SlideShare a Scribd company logo
Quantum entanglement by M. Kaliszewski K. Opiela A. Tokarczyk
contents Theory of quantum entanglement A practicalexample Mathematicalfundamentals Quantum bit Quantum superposition Quantum teleportation Quantum computers
Theory of quantum entanglement
Theory of quantum entanglement Quantum entanglement is a property of the quantum mechanical state of a system containing two or more objects, where the objects that make up the system are linked in such a way that the quantum state of any of them cannot be adequately described without full mention of the others, even if the individual objects are spatially separated.
A practicalexample
A Practicalexample We madetwocups of hot chocolate. However, Marcin made a stupidmistake and now we havetwonon-identicalcups of chocolate: a strong and a weak one. Thesetwocupsarenowentangled.
A Practicalexample However, theyhavethe same colour and, infact, theylookexactlythe same. To determinewhich cup isstrong and whichisweak, we need to taste (measure) only one cup of chocolate. Thatway we measurethequantum state.
A Practicalexample Afterthe first measurement, whichiscompletelyunpredictable, we instantlyknowthe quantum states of bothcups of hot chocolate. For example: we tastedthestrongchocolate. We instantlyknowthatthesecond one isweak.
A Practicalexample
Mathematicalfundamentals
Bra-ket notation Bra-ket notation is a standard notation for describing quantum states in the theory of quantum mechanics composed of angle brackets and vertical bars. It can also be used to denote abstract vectors and linear functionals in mathematics. It is so called because the inner product (or dot product) of two states is denoted by a bracket, , consisting of a left part, , called the bra (pronounced /ˈbrɑː/), and a right part, , called the ket (pronounced /ˈkɛt/). The notation was introduced in 1930 by Paul Dirac,[1] and is also known as Dirac notation. Bra-ket notation is widespread in quantum mechanics: almost every phenomenon that is explained using quantum mechanics—including a large proportion of modern physics—is usually explained with the help of bra-ket notation. The expression is typically interpreted as the probability amplitude for the state to collapse into the state
Bra-ket – usage in quantum mechanics In quantum mechanics, the state of a physical system is identified with a ray in a complexseparableHilbert space, , or, equivalently, by a point in the projective Hilbert space of the system. Each vector in the ray is called a "ket" and written as , which would be read as "ketpsi". (The can be replaced by any symbols, letters, numbers, or even words—whatever serves as a convenient label for the ket.) The ket can be viewed as a column vector and (given a basis for the Hilbert space) written out in coordinates, when the considered Hilbert space is finite-dimensional. In infinite-dimensional spaces there are infinitely many coordinates and the ket may be written in complex function notation, by prepending it with a bra (see below). For example, Every ket has a dualbra, written as . For example, the bra corresponding to the ket above would be the row vector This is a continuous linear functional from to the complex numbers , defined by: for all kets , where denotes the inner product defined on the Hilbert space. Here the origin of the bra-ket notation becomes clear: when we drop the parentheses (as is common with linear functionals) and meld the bars together we get , which is common notation for an inner product in a Hilbert space. This combination of a bra with a ket to form a complex number is called a bra-ket or bracket. The bra is simply the conjugate transpose (also called the Hermitian conjugate) of the ket and vice versa. The notation is justified by the Riesz representation theorem, which states that a Hilbert space and its dual space are isometrically conjugate isomorphic. Thus, each bra corresponds to exactly one ket, and vice versa. More precisely, if is the Riesz isomorphism between and its dual space, then Note that this only applies to states that are actually vectors in the Hilbert space. Non-normalizable states, such as those whose wavefunctions are Dirac delta functions or infinite plane waves, do not technically belong to the Hilbert space. So if such a state is written as a ket, it will not have a corresponding bra according to the above definition. This problem can be dealt with in either of two ways. First, since all physical quantum states are normalizable, one can carefully avoid non-normalizable states. Alternatively, the underlying theory can be modified and generalized to accommodate such states, as in the Gelfand-Naimark-Segal construction or rigged Hilbert spaces. In fact, physicists routinely use bra-ket notation for non-normalizable states, taking the second approach either implicitly or explicitly. In quantum mechanics the expression (mathematically: the coefficient for the projection of onto ) is typically interpreted as the probability amplitude for the state to collapse into the state  The advantage of the bra-ket notation over explicit wave function algebra is the possibility of expressing operations on quantum states independent of a basis. For example the Schrödinger equation is simply expressed as The operators can be conveniently expressed in different bases (see next section for the operations used in these formulas : action of a linear operator, outer product of a ket and a bra): (For a rigorous definition of basis with a continuous set of indices and consequently for a rigorous definition of position and momentum basis see [2]) (For a rigorous statement of the expansion of an S-diagonalizable operator - observable - in its eigenbasis or in another basis see [3]) The wave functions in real, momentum or reciprocal space can be retrieved as needed: and all basis conversions can be performed via the relations such as (for a rigorous treatment of the Dirac inner product of non-normalizable states see the definition given by D. Carfì in [4] and [5])
