RadioTechnology Lab
Seoul National University
[ ]Passband Data Transmission
김창회
| 전파 및 무선통신 연구소 |
INDEX
1. Hybrid Amp/Phase Modulation
2. Coherent FSK
3. Detection of Signals with Unknown Phase
4. Differential PSK
5. Comparison of Modulation Schemes
6. Conclusion
RadioTechnology Lab
Seoul National University
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory
2014-07-07 3
Hybrid Amp/Phase Modulation
• QAM
• Carrierless Amp/Phase Modulation (CAP)
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 4
 M-ary QAM
 Two-dimensional generalization of M-ary PAM

 The transmitted M-ary QAM signal

RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 5
 QAM Square Constellation
 Product of L-ary PAM constellation (L= 𝑀)
 Error Probability
 (correct detection of QAM)
 (symbol error prob of L-ary PAM)

 Average value of transmit Energy
 Symbol에 따라 transmit Energy가 바뀜  평균 에너지 이용

RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 6
 QAM Cross Constellation
 QAM with odd number of bits  cross constellation
Error Probability

RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 7
 Carrierless Amp/Phase Modulation (CAP)
 Appears to be carrierless
 M-ary QAM signal Equation [g(t)=pulse shaping function]
 Represent the QAM Signal
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 8
 new formulation of the transmit signal
 S(t) appears to be carrierless
 Hybridized amplitude/phase modulation
 Orthogonal Set
 after passed LTI channel, orthogonal property holds
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory1. Hybrid Amp/Phase Modulation
2014-07-07 9
 Basic Structure of the CAP system
 CAP transmitter
 CAP receiver
• X(t) = s(t) * h(t) + w(t)
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory
2014-07-07 10
Coherent FSK
• BFSK
• MSK (Minimum-shift Keying)
• GMSK (Gaussian-filtered MSK)
• M-ary FSK
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 11
 Binary FSK
 Continuous-phase signal
 Continuous-phase frequency-shift keying (CPFSK)
 Orthogonal basis set
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 12
 Error Probability
 New Gaussian R.V (y=x1-x2)



 P(BPSK Error) =
1
2
erfc
𝐸 𝑏
𝑁 𝑜
 P(BFSK Error) =
1
2
erfc
𝐸 𝑏
2𝑁 𝑜
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 13
 BFSK transmitter
BFSK Receiver
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 14
 Minimum Shift Keying (MSK)
 Minimum frequency spacing allowing two FSK signals to be
coherently orthogonal
 h=0.5  MSK
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 15
 Phase Trellis
 𝜃 𝑇𝑏 − 𝜃 0 =
𝜋
2
𝑠𝑦𝑚𝑏𝑜𝑙 1 , −
𝜋
2
(𝑠𝑦𝑚𝑏𝑜𝑙 0)
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 16
 In-phase & Quadrature components of MSK
 In-phase
 Quadrature
In-phase Quadrature
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 17
 Signal-Space Diagram
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 18
GMSK (Gaussian-filtered MSK)
 Frequency response with narrow BW & sharp cutoff
 Impulse response with low overshoot
 The spectral efficiency of MSK is further enhanced by filtering the
baseband signal with a Gaussian filter
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 19
 ISI vs compactness
 WT의 값에 따라 GMSK의 성능 달라짐
 Compactness를 높이면 error probability
높아짐


RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory2. Coherent FSK
2014-07-07 20
 M-ary FSK
 M-dimensional signal-space
 Orthogonality
 Error Probability
 Bandwidth Efficiency
• 𝐵 =
𝑀
2𝑇
=
𝑅 𝑏 𝑀
2 log2 𝑀
(𝑇 = 𝑇𝑏 ∗ log2 𝑀 , 𝑅 𝑏 =
1
𝑇 𝑏
)
• 𝜌 =
𝑅 𝑏
𝐵
=
2 log2 𝑀
𝑀
(bits/s/Hz)  M의 크기가 커짐에 따라 매우 비효율
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory
2014-07-07 21
Detection of Signals with Unknown
Phase
• Detection algorithm (case of BFSK)
• Error Probablity of noncoherent modulation
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 22
 Unknown Phase
 실제로 phase 정보는 큰 random성을 가지고 있음
 전송거리, 전송경로 등이 매우 다양함에 따라 received signal의
phase가 매우 빠르게 변화할 수 있음
 Phase 정보를 모를 때, 신호를 detect하는 방법의 필요
 noncoherent receiver
Optimum Quadratic Receiver
 BFSK signal
Take the expectation with respect to all possible θ
 phase independent
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 23
 Given the carrier phase θ,
 Conditional likelihood function of symbol 𝑠𝑖
 Integrating equation over all possible θ
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 24
 Likelihood function
 Signal detection
 Bessel function
 Signal detection (𝑆1, 𝑆2)
 Modified Bessel function of zero order
Modified Bessel function
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 25
 Error Probability of noncoherent receiver

