.2 0.3 0.4 0.5
−2
−1
0
1
2
3
4
Time (sec)
ic,Ay(Amperes)
Control current for Bearing A
(y−axis)
Rotor position and control currents during start-up
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 33 / 34
Simulation Results
Mass center displacement (eccentricity) due to unbalance of the rotor
is assumed to be 0.25 · 10−3 m in the simulations. Peak value of the
vibration (except the transient) is less than 0.1 V, corresponding to
14 · 10−6 m. Hence, the H∞ controller K2 reduces the unbalance whirl
amplitude of the rotor more than 95%.
0 0.1 0.2 0.3 0.4 0.5
−2
−1.5
−1
−0.5
0
0.5
Time (sec)
X
A
(Volts)
Rotor displacement in Bearing A (x−direction)
0 0.1 0.2 0.3 0.4 0.5
−2
−1.5
−1
−0.5
0
0.5
1
Time (sec)
YA
(Volts)
Rotor displacement in Bearing A (y−direction)
0 0.1 0.2 0.3 0.4 0.5
−3
−2
−1
0
1
2
3
4
Time (sec)
ic,Ax(Amperes)
Control current for Bearing A (x−axis)
0 0.1 0.2 0.3 0.4 0.5
−3
−2
−1
0
1
2
3
4
Time (sec)
ic,Ay(Amperes)
Control current for Bearing A (y−axis)
˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 34 / 34

More Related Content

What's hot

Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...IJECEIAES
 
Micro cam based on electrostatic comb drive actuators
Micro cam based on electrostatic comb drive actuatorsMicro cam based on electrostatic comb drive actuators
Micro cam based on electrostatic comb drive actuatorslyPham70
 
study of yaw and pitch control in quad copter
study  of yaw and pitch  control in quad copter study  of yaw and pitch  control in quad copter
study of yaw and pitch control in quad copter PranaliPatil76
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqreSAT Publishing House
 
Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...TELKOMNIKA JOURNAL
 
suspension system project report
suspension system project reportsuspension system project report
suspension system project reportUET Taxila
 
White paper - quonset-mansard elastically equivalent frames
White paper  - quonset-mansard elastically equivalent framesWhite paper  - quonset-mansard elastically equivalent frames
White paper - quonset-mansard elastically equivalent framesJulio Banks
 
Robust control theory based performance investigation of an inverted pendulum...
Robust control theory based performance investigation of an inverted pendulum...Robust control theory based performance investigation of an inverted pendulum...
Robust control theory based performance investigation of an inverted pendulum...Mustefa Jibril
 
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...ijctcm
 
Simulation of an Active Suspension Using PID Control
Simulation of an Active Suspension Using PID ControlSimulation of an Active Suspension Using PID Control
Simulation of an Active Suspension Using PID ControlSuzana Avila
 
Upb scientific bulletin3-2013
Upb scientific bulletin3-2013Upb scientific bulletin3-2013
Upb scientific bulletin3-2013HMinhThin1
 
State space modelling of a quadcopter
State space modelling of a quadcopterState space modelling of a quadcopter
State space modelling of a quadcopterSrinibashSahoo3
 
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Yong Heui Cho
 
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...Thomas Templin
 
Unmanned Airplane Autopilot Tuning
Unmanned Airplane Autopilot TuningUnmanned Airplane Autopilot Tuning
Unmanned Airplane Autopilot TuningIJERA Editor
 
How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...Corrado Santoro
 

What's hot (20)

Control of a Quadcopter
Control of a QuadcopterControl of a Quadcopter
Control of a Quadcopter
 
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
 
Micro cam based on electrostatic comb drive actuators
Micro cam based on electrostatic comb drive actuatorsMicro cam based on electrostatic comb drive actuators
Micro cam based on electrostatic comb drive actuators
 
study of yaw and pitch control in quad copter
study  of yaw and pitch  control in quad copter study  of yaw and pitch  control in quad copter
study of yaw and pitch control in quad copter
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tun...
Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tun...Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tun...
Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tun...
 
Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...
 
suspension system project report
suspension system project reportsuspension system project report
suspension system project report
 
NaCoMM Final
NaCoMM FinalNaCoMM Final
NaCoMM Final
 
White paper - quonset-mansard elastically equivalent frames
White paper  - quonset-mansard elastically equivalent framesWhite paper  - quonset-mansard elastically equivalent frames
White paper - quonset-mansard elastically equivalent frames
 
Robust control theory based performance investigation of an inverted pendulum...
Robust control theory based performance investigation of an inverted pendulum...Robust control theory based performance investigation of an inverted pendulum...
Robust control theory based performance investigation of an inverted pendulum...
 
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...
Dynamic modelling and optimal controlscheme of wheel inverted pendulum for mo...
 
Simulation of an Active Suspension Using PID Control
Simulation of an Active Suspension Using PID ControlSimulation of an Active Suspension Using PID Control
Simulation of an Active Suspension Using PID Control
 
Upb scientific bulletin3-2013
Upb scientific bulletin3-2013Upb scientific bulletin3-2013
Upb scientific bulletin3-2013
 
paper
paperpaper
paper
 
State space modelling of a quadcopter
State space modelling of a quadcopterState space modelling of a quadcopter
State space modelling of a quadcopter
 
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
 
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
 
Unmanned Airplane Autopilot Tuning
Unmanned Airplane Autopilot TuningUnmanned Airplane Autopilot Tuning
Unmanned Airplane Autopilot Tuning
 
How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...
 

Viewers also liked

Fuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeFuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeIAEME Publication
 
Fear Factor Slides, 10/16/11
Fear Factor Slides, 10/16/11Fear Factor Slides, 10/16/11
Fear Factor Slides, 10/16/11CLADSM
 
Announcements, 8/23/15
Announcements, 8/23/15Announcements, 8/23/15
Announcements, 8/23/15CLADSM
 
フランクTokyo%2 c 20 24 may 2013翻訳
フランクTokyo%2 c 20 24 may 2013翻訳フランクTokyo%2 c 20 24 may 2013翻訳
フランクTokyo%2 c 20 24 may 2013翻訳hkano
 
Announcements 3/6/16
Announcements 3/6/16Announcements 3/6/16
Announcements 3/6/16CLADSM
 
Change background and editing
Change background and editingChange background and editing
Change background and editingnayeem360
 
ivanocevic carreño
ivanocevic carreñoivanocevic carreño
ivanocevic carreñoivanocevic95
 
Математична подорож. Фотоальбом
Математична подорож. Фотоальбом Математична подорож. Фотоальбом
Математична подорож. Фотоальбом Школа №7 Миргород
 
Semi-Active Vibration Control of a Quarter Car Model Using MR Damper
Semi-Active Vibration Control of a Quarter Car Model  Using MR DamperSemi-Active Vibration Control of a Quarter Car Model  Using MR Damper
Semi-Active Vibration Control of a Quarter Car Model Using MR Damperishan kossambe
 
Стратегии роста на падающем рынке
Стратегии роста на падающем рынкеСтратегии роста на падающем рынке
Стратегии роста на падающем рынкеАнастасия Смелова
 
«Мобильная Электронная Школа» как средство реализации требований ФГОС
«Мобильная Электронная Школа» как средство реализации требований ФГОС«Мобильная Электронная Школа» как средство реализации требований ФГОС
«Мобильная Электронная Школа» как средство реализации требований ФГОСШкольная лига РОСНАНО
 
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...Мобильное Электронное Образование
 
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...Мобильное Электронное Образование
 

Viewers also liked (20)

Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 
Fuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeFuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive type
 
Fear Factor Slides, 10/16/11
Fear Factor Slides, 10/16/11Fear Factor Slides, 10/16/11
Fear Factor Slides, 10/16/11
 
Announcements, 8/23/15
Announcements, 8/23/15Announcements, 8/23/15
Announcements, 8/23/15
 
editors-edition
editors-editioneditors-edition
editors-edition
 
フランクTokyo%2 c 20 24 may 2013翻訳
フランクTokyo%2 c 20 24 may 2013翻訳フランクTokyo%2 c 20 24 may 2013翻訳
フランクTokyo%2 c 20 24 may 2013翻訳
 