Mathematical formulations of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. Such are distinguished from mathematical formalisms for theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces and operators on these spaces. Many of these structures are drawn from functional analysis, a research area within pure mathematics that was influenced in part by the needs of quantum mechanics. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely: as spectral values (point spectrum plus absolute continuous plus singular continuous spectrum) of linear operators in Hilbert space.[1] These formulations of quantum mechanics continue to be used today. At the heart of the description are ideas of quantum state and quantum observable which are radically different from those used in previous models of physical reality. While the mathematics permits calculation of many quantities that can be measured experimentally, there is a definite theoretical limit to values that can be simultaneously measured. This limitation was first elucidated by Heisenberg through a thought experiment, and is represented mathematically in the new formalism by the non-commutativity of quantum observables. Prior to the emergence of quantum mechanics as a separate theory, the mathematics used in physics consisted mainly of differential geometry and partial differential equations; probability theory was used in statistical mechanics. Geometric intuition clearly played a strong role in the first two and, accordingly, theories of relativity were formulated entirely in terms of geometric concepts. The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the emergence of quantum theory (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures. The most sophisticated example of this is the Sommerfeld–Wilson–Ishiwara quantization rule, which was formulated entirely on the classical phase space.
Quantum bits
Quantum bits In quantum computing, a qubit (/ˈkjuːbɪt/) or quantum bit is a unit of quantum information—the quantum analogue of the classical bit—with additional dimensions associated to the quantum properties of a physical atom. The physical construction of a quantum computer is itself an arrangement of entangled[clarification needed] atoms, and the qubit represents[clarification needed] both the state memory and the state of entanglement in a system. A quantum computation is performed by initializing a system of qubits with a quantum algorithm —"initialization" here referring to some advanced physical process that puts the system into an entangled state.[citation needed] The qubit is described by a quantum state in a two-state quantum-mechanical system, which is formally equivalent to a two-dimensional vector space over the complex numbers. One example of a two-state quantum system is the polarization of a single photon: here the two states are vertical polarisation and horizontal polarisation. In a classical system, a bit would have to be in one state or the other, but quantum mechanics allows the qubit to be in a superposition of both states at the same time, a property which is fundamental to quantum computing.
Physicalrepresentation of qubits
Quantum superposition Quantum superposition refers to the quantum mechanical property of solutions to the Schrödinger equation. Since the Schrödinger equation is linear, any linear combination of solutions to a particular equation will also be a solution of it. This mathematical property of linear equations is known as the superposition principle. In quantum mechanics such solutions are often made to be orthogonal (i.e. the vectors are at right-angles to each other), such as the energy levels of an electron. By doing so the overlap energy of the states is nullified, and the expectation value of an operator (any superposition state) is the expectation value of the operator in the individual states, multiplied by the fraction of the superposition state that is "in" that state. An example of a directly observable effect of superposition is interference peaks from an electronwave in a double-slit experiment.
Quantum superposition Quantum superposition of n states Wavefunctioncollapse State 1 Staten State 2
Quantum chocolate A nice example of quantum superpositioncan be the practicalexample of quantum entanglementmentionedat the beginning of ourpresentation, the hot chocolatecase. The twocups of hot chocolateexist in the state of quantum superpositionbeforemeasurement. The situationisverysimilar to the famousSchrödinger's cat.
Quantum suicide
Quantum teleportation
Quantum teleportation
Quantum computers