 Noncoherent receiver diagram
• 𝑆1 𝑡 가 전송되었을 때,
𝑆2(𝑡)로 인식할 확률
• 𝑆1 𝑡 , 𝑆2(𝑡)는 orthogonal이므로
𝑙2는 오로지 w(t)에 의한 것
 In-phase & quadrature components of Matched filter output
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 26
 Rayleigh-distribution of envelop
 R.V 𝑋𝐼2, 𝑋 𝑄2 are Gaussian-distributed (zero mean and variance
𝑁0
2
)
 Because of AWGN
 Probability density function
 Conditional Probability
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory3. Detection of Signals with Unknown Phase
2014-07-07 27
 probability density of 𝑋𝐼1, 𝑋 𝑄1
 𝑋𝐼1 is signal + noise, 𝑋 𝑄1 is only noise

 Error Probability of noncoherent Receiver
대입
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory
2014-07-07 28
Differential Phase-Shift Keying
• Signal generation of DPSK
• Signal Detection
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory4. Differential Phase-Shift Keying
2014-07-07 29
 DPSK
 The noncoherent version of PSK
 Eliminates the need for a coherent reference signal
 Differential encoding + Phase-shift Keying
Define the signals
 When symbol 1 leaves, the carrier phase is unchanged over the
interval 0 ≤ 𝑡 ≤ 2𝑇𝑏
 When symbol 0 leaves, the carrier phase is changed
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory4. Differential Phase-Shift Keying
2014-07-07 30
 Error Probability of DPSK
 DPSK is a special case of noncoherent orthogonal modulation
 T=2𝑇𝑏
 𝑆1 𝑡 , 𝑆2(𝑡)는 orthogonal

 Signal generation
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory4. Differential Phase-Shift Keying
2014-07-07 31
 DPSK transmitter
DPSK receiver
 The signal points are (𝐴 cos 𝜃 , 𝐴 sin 𝜃), (−𝐴 cos 𝜃 , −𝐴 sin 𝜃)
 𝑥0 = 𝑥𝐼0, 𝑥 𝑄0 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 𝑇𝑏
 𝑥1 = 𝑥𝐼1, 𝑥 𝑄1 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 2𝑇𝑏
 Two signals map to the same point or different point  inner product
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory4. Differential Phase-Shift Keying
2014-07-07 32
 DPSK receiver
 Inner product x0, x1 
 𝑥0 𝑥𝐼0, 𝑥 𝑄0 가 𝑥1 𝑥𝐼1, 𝑥 𝑄1 과 그것의 대칭인 −𝑥𝐼1, −𝑥 𝑄1 중 어느 것에
가까운 지 검사하는 것과 같다
𝑄1
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory
2014-07-07 33
Comparison of Modulation Schemes
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory5. Comparison of Modulation Schemes
2014-07-07 34
 Bit Error Rate of modulation
 BFSK <-> BPSK,QPSK,MSK (3dB)
 At high values of SNR, DPSK and
noncoherent BFSK perform as well as
coherent BPSK and coherent BFSK,
respectively
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory5. Comparison of Modulation Schemes
2014-07-07 35
 Comparison of power-bandwidth requirements
 M-ary PSK with BPSK (symbol error prob = 10−4)
 Signal constellation
• Distance between the message points is short
when M is large
RadioTechnology Lab
Seoul National University
R
T
L
adio
echnology
aboratory6. Conclusion
2014-07-07 36
• QAM • Carrierless Amp/Phase Modulation(CAP)
Hybrid Amp/Phase Modulation
• FSK • MSK • GMSK
Coherent
• BFSK • Error probability • DPSK
Noncoherent
• BER comparison • Power-bandwidth comparison
Comparison of modulations