Announcements 3/6/16
Announcements 3/6/16Announcements 3/6/16
Announcements 3/6/16
 
Change background and editing
Change background and editingChange background and editing
Change background and editing
 
ivanocevic carreño
ivanocevic carreñoivanocevic carreño
ivanocevic carreño
 
Magnetic bearings
Magnetic bearingsMagnetic bearings
Magnetic bearings
 
Математична подорож. Фотоальбом
Математична подорож. Фотоальбом Математична подорож. Фотоальбом
Математична подорож. Фотоальбом
 
Semi-Active Vibration Control of a Quarter Car Model Using MR Damper
Semi-Active Vibration Control of a Quarter Car Model  Using MR DamperSemi-Active Vibration Control of a Quarter Car Model  Using MR Damper
Semi-Active Vibration Control of a Quarter Car Model Using MR Damper
 
A 35 propiedades periodicas
A 35  propiedades periodicasA 35  propiedades periodicas
A 35 propiedades periodicas
 
Стратегии роста на падающем рынке
Стратегии роста на падающем рынкеСтратегии роста на падающем рынке
Стратегии роста на падающем рынке
 
«Мобильная Электронная Школа» как средство реализации требований ФГОС
«Мобильная Электронная Школа» как средство реализации требований ФГОС«Мобильная Электронная Школа» как средство реализации требований ФГОС
«Мобильная Электронная Школа» как средство реализации требований ФГОС
 
Magnetic bearing
Magnetic bearingMagnetic bearing
Magnetic bearing
 
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...
Всеволожский центр образования. Промежуточные результаты работы с "Мобильной ...
 
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...
Результаты расширенной педагогической апробации LMS "Мобильная Электронная Шк...
 
Me ppt
Me pptMe ppt
Me ppt
 
Mechanical Engineering
Mechanical EngineeringMechanical Engineering
Mechanical Engineering
 

Similar to Robust Control of Rotor/AMB Systems

COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...
COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...
COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...IAEME Publication
 
Fem based modelling of amb control system 2
Fem based modelling of amb control system 2Fem based modelling of amb control system 2
Fem based modelling of amb control system 2IAEME Publication
 
Qiu2004 curved-bistable
Qiu2004 curved-bistableQiu2004 curved-bistable
Qiu2004 curved-bistableHo Linh
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Mustefa Jibril
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekfMouli Reddy
 
Robot2L_IEEE00493506
Robot2L_IEEE00493506Robot2L_IEEE00493506
Robot2L_IEEE00493506Chih-Wu Jen
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorberEcway Technologies
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...IRJET Journal
 
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSION
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSIONPERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSION
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSIONijiert bestjournal
 
Design and analysis of x y- positioning stage based on redundant parallel li...
Design and analysis of x y- positioning stage based on redundant parallel li...Design and analysis of x y- positioning stage based on redundant parallel li...
Design and analysis of x y- positioning stage based on redundant parallel li...eSAT Journals
 
modeling and characterization of mems electrostatic energy harvester
modeling and characterization of mems electrostatic energy harvestermodeling and characterization of mems electrostatic energy harvester
modeling and characterization of mems electrostatic energy harvesterINFOGAIN PUBLICATION
 
Design and analysis of x y-q positioning stage based on
Design and analysis of x y-q positioning stage based onDesign and analysis of x y-q positioning stage based on
Design and analysis of x y-q positioning stage based oneSAT Publishing House
 

Similar to Robust Control of Rotor/AMB Systems (20)

COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...
COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...
COMPARISON OF RESPONSE TO UNBALANCE OF OVERHUNG ROTOR SYSTEM FOR DIFFERENT SU...
 