More Related Content

What's hot

Quantum entanglement.pptx
Quantum entanglement.pptxQuantum entanglement.pptx
Quantum entanglement.pptx
BhavyaGupta228619
 
Quantum computer
Quantum computerQuantum computer
Quantum computerNikhil Eg
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
Rajasekhar Manda
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
dharmsinghggu
 
Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and How
inside-BigData.com
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
pixiejen
 
Quantum computation - Introduction
Quantum computation - IntroductionQuantum computation - Introduction
Quantum computation - IntroductionAakash Martand
 
Quantum entaglement
Quantum entaglementQuantum entaglement
Quantum entaglement
Sreepadmanabh M
 
Quantum Computing - Basic Concepts
Quantum Computing - Basic ConceptsQuantum Computing - Basic Concepts
Quantum Computing - Basic Concepts
Sendash Pangambam
 
Presentation quantum computers
Presentation quantum computersPresentation quantum computers
Presentation quantum computers
AzeemAhmed55
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
TejasKapile1
 
Quantum computer
Quantum computerQuantum computer
Quantum computer
Kumar Abhijeet
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
Samira Riki
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum EntanglementAlexis Diaz
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
Jonathan Tan
 
Quantum Computing: Welcome to the Future
Quantum Computing: Welcome to the FutureQuantum Computing: Welcome to the Future
Quantum Computing: Welcome to the Future
VernBrownell
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
t0pgun
 
Quantum computing - Introduction
Quantum computing - IntroductionQuantum computing - Introduction
Quantum computing - Introduction
rushmila
 

What's hot (20)

Quantum entanglement.pptx
Quantum entanglement.pptxQuantum entanglement.pptx
Quantum entanglement.pptx
 
Quantum computer
Quantum computerQuantum computer
Quantum computer
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and How
 
Quantum computer ppt
Quantum computer pptQuantum computer ppt
Quantum computer ppt
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
 
Quantum computation - Introduction
Quantum computation - IntroductionQuantum computation - Introduction
Quantum computation - Introduction
 
Quantum Computing ppt
Quantum Computing  pptQuantum Computing  ppt
Quantum Computing ppt
 
Quantum entaglement
Quantum entaglementQuantum entaglement
Quantum entaglement
 
Quantum Computing - Basic Concepts
Quantum Computing - Basic ConceptsQuantum Computing - Basic Concepts
Quantum Computing - Basic Concepts
 
Presentation quantum computers
Presentation quantum computersPresentation quantum computers
Presentation quantum computers
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum computer
Quantum computerQuantum computer
Quantum computer
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
 
Quantum Computing: Welcome to the Future
Quantum Computing: Welcome to the FutureQuantum Computing: Welcome to the Future
Quantum Computing: Welcome to the Future
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Quantum computing - Introduction
Quantum computing - IntroductionQuantum computing - Introduction
Quantum computing - Introduction
 

Viewers also liked

Multi-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and EvolutionsMulti-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and Evolutions
Matthew Leifer
 
Teleportation
TeleportationTeleportation
Teleportation
nayakslideshare
 
Theorys of the universe
Theorys of the universeTheorys of the universe
Theorys of the universetylerking5
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationswtyru1989
 
Spooky action from a distance
Spooky action from a distanceSpooky action from a distance
Spooky action from a distance
Eran Sinbar
 
Pathria statistical mechanics
Pathria statistical mechanicsPathria statistical mechanics
Pathria statistical mechanics
Omar Varela
 
Dirac notation
Dirac notationDirac notation
Dirac notation
LucasOliveiraLima
 
Linear algebra in the dirac notation
Linear algebra in the dirac notationLinear algebra in the dirac notation
Linear algebra in the dirac notation
LucasOliveiraLima
 
Hagelin Invincibility Chart Hr
Hagelin Invincibility Chart HrHagelin Invincibility Chart Hr
Hagelin Invincibility Chart HrAMTR
 
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
Vasudha Pande
 
Ph ddefenseamri
Ph ddefenseamriPh ddefenseamri
Ph ddefenseamritamriquant
 
How to win with tag management
How to win with tag managementHow to win with tag management
How to win with tag management
Qubit
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
JAISMON FRANCIS
 
Teleportation of a Tripartite Entangled Coherent State
Teleportation of a Tripartite Entangled Coherent StateTeleportation of a Tripartite Entangled Coherent State
Teleportation of a Tripartite Entangled Coherent State
Vasudha Pande
 
