 refer to rules that indicate a
standard procedure or
method to be followed
Commutative Property
Associative Property
Distributive Property
Commutative Property of Addition
 changing the order of the addends
does not change the sum
Examples:
𝟐 + 𝟑 = 𝟑 + 𝟐
𝟒 + 𝟕 = 𝟕 + 𝟒
Commutative Property of Addition
𝒂 + 𝒃 = 𝒃 + 𝒂
Commutative Property of Multiplication
 changing the order of the factors does
not change the product
Examples:
𝟑 ∙ 𝟔 = 𝟔 ∙ 𝟑
(𝟓) −𝟐 = (−𝟐)(𝟓)
Commutative Property of Multiplication
𝒂𝒃 = 𝒃𝒂
1. 4 + 5 = _____
2. 8 3 − 2 = _____
3. (di)(lo) = _____
Complete the examples using
the commutative property.
Associative Property of Addition
 changing the grouping of the addends
does not change the sum
Examples:
(𝟓 + 𝟐) + 𝟑 = 𝟓 + (𝟐 + 𝟑)
𝟒 + 𝟏 + 𝟐 = 𝟒 + 𝟏 + 𝟐
Associative Property of Addition
𝒂 + 𝒃 + 𝒄 = 𝒂 + (𝒃 + 𝒄)
Associative Property of Multiplication
 changing the grouping of the factors
does not change the product
Examples:
𝟐(𝟓 ∙ 𝟑) = (𝟐 ∙ 𝟓)𝟑
𝟒 𝟏 ∙ 𝟐 = 𝟒 ∙ 𝟏 𝟐
Associative Property of Multiplication
𝒂𝒃 𝒄 = 𝒂(𝒃𝒄)
1. 2 + (4 + 5) = _____
2. 8 3 ∙ 2 = _____
3. pet + (ma + lu) =
_____
Complete the examples using
the associative property.
 multiplication distributes over addition
Example:
𝟑 𝟐 + 𝟓
= 𝟑 ∙ 𝟐 + 𝟑 ∙ 𝟓
𝒂 𝒃 + 𝒄 = 𝒂𝒃 + 𝒂𝒄
1. 2(4 + 5) = _____
2. 8 3 + 2 = _____
3. 3(a + b) = _____
Complete the examples using
the distributive property.
Reflexive Property
Symmetric Property
Transitive Property
Addition Property
Subtraction Property
Multiplication Property
Division Property
Substitution Property
Zero Product Property
Examples:
𝑎 = 𝑎
𝑚 + 𝑛 = 𝑚 + 𝑛
10 = 10
A real number is
always equal to
itself.
Example:
If 10 = 7 + 3,
then 7 + 3 = 10.
For any numbers 𝑎 and 𝑏,
𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒃 = 𝒂.
Example:
If 8 + 4 = 12
and 12 = 7 + 5,
then 8 + 4 = 7 + 5.
For any numbers 𝑎, 𝑏 and 𝑐,
𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒃 = 𝒄, 𝒕𝒉𝒆𝒏 𝒂 = 𝒄.
Example:
If 3(3) =9
and 9 = 4 + 5,
then 3(3) = 4 + 5.
For any numbers 𝑎, 𝑏 and 𝑐,
𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒃 = 𝒄, 𝒕𝒉𝒆𝒏 𝒂 = 𝒄.
Example:
1. If 𝑥 = 10, then 𝑥 +
3 = 10 + 3.
2. If 5 + 2 = 7, then
5 + 2 + 1 = 7 + 1.
𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂 + 𝒄 = 𝒃 + 𝒄.
Example:
1. If 𝑥 = 10, then
𝑥 − 3 = 10 − 3.
2. If 5 + 2 = 7, then
5 + 2 − 1 = 7 − 1.
𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂 − 𝒄 = 𝒃 − 𝒄.
Example:
1. If 𝑥 = 10, then
𝑥 ∙ 3 = 10 ∙ 3.
2. If 5 + 2 = 7, then
(5 + 2)(3) = 7(3).
𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂𝒄 = 𝒃𝒄.
Example:
1. If 𝑥 = 10, then
𝑥
3
=
10
3
.
2. If 5 + 1 = 6,
then
5+1
2
=
6
2
.
𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒄 ≠ 𝟎, 𝒕𝒉𝒆𝒏
𝒂
𝒄
=
𝒃
𝒄
.
Example:
1. If 𝑥 = 5 and 𝑥 + 𝑦 = 𝑧,
then 5 + 𝑦 = 𝑧.
2. If 𝑥 = 2 and 𝑥 2 + 1 =
6, then 2 2 + 1 = 6.
𝐈𝐟 𝒂 = 𝒃, 𝐭𝐡𝐞𝐧 𝒂 𝐦𝐚𝐲 𝐛𝐞
𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐞𝐝 𝐟𝐨𝐫 𝒃, 𝐨𝐫 𝐜𝐨𝐧𝐯𝐞𝐫𝐬𝐞𝐥𝐲.
Properties of Real Numbers
 Commutative Property
 Associative Property
 Distributive Property
Properties of Equality
 Reflexive Property
 Symmetric Property
 Transitive Property
 Addition Property
 Subtraction Property
 Multiplication Property
 Division Property
 Substitution Property
Thanks!MR. CARLO JUSTINO J. LUNA
Malabanias Integrated School
Angeles City

Properties of Real Numbers and Equality - Mathematics 8 (3rd Quarter)

  • 2.
     refer torules that indicate a standard procedure or method to be followed
  • 3.
  • 4.