Fem based modelling of amb control system 2
Fem based modelling of amb control system 2Fem based modelling of amb control system 2
Fem based modelling of amb control system 2
 
Ac33155161
Ac33155161Ac33155161
Ac33155161
 
Qiu2004 curved-bistable
Qiu2004 curved-bistableQiu2004 curved-bistable
Qiu2004 curved-bistable
 
K1304027580
K1304027580K1304027580
K1304027580
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...
 
3d fem
3d fem3d fem
3d fem
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
 
A non-linear control method for active magnetic bearings with bounded input a...
A non-linear control method for active magnetic bearings with bounded input a...A non-linear control method for active magnetic bearings with bounded input a...
A non-linear control method for active magnetic bearings with bounded input a...
 
Robot2L_IEEE00493506
Robot2L_IEEE00493506Robot2L_IEEE00493506
Robot2L_IEEE00493506
 
D1304022532
D1304022532D1304022532
D1304022532
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorber
 
G012334650
G012334650G012334650
G012334650
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...
The Analysis of Aluminium Cantilever Beam with Piezoelectric Material by Chan...
 
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSION
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSIONPERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSION
PERFORMANCE OF HYBRID ELECTROMAGNETIC DAMPER FOR VEHICLE SUSPENSION
 
Design and analysis of x y- positioning stage based on redundant parallel li...
Design and analysis of x y- positioning stage based on redundant parallel li...Design and analysis of x y- positioning stage based on redundant parallel li...
Design and analysis of x y- positioning stage based on redundant parallel li...
 
Load flow studies
Load flow studiesLoad flow studies
Load flow studies
 
modeling and characterization of mems electrostatic energy harvester
modeling and characterization of mems electrostatic energy harvestermodeling and characterization of mems electrostatic energy harvester
modeling and characterization of mems electrostatic energy harvester
 
Design and analysis of x y-q positioning stage based on
Design and analysis of x y-q positioning stage based onDesign and analysis of x y-q positioning stage based on
Design and analysis of x y-q positioning stage based on
 