Would you bet your job on your A/B test results?
Would you bet your job on your A/B test results?Would you bet your job on your A/B test results?
Would you bet your job on your A/B test results?
Qubit
 
W3C Analyst pre-briefing presentation
W3C Analyst pre-briefing presentationW3C Analyst pre-briefing presentation
W3C Analyst pre-briefing presentation
Qubit
 
Quantum Information
Quantum InformationQuantum Information
Quantum Information
Prasanna Venkatesan
 
Introduction to Quantum Secret Sharing
Introduction to Quantum Secret SharingIntroduction to Quantum Secret Sharing
Introduction to Quantum Secret Sharing
Arunabha Saha
 
Quantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systemsQuantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systems
karl3s
 

Viewers also liked (20)

Multi-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and EvolutionsMulti-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and Evolutions
 
Teleportation
TeleportationTeleportation
Teleportation
 
Quantum theory
Quantum theoryQuantum theory
Quantum theory
 
Theorys of the universe
Theorys of the universeTheorys of the universe
Theorys of the universe
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
 
Spooky action from a distance
Spooky action from a distanceSpooky action from a distance
Spooky action from a distance
 
Pathria statistical mechanics
Pathria statistical mechanicsPathria statistical mechanics
Pathria statistical mechanics
 
Dirac notation
Dirac notationDirac notation
Dirac notation
 
Linear algebra in the dirac notation
Linear algebra in the dirac notationLinear algebra in the dirac notation
Linear algebra in the dirac notation
 
Hagelin Invincibility Chart Hr
Hagelin Invincibility Chart HrHagelin Invincibility Chart Hr
Hagelin Invincibility Chart Hr
 
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
Swapping between Two Nonorthogonal Entangled Coherent States (and Branching o...
 
Ph ddefenseamri
Ph ddefenseamriPh ddefenseamri
Ph ddefenseamri
 
How to win with tag management
How to win with tag managementHow to win with tag management
How to win with tag management
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
 
Teleportation of a Tripartite Entangled Coherent State
Teleportation of a Tripartite Entangled Coherent StateTeleportation of a Tripartite Entangled Coherent State
Teleportation of a Tripartite Entangled Coherent State
 
Would you bet your job on your A/B test results?
Would you bet your job on your A/B test results?Would you bet your job on your A/B test results?
Would you bet your job on your A/B test results?
 
W3C Analyst pre-briefing presentation
W3C Analyst pre-briefing presentationW3C Analyst pre-briefing presentation
W3C Analyst pre-briefing presentation
 
Quantum Information
Quantum InformationQuantum Information
Quantum Information
 
Introduction to Quantum Secret Sharing
Introduction to Quantum Secret SharingIntroduction to Quantum Secret Sharing
Introduction to Quantum Secret Sharing
 
Quantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systemsQuantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systems
 

Similar to Quantum entanglement

Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
Amr Mohamed
 
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentThe Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentVasil Penchev
 
Bachelor's Thesis
Bachelor's ThesisBachelor's Thesis
Bachelor's Thesis
Bastiaan Frerix
 
Quantum Mechanics as a Measure Theory: The Theory of Quantum Measure
Quantum Mechanics as a Measure Theory: The Theory of Quantum MeasureQuantum Mechanics as a Measure Theory: The Theory of Quantum Measure
Quantum Mechanics as a Measure Theory: The Theory of Quantum Measure
Vasil Penchev
 
Condensed Geometry II(2)
Condensed Geometry II(2)Condensed Geometry II(2)
Condensed Geometry II(2)Koustubh Kabe
 
4852014.pptx
4852014.pptx4852014.pptx
4852014.pptx
ssuser72b8e8
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
MinoarHossain
 
Optics, Optical systems, further theoretical implementations of the Optical E...
Optics, Optical systems, further theoretical implementations of the Optical E...Optics, Optical systems, further theoretical implementations of the Optical E...
Optics, Optical systems, further theoretical implementations of the Optical E...
Orchidea Maria Lecian
 
What is quantum information? Information symmetry and mechanical motion
What is quantum information? Information symmetry and mechanical motionWhat is quantum information? Information symmetry and mechanical motion
What is quantum information? Information symmetry and mechanical motion
Vasil Penchev
 
