EMI Analyst™
EMI ANALYST™ Software Suite
I n t u i t i v e  A c c u r a t e  E f f e c t i v e
Radiated emissions example
LVDS – Low Voltage Differential Signaling
EMI Analyst™
Radiated Emissions Test Setup
LVDS DRIVER LVDS RECEIVER
EMI Analyst™
LVDS Circuit and Equivalent Model
LVDS Circuit Model
Equivalent Circuit from IBIS Model and Datasheet
DO+
DO-
RI+
RI-
100Ω
50m1.05193n
0.16890p
58
50m1.05308n
0.16861p
58
DO+
DO-
RI+
RI-
100Ω
50m 1.05193n
0.16890p 240k
50m 1.64135n
0.37335p 240k
EMI Analyst™
0V
VDO-
VDO+
VDM = VDO+ - VDO-
tRISE tFALL
0V
80%
20%
LVDS Circuit Characteristics
• Voltage: 360 mV, differential
• Current: 6 mA
• Rise/fall time: 700/800 psec, 20%-80%
• Skew: 400 psec typ.
• Char Z: 100 
Falling edge and rising edge waveforms
EMI Analyst™
Radiated Emissions Comparisons
Five conditions evaluated • Three cable configurations
• Unshielded Twisted Pair
• Shielded Twisted Pair, Braid Shield
• Shielded Twisted Pair, Conductive
Fabric Tape Shield
• Two common mode noise
sources
• CM voltage induced by other
circuits
• CM voltage induced by LDVS signal
skew
# Cable Shield CM Noise Skew
1 None (TPUJ) N N
2 None (TPUJ) Y N
3 Braid (TPSJ) Y N
4 Braid (TPSJ) Y Y
5 Conductive
Fabric Tape
(TPTJ)
Y Y
EMI Analyst™
• Conditions
• 10 MHz data rate
• No skew
• No CM voltage
• Ideal ground conditions
LVDS Condition 1
Unshielded Cable, No Skew, No CM noise
0V
VDO-
VDO+
VDM = VDO+ - VDO-
VCM = VDO+ + VDO-
tRISE tFALL
0V
80%
20%
DO+
DO-
RI+
RI-
100Ω
EMI Analyst™
RE Results for Condition 1
Unshielded Cable, No Skew, No CM noise
EMI Analyst™
• Conditions
• 10 MHz data rate
• No skew
• 10 mV, 1 MHz CM flat spectrum
LVDS Condition 2
Unshielded Cable, No Skew, 10 mV CM Noise
DO+
DO-
RI+
RI-
100Ω
VCM
(noise)
0V
VDO-
VDO+
VDM = VDO+ - VDO-
VCM = 10 mV
tRISE tFALL
0V
80%
20%
EMI Analyst™
RE Results for Condition 2
Unshielded Cable, No Skew, 10 mV CM Noise
EMI Analyst™
• Conditions
• 10 MHz data rate
• No skew
• 10 mV, 1 MHz system CM noise
LVDS Condition 3
Braid Shielded Cable, No Skew, 10 mV CM Noise
DO+
DO-
RI+
RI-
100Ω
VCM
(noise)
0V
VDO-
VDO+
VDM = VDO+ - VDO-
VCM = 10 mV
tRISE tFALL
0V
80%
20%
EMI Analyst™
RE Results for Condition 3
Braid Shielded Cable, No Skew, 10 mV CM Noise
EMI Analyst™
LVDS Condition 4
Braid Shielded Cable, 200 ps Skew, 10 mV CM Noise
• Conditions
• 10 MHz data rate
• 0.2 nsec signal skew induces
70 mV CM pulses
• 10 mV, 1 MHz system CM noise
DO+
DO-
RI+
RI-
100Ω
VCM
(noise)
0V
VDO-
VDO+
VDM = VDO+ - VDO-
Signal VCM = VDO+ + VDO- = 70 mV
tRISE tFALL
0V
80%
20%
System VCM = 10 mV
EMI Analyst™
RE Results for Condition 4
Braid Shielded Cable, 200 ps Skew, 10 mV CM Noise
EMI Analyst™
LVDS Condition 5
Laird Tape Shielded Cable, 200 ps Skew, 10 mV CM Noise
• Conditions
• 10 MHz data rate
• Signal skew
• No CM circuit noise
• Ideal grounding
DO+
DO-
RI+
RI-
100Ω
VCM
(noise)
Z
0V
VDO-
VDO+
VDM = VDO+ - VDO-
Signal VCM = VDO+ + VDO- = 70 mV
tRISE tFALL
0V
80%
20%
System VCM = 10 mV
EMI Analyst™
RE Results for Condition 5
Laird Tape Shielded Cable, 200 ps Skew, 10 mV CM Noise
EMI Analyst™
Visit https://www.emisoftware.com
to learn how EMI Analyst™
can prevent electromagnetic
interference for your next project.

Radiated Emissions Example; LVDS - Low Voltage Differential Signaling

  • 1.