Recently uploaded

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 

Recently uploaded (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 

Robust Control of Rotor/AMB Systems

  • 1. Robust Control of Rotor/Active Magnetic Bearing Systems ˙Ibrahim Sina Kuseyri Bo˘gazic¸i University 15/03/2011 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 1 / 34
  • 2. Outline 1 Introduction Overview Applications 2 System Dynamics Magnetic Bearings Rotordynamics 3 Robust Control Controller Design Model Uncertainty and Robustness 4 Numerical Results and Simulations ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 2 / 34
  • 3. Outline 1 Introduction Overview Applications 2 System Dynamics Magnetic Bearings Rotordynamics 3 Robust Control Controller Design Model Uncertainty and Robustness 4 Numerical Results and Simulations ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 3 / 34
  • 4. Overview Radial magnetic (electromagnetic) bearing 50 100 150 200 250 300 350 50 100 150 200 250 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 4 / 34
  • 5. Overview Radial magnetic (electromagnetic) bearing 50 100 150 200 250 300 350 50 100 150 200 250 Horizontal rotor with active magnetic bearings (AMBs) ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 4 / 34
  • 6. Advantages of rotor/AMB systems No mechanical wear and friction. No lubrication therefore non-polluting. High circumferential speeds possible (more than 300 m/s). Operation in severe and demanding environments. Easily adjustable bearing characteristics (stiffness, damping). Online balancing and unbalance compensation. Online system parameter identification possible. ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 5 / 34
  • 7. Applications Satellite flywheels Turbomachinery High-speed milling and grinding spindles Electric motors Turbomolecular pumps Blood pumps Computer hard disk drives, x-ray devices, ... ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 6 / 34
  • 8. Outline 1 Introduction Overview Applications 2 System Dynamics Magnetic Bearings Rotordynamics 3 Robust Control Controller Design Model Uncertainty and Robustness 4 Numerical Results and Simulations ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 7 / 34
  • 9. Electromagnetic Bearings The AMB model considered is based on the zero leakage assumption which says that magnetic flux in a high permeability magnetic structure with small air gaps is confined to the iron and gap volumes. ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 8 / 34
  • 10. Electromagnetic bearings Two opposing electromagnets at orthogonal directions cause the force Fr = F+ − F− = kM i+ s0 − r 2 − i− s0 + r 2 on the rotor. The magnetic bearing constant kM is kM := µ0AAn2 c 4 cos αM with αM denoting the angle between a pole and magnet centerline. ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 9 / 34
  • 11. Electromagnetic bearings The non-linearities of the magnetic force are generally reduced by adding a high bias current i0 to the control currents ic in each control axis. Hence electromagnetic force in one axis can be linearized around the operating point as Fr ∼= Fr |OP + ∂Fr ∂i OP (ic − ic OP) + ∂Fr ∂r OP (r − rOP) · ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 10 / 34
  • 12. Electromagnetic bearings The non-linearities of the magnetic force are generally reduced by adding a high bias current i0 to the control currents ic in each control axis. Hence electromagnetic force in one axis can be linearized around the operating point as Fr ∼= Fr |OP + ∂Fr ∂i OP (ic − ic OP) + ∂Fr ∂r OP (r − rOP) · At ic OP = 0 and rOP = 0, the linearized magnetic bearing force of the bearing for small currents and small displacements is given by Fr,lin = kiic − ksr with the actuator gain ki and the open loop negative stiffness ks defined as ki := 4kM i0 s2 0 and ks := −4kM i2 0 s3 0 · ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 10 / 34
  • 13. Rotordynamics Equations of motion for a rigid rotor may be derived from F = ˙P = d dt (Mr v) , and M = ˙H = d dt (Iω) . θ a b bearing A bearing B φ ψ fa1 fa2 fa3 fa4 fb1 fb2 fb3 fb4 x, ζ y, η z, ξ mub,s mub,c mub,c CG d 2 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 11 / 34