István Dienes Lecture For Unified Theories 2006
István Dienes Lecture For Unified Theories 2006István Dienes Lecture For Unified Theories 2006
István Dienes Lecture For Unified Theories 2006Istvan Dienes
 
MMath Paper, Canlin Zhang
MMath Paper, Canlin ZhangMMath Paper, Canlin Zhang
MMath Paper, Canlin Zhangcanlin zhang
 
The Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationThe Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equation
Vasil Penchev
 
Vasil Penchev. Cyclic mechanics. The principle of cyclicity
Vasil Penchev. Cyclic mechanics. The principle of cyclicityVasil Penchev. Cyclic mechanics. The principle of cyclicity
Vasil Penchev. Cyclic mechanics. The principle of cyclicity
Vasil Penchev
 
Matter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as MatterMatter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as Matter
Vasil Penchev
 
Lecture_2_PHL110_QM.ppt wave function. operators,
Lecture_2_PHL110_QM.ppt wave function. operators,Lecture_2_PHL110_QM.ppt wave function. operators,
Lecture_2_PHL110_QM.ppt wave function. operators,
Francisanand9
 
Mass as a Geometric Property of Spacetime
Mass as a Geometric Property of SpacetimeMass as a Geometric Property of Spacetime
Mass as a Geometric Property of Spacetime
IOSRJAP
 
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...Wissem Dhaouadi
 
Seminar report on quantum computing
Seminar report on quantum computingSeminar report on quantum computing
Seminar report on quantum computing
Savita Sharma
 
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
Vasil Penchev
 
Gct sfp cp-25112015
Gct sfp cp-25112015Gct sfp cp-25112015

Similar to Quantum entanglement (20)

Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentThe Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
 
Bachelor's Thesis
Bachelor's ThesisBachelor's Thesis
Bachelor's Thesis
 
Quantum Mechanics as a Measure Theory: The Theory of Quantum Measure
Quantum Mechanics as a Measure Theory: The Theory of Quantum MeasureQuantum Mechanics as a Measure Theory: The Theory of Quantum Measure
Quantum Mechanics as a Measure Theory: The Theory of Quantum Measure
 
Condensed Geometry II(2)
Condensed Geometry II(2)Condensed Geometry II(2)
Condensed Geometry II(2)
 
4852014.pptx
4852014.pptx4852014.pptx
4852014.pptx
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Optics, Optical systems, further theoretical implementations of the Optical E...
Optics, Optical systems, further theoretical implementations of the Optical E...Optics, Optical systems, further theoretical implementations of the Optical E...
Optics, Optical systems, further theoretical implementations of the Optical E...
 
What is quantum information? Information symmetry and mechanical motion
What is quantum information? Information symmetry and mechanical motionWhat is quantum information? Information symmetry and mechanical motion
What is quantum information? Information symmetry and mechanical motion
 
István Dienes Lecture For Unified Theories 2006
István Dienes Lecture For Unified Theories 2006István Dienes Lecture For Unified Theories 2006
István Dienes Lecture For Unified Theories 2006
 
MMath Paper, Canlin Zhang
MMath Paper, Canlin ZhangMMath Paper, Canlin Zhang
MMath Paper, Canlin Zhang
 
The Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationThe Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equation
 
Vasil Penchev. Cyclic mechanics. The principle of cyclicity
Vasil Penchev. Cyclic mechanics. The principle of cyclicityVasil Penchev. Cyclic mechanics. The principle of cyclicity
Vasil Penchev. Cyclic mechanics. The principle of cyclicity
 
Matter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as MatterMatter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as Matter
 
Lecture_2_PHL110_QM.ppt wave function. operators,
Lecture_2_PHL110_QM.ppt wave function. operators,Lecture_2_PHL110_QM.ppt wave function. operators,
Lecture_2_PHL110_QM.ppt wave function. operators,
 
Mass as a Geometric Property of Spacetime
Mass as a Geometric Property of SpacetimeMass as a Geometric Property of Spacetime
Mass as a Geometric Property of Spacetime
 
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
 
Seminar report on quantum computing
Seminar report on quantum computingSeminar report on quantum computing
Seminar report on quantum computing
 
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
MORE THAN IMPOSSIBLE: NEGATIVE AND COMPLEX PROBABILITIES AND THEIR INTERPRETA...
 