Psk, qam, fsk different modulation

  • 1.
    RadioTechnology Lab Seoul NationalUniversity [ ]Passband Data Transmission 김창회 | 전파 및 무선통신 연구소 |
  • 2.
    INDEX 1. Hybrid Amp/PhaseModulation 2. Coherent FSK 3. Detection of Signals with Unknown Phase 4. Differential PSK 5. Comparison of Modulation Schemes 6. Conclusion RadioTechnology Lab Seoul National University
  • 3.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory 2014-07-07 3 Hybrid Amp/Phase Modulation • QAM • Carrierless Amp/Phase Modulation (CAP)
  • 4.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 4  M-ary QAM  Two-dimensional generalization of M-ary PAM   The transmitted M-ary QAM signal 
  • 5.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 5  QAM Square Constellation  Product of L-ary PAM constellation (L= 𝑀)  Error Probability  (correct detection of QAM)  (symbol error prob of L-ary PAM)   Average value of transmit Energy  Symbol에 따라 transmit Energy가 바뀜  평균 에너지 이용 
  • 6.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 6  QAM Cross Constellation  QAM with odd number of bits  cross constellation Error Probability 
  • 7.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 7  Carrierless Amp/Phase Modulation (CAP)  Appears to be carrierless  M-ary QAM signal Equation [g(t)=pulse shaping function]  Represent the QAM Signal
  • 8.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 8  new formulation of the transmit signal  S(t) appears to be carrierless  Hybridized amplitude/phase modulation  Orthogonal Set  after passed LTI channel, orthogonal property holds
  • 9.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory1. Hybrid Amp/Phase Modulation 2014-07-07 9  Basic Structure of the CAP system  CAP transmitter  CAP receiver • X(t) = s(t) * h(t) + w(t)
  • 10.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory 2014-07-07 10 Coherent FSK • BFSK • MSK (Minimum-shift Keying) • GMSK (Gaussian-filtered MSK) • M-ary FSK
  • 11.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 11  Binary FSK  Continuous-phase signal  Continuous-phase frequency-shift keying (CPFSK)  Orthogonal basis set
  • 12.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 12  Error Probability  New Gaussian R.V (y=x1-x2)     P(BPSK Error) = 1 2 erfc 𝐸 𝑏 𝑁 𝑜  P(BFSK Error) = 1 2 erfc 𝐸 𝑏 2𝑁 𝑜
  • 13.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 13  BFSK transmitter BFSK Receiver
  • 14.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 14  Minimum Shift Keying (MSK)  Minimum frequency spacing allowing two FSK signals to be coherently orthogonal  h=0.5  MSK
  • 15.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 15  Phase Trellis  𝜃 𝑇𝑏 − 𝜃 0 = 𝜋 2 𝑠𝑦𝑚𝑏𝑜𝑙 1 , − 𝜋 2 (𝑠𝑦𝑚𝑏𝑜𝑙 0)
  • 16.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 16  In-phase & Quadrature components of MSK  In-phase  Quadrature In-phase Quadrature
  • 17.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 17  Signal-Space Diagram
  • 18.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 18 GMSK (Gaussian-filtered MSK)  Frequency response with narrow BW & sharp cutoff  Impulse response with low overshoot  The spectral efficiency of MSK is further enhanced by filtering the baseband signal with a Gaussian filter
  • 19.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 19  ISI vs compactness  WT의 값에 따라 GMSK의 성능 달라짐  Compactness를 높이면 error probability 높아짐  
  • 20.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory2. Coherent FSK 2014-07-07 20  M-ary FSK  M-dimensional signal-space  Orthogonality  Error Probability  Bandwidth Efficiency • 𝐵 = 𝑀 2𝑇 = 𝑅 𝑏 𝑀 2 log2 𝑀 (𝑇 = 𝑇𝑏 ∗ log2 𝑀 , 𝑅 𝑏 = 1 𝑇 𝑏 ) • 𝜌 = 𝑅 𝑏 𝐵 = 2 log2 𝑀 𝑀 (bits/s/Hz)  M의 크기가 커짐에 따라 매우 비효율
  • 21.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory 2014-07-07 21 Detection of Signals with Unknown Phase • Detection algorithm (case of BFSK) • Error Probablity of noncoherent modulation