  • 14. Rotordynamics The equations of motion for the four degrees of freedom are ¨x = 1 Mr [fA,x + fB,x + Mr √ 2 g + mub,s 2 Ω2 d cos (Ωt + ϕs)] , ¨y = 1 Mr [fA,y + fB,y + Mr √ 2 g + mub,s 2 Ω2 d sin (Ωt + ϕs)] , ¨ψ = 1 Ir [−ΩIp ˙θ + a(−fA,y ) + b(fB,y ) + (a + b) 2 mub,c Ω2 d sin (Ωt + ϕc)] , ¨θ = 1 Ir [ΩIp ˙ψ + a(fA,x ) + b(−fB,x ) − (a + b) 2 mub,c Ω2 d cos (Ωt + ϕc)] . ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 12 / 34
  • 15. Rotor/AMB model in state-space The equations of motion for the electromechanical system in the state-space form are ˙xr = 0 I AS AG(Ω) xr + Bwr w + Bur u + ¯g , where xr := (x y ψ θ ˙x ˙y ˙ψ ˙θ )T , u = (icA,x icA,y icB,x icB,y )T , w = (1 2 mub,sd 1 2 mub,cd)T . ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 13 / 34
  • 16. Rotor/AMB model in state-space The equations of motion for the electromechanical system in the state-space form are ˙xr = 0 I AS AG(Ω) xr + Bwr w + Bur u + ¯g , where xr := (x y ψ θ ˙x ˙y ˙ψ ˙θ )T , u = (icA,x icA,y icB,x icB,y )T , w = (1 2 mub,sd 1 2 mub,cd)T . Control objective is to stabilize the system and to minimize the rotor displacements (whirl) with moderate control effort. ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 13 / 34
  • 17. Outline 1 Introduction Overview Applications 2 System Dynamics Magnetic Bearings Rotordynamics 3 Robust Control Controller Design Model Uncertainty and Robustness 4 Numerical Results and Simulations ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 14 / 34
  • 18. Controller design K ym u di n+ + v di n w + + z yu P K { v ym u e} G G ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 15 / 34
  • 19. Controller design Controlled Output Input and/or Disturbance Measurement (Feedback)Input w z u y Manipulated P K (Controller) (Generalized Plant) ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
  • 20. Controller design Controlled Output Input and/or Disturbance Measurement (Feedback)Input w z u y Manipulated P K (Controller) (Generalized Plant) Q: How to choose K? ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
  • 21. Controller design Controlled Output Input and/or Disturbance Measurement (Feedback)Input w z u y Manipulated P K (Controller) (Generalized Plant) Q: How to choose K? A: Minimize the “size” (e.g. H∞ or H2-norm) of the closed-loop transfer function M from w to z. w zM ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 16 / 34
  • 22. H2 and H∞-norms The definitions are M ∞ := sup ω ¯σ M(jω) Note : ¯σ(M) := λmax (M∗M) M 2 := 1 2π ∞ −∞ Trace M(jω)∗M(jω) dω ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 17 / 34
  • 23. H2 and H∞-norms The definitions are M ∞ := sup ω ¯σ M(jω) Note : ¯σ(M) := λmax (M∗M) M 2 := 1 2π ∞ −∞ Trace M(jω)∗M(jω) dω For SISO LTI systems, M ∞ = supω |M(jω)| = peak of the Bode plot M 2 = 1 2π ∞ −∞ |M(jω)|2 dω ∼ area under the Bode plot ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 17 / 34
  • 24. Frequency Weighting Can fine-tune the solution by using frequency weights on w and z. K + ym u di do n + + + ++ + v ˜u ˜n ˜di ˜do eWr Wu Wi Wo We Wn + − ˜e ˜ri ri ri − ym G− log ω |W|dB ωc log ω |W|dB ωuωl log ω |W|dB ωc ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 18 / 34
  • 25. Model uncertainty Uncertainty in Rotor/AMB Models Model Parameter Uncertainty (such as AMB stiffness ks) Neglected High Frequency Dynamics (high frequency flexible modes of the rotor) Nonlinearities (such as hysteresis effects in AMB) Neglected Dynamics (such as vibrations of rotor blades) Setup Variations (e.g., a controller for an AMB milling spindle should function with tools of different mass) Changing System Dynamics (gyroscopic effects change the location of the poles at different operating speeds) ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 19 / 34
  • 26. Closed-loop rotor/AMB system with uncertainty K WqWp WzWw˜w ˜zw z p q yu ˜∆ ˜P ˜p ˜q ¯P σ W−1 p (jω) ∆(jω) W−1 q (jω) = σ ˜∆(jω) ≤ 1 ∀ ω ∈ Re ∆ := δksI 0 0 ΩI ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 20 / 34