Gct sfp cp-25112015
Gct sfp cp-25112015Gct sfp cp-25112015
Gct sfp cp-25112015
 

Recently uploaded

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 

Recently uploaded (20)

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 

Quantum entanglement

  • 1. Quantum entanglement by M. Kaliszewski K. Opiela A. Tokarczyk
  • 2. contents Theory of quantum entanglement A practicalexample Mathematicalfundamentals Quantum bit Quantum superposition Quantum teleportation Quantum computers
  • 3. Theory of quantum entanglement
  • 4. Theory of quantum entanglement Quantum entanglement is a property of the quantum mechanical state of a system containing two or more objects, where the objects that make up the system are linked in such a way that the quantum state of any of them cannot be adequately described without full mention of the others, even if the individual objects are spatially separated.
  • 6. A Practicalexample We madetwocups of hot chocolate. However, Marcin made a stupidmistake and now we havetwonon-identicalcups of chocolate: a strong and a weak one. Thesetwocupsarenowentangled.
  • 7. A Practicalexample However, theyhavethe same colour and, infact, theylookexactlythe same. To determinewhich cup isstrong and whichisweak, we need to taste (measure) only one cup of chocolate. Thatway we measurethequantum state.
  • 8. A Practicalexample Afterthe first measurement, whichiscompletelyunpredictable, we instantlyknowthe quantum states of bothcups of hot chocolate. For example: we tastedthestrongchocolate. We instantlyknowthatthesecond one isweak.
  • 11. Bra-ket notation Bra-ket notation is a standard notation for describing quantum states in the theory of quantum mechanics composed of angle brackets and vertical bars. It can also be used to denote abstract vectors and linear functionals in mathematics. It is so called because the inner product (or dot product) of two states is denoted by a bracket, , consisting of a left part, , called the bra (pronounced /ˈbrɑː/), and a right part, , called the ket (pronounced /ˈkɛt/). The notation was introduced in 1930 by Paul Dirac,[1] and is also known as Dirac notation. Bra-ket notation is widespread in quantum mechanics: almost every phenomenon that is explained using quantum mechanics—including a large proportion of modern physics—is usually explained with the help of bra-ket notation. The expression is typically interpreted as the probability amplitude for the state to collapse into the state
  • 12. Bra-ket – usage in quantum mechanics In quantum mechanics, the state of a physical system is identified with a ray in a complexseparableHilbert space, , or, equivalently, by a point in the projective Hilbert space of the system. Each vector in the ray is called a "ket" and written as , which would be read as "ketpsi". (The can be replaced by any symbols, letters, numbers, or even words—whatever serves as a convenient label for the ket.) The ket can be viewed as a column vector and (given a basis for the Hilbert space) written out in coordinates, when the considered Hilbert space is finite-dimensional. In infinite-dimensional spaces there are infinitely many coordinates and the ket may be written in complex function notation, by prepending it with a bra (see below). For example, Every ket has a dualbra, written as . For example, the bra corresponding to the ket above would be the row vector This is a continuous linear functional from to the complex numbers , defined by: for all kets , where denotes the inner product defined on the Hilbert space. Here the origin of the bra-ket notation becomes clear: when we drop the parentheses (as is common with linear functionals) and meld the bars together we get , which is common notation for an inner product in a Hilbert space. This combination of a bra with a ket to form a complex number is called a bra-ket or bracket. The bra is simply the conjugate transpose (also called the Hermitian conjugate) of the ket and vice versa. The notation is justified by the Riesz representation theorem, which states that a Hilbert space and its dual space are isometrically conjugate isomorphic. Thus, each bra corresponds to exactly one ket, and vice versa. More precisely, if is the Riesz isomorphism between and its dual space, then Note that this only applies to states that are actually vectors in the Hilbert space. Non-normalizable states, such as those whose wavefunctions are Dirac delta functions or infinite plane waves, do not technically belong to the Hilbert space. So if such a state is written as a ket, it will not have a corresponding bra according to the above definition. This problem can be dealt with in either of two ways. First, since all physical quantum states are normalizable, one can carefully avoid non-normalizable states. Alternatively, the underlying theory can be modified and generalized to accommodate such states, as in the Gelfand-Naimark-Segal construction or rigged Hilbert spaces. In fact, physicists routinely use bra-ket notation for non-normalizable states, taking the second approach either implicitly or explicitly. In quantum mechanics the expression (mathematically: the coefficient for the projection of onto ) is typically interpreted as the probability amplitude for the state to collapse into the state The advantage of the bra-ket notation over explicit wave function algebra is the possibility of