  • 22.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 22  Unknown Phase  실제로 phase 정보는 큰 random성을 가지고 있음  전송거리, 전송경로 등이 매우 다양함에 따라 received signal의 phase가 매우 빠르게 변화할 수 있음  Phase 정보를 모를 때, 신호를 detect하는 방법의 필요  noncoherent receiver Optimum Quadratic Receiver  BFSK signal Take the expectation with respect to all possible θ  phase independent
  • 23.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 23  Given the carrier phase θ,  Conditional likelihood function of symbol 𝑠𝑖  Integrating equation over all possible θ
  • 24.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 24  Likelihood function  Signal detection  Bessel function  Signal detection (𝑆1, 𝑆2)  Modified Bessel function of zero order Modified Bessel function
  • 25.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 25  Error Probability of noncoherent receiver   Noncoherent receiver diagram • 𝑆1 𝑡 가 전송되었을 때, 𝑆2(𝑡)로 인식할 확률 • 𝑆1 𝑡 , 𝑆2(𝑡)는 orthogonal이므로 𝑙2는 오로지 w(t)에 의한 것  In-phase & quadrature components of Matched filter output
  • 26.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 26  Rayleigh-distribution of envelop  R.V 𝑋𝐼2, 𝑋 𝑄2 are Gaussian-distributed (zero mean and variance 𝑁0 2 )  Because of AWGN  Probability density function  Conditional Probability
  • 27.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory3. Detection of Signals with Unknown Phase 2014-07-07 27  probability density of 𝑋𝐼1, 𝑋 𝑄1  𝑋𝐼1 is signal + noise, 𝑋 𝑄1 is only noise   Error Probability of noncoherent Receiver 대입
  • 28.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory 2014-07-07 28 Differential Phase-Shift Keying • Signal generation of DPSK • Signal Detection
  • 29.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory4. Differential Phase-Shift Keying 2014-07-07 29  DPSK  The noncoherent version of PSK  Eliminates the need for a coherent reference signal  Differential encoding + Phase-shift Keying Define the signals  When symbol 1 leaves, the carrier phase is unchanged over the interval 0 ≤ 𝑡 ≤ 2𝑇𝑏  When symbol 0 leaves, the carrier phase is changed
  • 30.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory4. Differential Phase-Shift Keying 2014-07-07 30  Error Probability of DPSK  DPSK is a special case of noncoherent orthogonal modulation  T=2𝑇𝑏  𝑆1 𝑡 , 𝑆2(𝑡)는 orthogonal   Signal generation
  • 31.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory4. Differential Phase-Shift Keying 2014-07-07 31  DPSK transmitter DPSK receiver  The signal points are (𝐴 cos 𝜃 , 𝐴 sin 𝜃), (−𝐴 cos 𝜃 , −𝐴 sin 𝜃)  𝑥0 = 𝑥𝐼0, 𝑥 𝑄0 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 𝑇𝑏  𝑥1 = 𝑥𝐼1, 𝑥 𝑄1 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 2𝑇𝑏  Two signals map to the same point or different point  inner product
  • 32.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory4. Differential Phase-Shift Keying 2014-07-07 32  DPSK receiver  Inner product x0, x1   𝑥0 𝑥𝐼0, 𝑥 𝑄0 가 𝑥1 𝑥𝐼1, 𝑥 𝑄1 과 그것의 대칭인 −𝑥𝐼1, −𝑥 𝑄1 중 어느 것에 가까운 지 검사하는 것과 같다 𝑄1
  • 33.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory 2014-07-07 33 Comparison of Modulation Schemes
  • 34.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory5. Comparison of Modulation Schemes 2014-07-07 34  Bit Error Rate of modulation  BFSK <-> BPSK,QPSK,MSK (3dB)  At high values of SNR, DPSK and noncoherent BFSK perform as well as coherent BPSK and coherent BFSK, respectively
  • 35.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory5. Comparison of Modulation Schemes 2014-07-07 35  Comparison of power-bandwidth requirements  M-ary PSK with BPSK (symbol error prob = 10−4)  Signal constellation • Distance between the message points is short when M is large
  • 36.
    RadioTechnology Lab Seoul NationalUniversity R T L adio echnology aboratory6. Conclusion 2014-07-07 36 • QAM • Carrierless Amp/Phase Modulation(CAP) Hybrid Amp/Phase Modulation • FSK • MSK • GMSK Coherent • BFSK • Error probability • DPSK Noncoherent • BER comparison • Power-bandwidth comparison Comparison of modulations