  • 27. Closed-loop rotor/AMB system with uncertainty Overall system in the state-space form K WqWp WzWw˜w ˜zw z p q yu ˜∆ ˜P ˜p ˜q ¯P ˙x = Ax + Bp˜p + Bw ˜w + Buu ˜q = Cqx + Dqw ˜w ˜z = Czx + Dzuu y = Cy x + Dyw ˜w p = ∆q ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 21 / 34
  • 28. Outline 1 Introduction Overview Applications 2 System Dynamics Magnetic Bearings Rotordynamics 3 Robust Control Controller Design Model Uncertainty and Robustness 4 Numerical Results and Simulations ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 22 / 34
  • 29. Numerical Results - System Data A A bearing A bearing B touch-down bearing A touch-down bearing B displacement sensors magneticmagnetic sA a b sB LD LS dDSection A-A dS g Symbol Value Unit Symbol Value Unit Symbol Value Unit MS 85.90 kg LS 1.50 m s0 2.0 · 10−3 m MD 77.10 kg LD 0.05 m s1 0.5 · 10−3 m Ir 17.28 kg·m2 dS 0.10 m i0 3.0 A Ip 2.41 kg·m2 dD 0.50 m kM 7.8455 · 10−5 N·m2/A2 a 0.58 m sA 0.73 m ks −3.5305 · 105 N/m b 0.58 m sB 0.73 m ki 235.4 N/A ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 23 / 34
  • 30. Numerical Results - Weighting functions Wu = 38 s + 1200 s + 50000 I4 We = s + 0.05 s + 0.01 I4 10 −2 10 0 10 2 10 4 10 6 −5 0 5 10 15 20 25 30 35 Frequency [rad/s] Gain[dB] Wu 10 −2 10 0 10 2 10 4 10 6 0 2 4 6 8 10 12 Frequency [rad/s] Gain[dB] We ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 24 / 34
  • 31. Results with the H∞ controllers for the nominal system Maximum operation speed = 3000 rpm (≈ 314.2 rad/s) 10 −2 10 0 10 2 10 4 10 6 −100 −80 −60 −40 −20 0 20 Singular Values Frequency (rad/sec) SingularValues(dB) Singular values of controller K1 10 −2 10 0 10 2 10 4 10 6 −100 −80 −60 −40 −20 0 20 Singular Values Frequency (rad/sec) SingularValues(dB) Singular values of controller K2 10 −2 10 0 10 2 10 4 10 6 −140 −120 −100 −80 −60 −40 −20 0 20 40 Singular Values Frequency (rad/sec) SingularValues(dB) Closed−loop SVs with K1 10 −2 10 0 10 2 10 4 10 6 −140 −120 −100 −80 −60 −40 −20 0 20 40 Singular Values Frequency (rad/sec) SingularValues(dB) Closed−loop SVs with K2 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 25 / 34
  • 32. Results with the H∞ controllers for the nominal system Table : H∞ performance with K1 for different design parameters Maximum speed (rpm) Maximum mass center displacement (m) γ 1500 0.25·10−3 70.96 3000 0.25·10−3 97.06 6000 0.25·10−3 99.81 1500 0.50·10−3 89.57 3000 0.50·10−3 99.24 6000 0.50·10−3 100.07 Table : H∞ performance with K2 for different design parameters Maximum speed (rpm) Maximum mass center displacement (m) γ 1500 0.25·10−3 11.41 3000 0.25·10−3 15.42 6000 0.25·10−3 31.77 1500 0.50·10−3 12.62 3000 0.50·10−3 21.05 6000 0.50·10−3 52.01 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 26 / 34
  • 33. Critical speeds (eigenfrequencies) Pole−Zero Map Real Axis ImaginaryAxis −250 −200 −150 −100 −50 0 50 100 150 200 250 −60 −40 −20 0 20 40 60 x: Openloop eigenfrequencies at standstill (rad/s) −117 (x2) 117 (x2) −65.8 (x2) 65.8 (x2) 10 0 10 1 10 2 10 3 10 4 −200 −150 −100 −50 0 50 100 Frequency (Speed) [rad/s] ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel) XA YA XB YB 120 Phase shift with K1 10 0 10 1 10 2 10 3 10 4 −200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0 Frequency[rad/s] ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel) XA YA XB YB 150 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 27 / 34
  • 34. Results with the reduced order H∞ controllers The H∞ norm of the closed-loop system at 3000 rpm with the reduced ordered controllers K1r and K2r (4 states are eliminated) increases from 99.24 to 529.55 and from 21.05 to 62.07 respectively. 10 −2 10 0 10 2 10 4 10 6 −140 −120 −100 −80 −60 −40 −20 0 20 40 60 Singular Values Frequency (rad/sec) SingularValues(dB) Closed−loop SVs with K1r 10 −2 10 0 10 2 10 4 10 6 −140 −120 −100 −80 −60 −40 −20 0 20 40 Singular Values Frequency (rad/sec) SingularValues(dB) Closed−loop SVs with K2r 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 −200 −150 −100 −50 0 50 Frequency[rad/s] ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel) XA YA XB YB 170 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 −200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0 Frequency[rad/s] ClosedloopPhaseshiftforjournaldisplacements(unbalancechannel) XA YA XB YB 185 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 28 / 34