expressing operations on quantum states independent of a basis. For example the Schrödinger equation is simply expressed as The operators can be conveniently expressed in different bases (see next section for the operations used in these formulas : action of a linear operator, outer product of a ket and a bra): (For a rigorous definition of basis with a continuous set of indices and consequently for a rigorous definition of position and momentum basis see [2]) (For a rigorous statement of the expansion of an S-diagonalizable operator - observable - in its eigenbasis or in another basis see [3]) The wave functions in real, momentum or reciprocal space can be retrieved as needed: and all basis conversions can be performed via the relations such as (for a rigorous treatment of the Dirac inner product of non-normalizable states see the definition given by D. Carfì in [4] and [5])
  • 13. Mathematical formulations of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. Such are distinguished from mathematical formalisms for theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces and operators on these spaces. Many of these structures are drawn from functional analysis, a research area within pure mathematics that was influenced in part by the needs of quantum mechanics. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely: as spectral values (point spectrum plus absolute continuous plus singular continuous spectrum) of linear operators in Hilbert space.[1] These formulations of quantum mechanics continue to be used today. At the heart of the description are ideas of quantum state and quantum observable which are radically different from those used in previous models of physical reality. While the mathematics permits calculation of many quantities that can be measured experimentally, there is a definite theoretical limit to values that can be simultaneously measured. This limitation was first elucidated by Heisenberg through a thought experiment, and is represented mathematically in the new formalism by the non-commutativity of quantum observables. Prior to the emergence of quantum mechanics as a separate theory, the mathematics used in physics consisted mainly of differential geometry and partial differential equations; probability theory was used in statistical mechanics. Geometric intuition clearly played a strong role in the first two and, accordingly, theories of relativity were formulated entirely in terms of geometric concepts. The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the emergence of quantum theory (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures. The most sophisticated example of this is the Sommerfeld–Wilson–Ishiwara quantization rule, which was formulated entirely on the classical phase space.
  • 15. Quantum bits In quantum computing, a qubit (/ˈkjuːbɪt/) or quantum bit is a unit of quantum information—the quantum analogue of the classical bit—with additional dimensions associated to the quantum properties of a physical atom. The physical construction of a quantum computer is itself an arrangement of entangled[clarification needed] atoms, and the qubit represents[clarification needed] both the state memory and the state of entanglement in a system. A quantum computation is performed by initializing a system of qubits with a quantum algorithm —"initialization" here referring to some advanced physical process that puts the system into an entangled state.[citation needed] The qubit is described by a quantum state in a two-state quantum-mechanical system, which is formally equivalent to a two-dimensional vector space over the complex numbers. One example of a two-state quantum system is the polarization of a single photon: here the two states are vertical polarisation and horizontal polarisation. In a classical system, a bit would have to be in one state or the other, but quantum mechanics allows the qubit to be in a superposition of both states at the same time, a property which is fundamental to quantum computing.
  • 17. Quantum superposition Quantum superposition refers to the quantum mechanical property of solutions to the Schrödinger equation. Since the Schrödinger equation is linear, any linear combination of solutions to a particular equation will also be a solution of it. This mathematical property of linear equations is known as the superposition principle. In quantum mechanics such solutions are often made to be orthogonal (i.e. the vectors are at right-angles to each other), such as the energy levels of an electron. By doing so the overlap energy of the states is nullified, and the expectation value of an operator (any superposition state) is the expectation value of the operator in the individual states, multiplied by the fraction of the superposition state that is "in" that state. An example of a directly observable effect of superposition is interference peaks from an electronwave in a double-slit experiment.
  • 18. Quantum superposition Quantum superposition of n states Wavefunctioncollapse State 1 Staten State 2
  • 19. Quantum chocolate A nice example of quantum superpositioncan be the practicalexample of quantum entanglementmentionedat the beginning of ourpresentation, the hot chocolatecase. The twocups of hot chocolateexist in the state of quantum superpositionbeforemeasurement. The situationisverysimilar to the famousSchrödinger's cat.