    Commutative Property ofAddition  changing the order of the addends does not change the sum Examples: 𝟐 + 𝟑 = 𝟑 + 𝟐 𝟒 + 𝟕 = 𝟕 + 𝟒
  • 5.
    Commutative Property ofAddition 𝒂 + 𝒃 = 𝒃 + 𝒂
  • 6.
    Commutative Property ofMultiplication  changing the order of the factors does not change the product Examples: 𝟑 ∙ 𝟔 = 𝟔 ∙ 𝟑 (𝟓) −𝟐 = (−𝟐)(𝟓)
  • 7.
    Commutative Property ofMultiplication 𝒂𝒃 = 𝒃𝒂
  • 8.
    1. 4 +5 = _____ 2. 8 3 − 2 = _____ 3. (di)(lo) = _____ Complete the examples using the commutative property.
  • 9.
    Associative Property ofAddition  changing the grouping of the addends does not change the sum Examples: (𝟓 + 𝟐) + 𝟑 = 𝟓 + (𝟐 + 𝟑) 𝟒 + 𝟏 + 𝟐 = 𝟒 + 𝟏 + 𝟐
  • 10.
    Associative Property ofAddition 𝒂 + 𝒃 + 𝒄 = 𝒂 + (𝒃 + 𝒄)
  • 11.
    Associative Property ofMultiplication  changing the grouping of the factors does not change the product Examples: 𝟐(𝟓 ∙ 𝟑) = (𝟐 ∙ 𝟓)𝟑 𝟒 𝟏 ∙ 𝟐 = 𝟒 ∙ 𝟏 𝟐
  • 12.
    Associative Property ofMultiplication 𝒂𝒃 𝒄 = 𝒂(𝒃𝒄)
  • 13.
    1. 2 +(4 + 5) = _____ 2. 8 3 ∙ 2 = _____ 3. pet + (ma + lu) = _____ Complete the examples using the associative property.
  • 14.
     multiplication distributesover addition Example: 𝟑 𝟐 + 𝟓 = 𝟑 ∙ 𝟐 + 𝟑 ∙ 𝟓
  • 15.
    𝒂 𝒃 +𝒄 = 𝒂𝒃 + 𝒂𝒄
  • 16.
    1. 2(4 +5) = _____ 2. 8 3 + 2 = _____ 3. 3(a + b) = _____ Complete the examples using the distributive property.
  • 17.
    Reflexive Property Symmetric Property TransitiveProperty Addition Property Subtraction Property Multiplication Property Division Property Substitution Property Zero Product Property
  • 18.
    Examples: 𝑎 = 𝑎 𝑚+ 𝑛 = 𝑚 + 𝑛 10 = 10 A real number is always equal to itself.
  • 19.
    Example: If 10 =7 + 3, then 7 + 3 = 10. For any numbers 𝑎 and 𝑏, 𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒃 = 𝒂.
  • 20.
    Example: If 8 +4 = 12 and 12 = 7 + 5, then 8 + 4 = 7 + 5. For any numbers 𝑎, 𝑏 and 𝑐, 𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒃 = 𝒄, 𝒕𝒉𝒆𝒏 𝒂 = 𝒄.
  • 21.
    Example: If 3(3) =9 and9 = 4 + 5, then 3(3) = 4 + 5. For any numbers 𝑎, 𝑏 and 𝑐, 𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒃 = 𝒄, 𝒕𝒉𝒆𝒏 𝒂 = 𝒄.
  • 22.
    Example: 1. If 𝑥= 10, then 𝑥 + 3 = 10 + 3. 2. If 5 + 2 = 7, then 5 + 2 + 1 = 7 + 1. 𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂 + 𝒄 = 𝒃 + 𝒄.
  • 23.
    Example: 1. If 𝑥= 10, then 𝑥 − 3 = 10 − 3. 2. If 5 + 2 = 7, then 5 + 2 − 1 = 7 − 1. 𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂 − 𝒄 = 𝒃 − 𝒄.
  • 24.
    Example: 1. If 𝑥= 10, then 𝑥 ∙ 3 = 10 ∙ 3. 2. If 5 + 2 = 7, then (5 + 2)(3) = 7(3). 𝑰𝒇 𝒂 = 𝒃, 𝒕𝒉𝒆𝒏 𝒂𝒄 = 𝒃𝒄.
  • 25.
    Example: 1. If 𝑥= 10, then 𝑥 3 = 10 3 . 2. If 5 + 1 = 6, then 5+1 2 = 6 2 . 𝑰𝒇 𝒂 = 𝒃 𝒂𝒏𝒅 𝒄 ≠ 𝟎, 𝒕𝒉𝒆𝒏 𝒂 𝒄 = 𝒃 𝒄 .
  • 26.
    Example: 1. If 𝑥= 5 and 𝑥 + 𝑦 = 𝑧, then 5 + 𝑦 = 𝑧. 2. If 𝑥 = 2 and 𝑥 2 + 1 = 6, then 2 2 + 1 = 6. 𝐈𝐟 𝒂 = 𝒃, 𝐭𝐡𝐞𝐧 𝒂 𝐦𝐚𝐲 𝐛𝐞 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐞𝐝 𝐟𝐨𝐫 𝒃, 𝐨𝐫 𝐜𝐨𝐧𝐯𝐞𝐫𝐬𝐞𝐥𝐲.
  • 27.
    Properties of RealNumbers  Commutative Property  Associative Property  Distributive Property Properties of Equality  Reflexive Property  Symmetric Property  Transitive Property  Addition Property  Subtraction Property  Multiplication Property  Division Property  Substitution Property
  • 28.
    Thanks!MR. CARLO JUSTINOJ. LUNA Malabanias Integrated School Angeles City