  • 35. Robust stability of the uncertain closed-loop system Using the model incorporating parametric uncertainty structure, nominal bearing stiffness is set to the nominal value with 25% uncertainty. Nominal speed is selected as half of the maximum speed of operation. Keeping the uncertainty on the bearing stiffness constant (25%), robust stability of the closed-loop system is tested for several maximum operating speeds with µ-analysis. Moreover, keeping the operation speed constant (3000 rpm), robust stability is tested for uncertainty in bearing stiffness. 3000 3500 4000 4500 5000 5500 6000 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Maximum rotor speed (RPM) mu 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Uncertainty in bearing stiffness (%) mu ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 29 / 34
  • 36. Results with the robust H∞ controller Singular values of the controller and the closed-loop system for a maximum operating speed of 4085 rpm (∼= 418 rad/s) are shown below. H∞ performance γ of the closed-loop system for Ωmax = 4085 rpm is 47.86. Note that the closed-loop system with K3 have twenty-nine inputs and thirty-two outputs, whereas the closed-loop systems with K1 and K2 have five inputs and eight outputs. Order of the controller K3 (which is twelve) can not be reduced since it leads to the instability of the closed-loop system. 10 −2 10 0 10 2 10 4 10 6 −100 −80 −60 −40 −20 0 20 Singular Values Frequency (rad/sec) SingularValues(dB) Singular values of controller K3 10 −2 10 0 10 2 10 4 10 6 −1000 −800 −600 −400 −200 0 200 Singular Values Frequency (rad/sec) SingularValues(dB) Closed−loop SVs with K3 ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 30 / 34
  • 37. Simulations Simulation Environment in SIMULINK (Rotor/AMB) ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 31 / 34
  • 38. Simulations We analyze the H∞ performance of the closed-loop system using the controller K2 in the simulations. Disturbance acting on the system, i.e., unbalance force and sensor/electronic noise, are shown below. 0 0.1 0.2 0.3 0.4 0.5 −100 −80 −60 −40 −20 0 20 40 60 80 100 Time (sec) UnbalanceForce(Newtons) 0 100 200 300 400 500 600 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 Time (msec) Volts Sensor Noise ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 32 / 34
  • 39. Simulation Results 0 0.1 0.2 0.3 0.4 0.5 −2 −1 0 1 2 3 4 5 6 Time (sec) X A (Volts) Rotor displacement in Bearing A (x−direction) 0 0.1 0.2 0.3 0.4 0.5 −6 −5 −4 −3 −2 −1 0 1 2 Time (sec) Y A (Volts) Rotor displacement in Bearing A (y−direction) 0 0.1 0.2 0.3 0.4 0.5 −4 −3 −2 −1 0 1 2 Time (sec) ic,Ax(Amperes) Control current for Bearing A (x−axis) 0 0.1 0.2 0.3 0.4 0.5 −2 −1 0 1 2 3 4 Time (sec) ic,Ay(Amperes) Control current for Bearing A (y−axis) Rotor position and control currents during start-up ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 33 / 34
  • 40. Simulation Results Mass center displacement (eccentricity) due to unbalance of the rotor is assumed to be 0.25 · 10−3 m in the simulations. Peak value of the vibration (except the transient) is less than 0.1 V, corresponding to 14 · 10−6 m. Hence, the H∞ controller K2 reduces the unbalance whirl amplitude of the rotor more than 95%. 0 0.1 0.2 0.3 0.4 0.5 −2 −1.5 −1 −0.5 0 0.5 Time (sec) X A (Volts) Rotor displacement in Bearing A (x−direction) 0 0.1 0.2 0.3 0.4 0.5 −2 −1.5 −1 −0.5 0 0.5 1 Time (sec) YA (Volts) Rotor displacement in Bearing A (y−direction) 0 0.1 0.2 0.3 0.4 0.5 −3 −2 −1 0 1 2 3 4 Time (sec) ic,Ax(Amperes) Control current for Bearing A (x−axis) 0 0.1 0.2 0.3 0.4 0.5 −3 −2 −1 0 1 2 3 4 Time (sec) ic,Ay(Amperes) Control current for Bearing A (y−axis) ˙I. Sina Kuseyri (Bo˘gazic¸i University) Robust Control of Rotor/AMB Systems 15/03/2011 34 / 34