    EMI Analyst™ EMI ANALYST™Software Suite I n t u i t i v e  A c c u r a t e  E f f e c t i v e Radiated emissions example LVDS – Low Voltage Differential Signaling
  • 2.
    EMI Analyst™ Radiated EmissionsTest Setup LVDS DRIVER LVDS RECEIVER
  • 3.
    EMI Analyst™ LVDS Circuitand Equivalent Model LVDS Circuit Model Equivalent Circuit from IBIS Model and Datasheet DO+ DO- RI+ RI- 100Ω 50m1.05193n 0.16890p 58 50m1.05308n 0.16861p 58 DO+ DO- RI+ RI- 100Ω 50m 1.05193n 0.16890p 240k 50m 1.64135n 0.37335p 240k
  • 4.
    EMI Analyst™ 0V VDO- VDO+ VDM =VDO+ - VDO- tRISE tFALL 0V 80% 20% LVDS Circuit Characteristics • Voltage: 360 mV, differential • Current: 6 mA • Rise/fall time: 700/800 psec, 20%-80% • Skew: 400 psec typ. • Char Z: 100  Falling edge and rising edge waveforms
  • 5.
    EMI Analyst™ Radiated EmissionsComparisons Five conditions evaluated • Three cable configurations • Unshielded Twisted Pair • Shielded Twisted Pair, Braid Shield • Shielded Twisted Pair, Conductive Fabric Tape Shield • Two common mode noise sources • CM voltage induced by other circuits • CM voltage induced by LDVS signal skew # Cable Shield CM Noise Skew 1 None (TPUJ) N N 2 None (TPUJ) Y N 3 Braid (TPSJ) Y N 4 Braid (TPSJ) Y Y 5 Conductive Fabric Tape (TPTJ) Y Y
  • 6.
    EMI Analyst™ • Conditions •10 MHz data rate • No skew • No CM voltage • Ideal ground conditions LVDS Condition 1 Unshielded Cable, No Skew, No CM noise 0V VDO- VDO+ VDM = VDO+ - VDO- VCM = VDO+ + VDO- tRISE tFALL 0V 80% 20% DO+ DO- RI+ RI- 100Ω
  • 7.
    EMI Analyst™ RE Resultsfor Condition 1 Unshielded Cable, No Skew, No CM noise
  • 8.
    EMI Analyst™ • Conditions •10 MHz data rate • No skew • 10 mV, 1 MHz CM flat spectrum LVDS Condition 2 Unshielded Cable, No Skew, 10 mV CM Noise DO+ DO- RI+ RI- 100Ω VCM (noise) 0V VDO- VDO+ VDM = VDO+ - VDO- VCM = 10 mV tRISE tFALL 0V 80% 20%
  • 9.
    EMI Analyst™ RE Resultsfor Condition 2 Unshielded Cable, No Skew, 10 mV CM Noise
  • 10.
    EMI Analyst™ • Conditions •10 MHz data rate • No skew • 10 mV, 1 MHz system CM noise LVDS Condition 3 Braid Shielded Cable, No Skew, 10 mV CM Noise DO+ DO- RI+ RI- 100Ω VCM (noise) 0V VDO- VDO+ VDM = VDO+ - VDO- VCM = 10 mV tRISE tFALL 0V 80% 20%
  • 11.
    EMI Analyst™ RE Resultsfor Condition 3 Braid Shielded Cable, No Skew, 10 mV CM Noise
  • 12.
    EMI Analyst™ LVDS Condition4 Braid Shielded Cable, 200 ps Skew, 10 mV CM Noise • Conditions • 10 MHz data rate • 0.2 nsec signal skew induces 70 mV CM pulses • 10 mV, 1 MHz system CM noise DO+ DO- RI+ RI- 100Ω VCM (noise) 0V VDO- VDO+ VDM = VDO+ - VDO- Signal VCM = VDO+ + VDO- = 70 mV tRISE tFALL 0V 80% 20% System VCM = 10 mV
  • 13.
    EMI Analyst™ RE Resultsfor Condition 4 Braid Shielded Cable, 200 ps Skew, 10 mV CM Noise
  • 14.
    EMI Analyst™ LVDS Condition5 Laird Tape Shielded Cable, 200 ps Skew, 10 mV CM Noise • Conditions • 10 MHz data rate • Signal skew • No CM circuit noise • Ideal grounding DO+ DO- RI+ RI- 100Ω VCM (noise) Z 0V VDO- VDO+ VDM = VDO+ - VDO- Signal VCM = VDO+ + VDO- = 70 mV tRISE tFALL 0V 80% 20% System VCM = 10 mV
  • 15.
    EMI Analyst™ RE Resultsfor Condition 5 Laird Tape Shielded Cable, 200 ps Skew, 10 mV CM Noise
  • 16.
    EMI Analyst™ Visit https://www.emisoftware.com tolearn how EMI Analyst™ can prevent electromagnetic interference for your next project.