SlideShare a Scribd company logo
Role of Promoters in gene expression Ms.Smita
Shukla
1
PROMOTERS:
A promoter is a DNA sequence that can recruit transcriptional machinery
and lead to transcription of the downstream DNA sequence. The specific
sequence of the promoter determines the strength of the promoter (a
strong promoter leads to a high rate of transcription initiation).
In addition to sequences that "promote" transcription, a promoter
may include additional sequences known as operators that control the
strength of the promoter.
For example, a promoter may include a binding site for a protein that
attracts or obstructs the RNAP binding to the promoter. The presence or
absence of the protein will affect the strength of the promoter. Such a
promoter is known as a regulated promoter.
An input/output description of promoter function
Sometimes, we ignore the details of how a promoter works and think of a
promoter as a device that converts inputs into outputs. You can do this
when designing a multi-component system that includes promoters whose
activity must be regulated by other species in the system. A promoter can
be thought of as a device that outputs a certain number of transcribing RNA
polymerases per unit time. Promoters can have different numbers of
inputs. A constitutive promoter has no inputs. Technically, even a
constitutive promoter has inputs, such as the level of free RNA polymerase,
but we often assume that levels of free RNA polymerase are either
unchanging, or never be the limiting factor in transcription initiation. The
level of a repressor that negatively regulates a promoter is an input to a
promoter.
Types of promoters used to regulate gene expression
Promoters used in biotechnology are of different types according to the
intended type of control of gene expression. They can be generally divided
into:
1. Constitutive promoters: These promoters direct expression in virtually
all tissues and are largely, if not entirely, independent of environmental
and developmental factors. As their expression is normally not conditioned
by endogenous factors, constitutive promoters are usually active across
species and even across kingdoms.
Role of Promoters in gene expression Ms.Smita
Shukla
2
2. Tissue-specific or development-stage-specific promoters: These
direct the expression of a gene in specific tissue(s) or at certain stages of
development. For plants, promoter elements that are expressed or affect
the expression of genes in the vascular system, photosynthetic tissues,
tubers, roots and other vegetative organs, or seeds and other reproductive
organs can be found in heterologous systems (e.g. distantly related species
or even other kingdoms) but the most specificity is generally achieved with
homologous promoters (i.e. from the same species, genus or family). This
is probably because the coordinate expression of transcription factors is
necessary for regulation of the promoter's activity.
3. Inducible promoters: Their performance is not conditioned to
endogenous factors but to environmental conditions and external stimuli
that can be artificially controlled. Within this group, there are promoters
modulated by abiotic factors such as light, oxygen levels, heat, cold and
wounding. Since some of these factors are difficult to control outside an
experimental setting, promoters that respond to chemical compounds, not
found naturally in the organism of interest, are of particular interest. Along
those lines, promoters that respond to antibiotics, copper, alcohol, steroids,
and herbicides, among other compounds, have been adapted and refined to
allow the induction of gene activity at will and independently of other
biotic or abiotic factors.
4. Synthetic promoters: Promoters made by bringing together the
primary elements of a promoter region from diverse origins.
4 Different Plant Promoters in Gene Construct
Some of the plant promoters in gene construct are as follows:
1. Constitutive Promoters 2. Tissue-Specific Promoters 3.Inducible
Promoters 4. Synthetic Promoters.
As a rule, promoters of all structural genes that encode proteins are located
upstream of the start site, the site from which transcription begins. The
promoter determines (1) the level of expression, (2) the developmental
Role of Promoters in gene expression Ms.Smita
Shukla
3
stage and/or the tissues in which it will be expressed, and (3) the
physical/chemical factor by which the gene expression will be regulated.
A promoter suitable for gene expression in prokaryotes will not function in
eukaryotes, and vice-versa. Further, animal promoters are not suitable for
plants, and promoters that function well in dicots are usually much less
active in monocots, and vice-versa. Therefore, considerable thought has to
be given to the selection of an appropriate promoter for transgene
expression.
A variety of promoters are used to drive transgenes in plants, some of
which are listed in Table below.
These are essentially naturally occurring promoters belonging to the
following three broad groups: (1) constitutive promoters, (2) tissue-
specific promoters, and (3) promoters activated by specific
physical/chemical factors. In addition, number of (4) synthetic promoters
have been developed to achieve a defined regulation of the transgene
expression.
Role of Promoters in gene expression Ms.Smita
Shukla
4
Table: Some of the constitutive promoters used for driving the expression of
transgenes in different plant species.
1. Constitutive Promoters:
Genes driven by constitutive promoters are expressed in all the tissues and
during all developmental stages of the organism, and their expression is
largely unaffected by physical chemical stimuli. Some examples of such
promoters are 35S promoter, ubiquitin (Ubi) promoter, actinl (Act1)
promoter, nopaline synthase (nos) promoter, octopine synthase (ocs)
promoter, mannopine synthase (mas) promoter, etc.
The 35S, nos ocs, and mas promoters have been obtained from plant
pathogens, and were the first to be used; Ubil and Actl promoters are from
plant genes. In case of many constitutive promoters, the level of gene
expression in different tissues may show some variation, and some
promoters may respond to physical/chemical stimuli.
For example, Actl promoter contains elements that appear to negatively
regulate promoter activity in a tissue- specific manner, particularly in
roots. Similarly, Ubi 1 promoter shows some increase in promoter activity
in response to temperature stress.
Role of Promoters in gene expression Ms.Smita
Shukla
5
Use of constitutive promoters to produce transgenic plants offers
certain advantages:
(1) They can be used to drive scorable/selectable reporter genes, which are
critical for molecular biology studies, and for the development of
transgenic plants.
(2) Their use will be essential in the case of such proteins that are required
in all tissues and/or during all stages of plant development. Finally,
(3) They will be useful in driving genes encoding such transcription factors
that are involved in transcription regulation.
The 35S promoter is the most commonly used constitutive promoter in
dicot plants, but it does not work satisfactorily in most monocot species.
This promoter is ideal for driving marker genes. Some modifications of 35S
promoter show several-fold increase in their activity.
Maize ubiquitin gene (Ubil) promoter includes the first intron of this gene.
It is reported to function well both in monocots and dicots, and its activity
increases transiently in response to temperature stress. The promoter of
rice actin gene (Actl) shows strong constitutive activity in monocots. As in
the case of Ubil, the presence of first intron of the gene Actl is critical for
efficient function of the Actl promoter.
Summary
There are several advantages to using constitutive promoters in expression
vectors used in plant biotechnology, such as:
•High level of production of proteins used to select transgenic cells or
plants;
Role of Promoters in gene expression Ms.Smita
Shukla
6
•High level of expression of reporter proteins or scorable markers,
allowing easy detection and quantification;
•High level of production of a transcription factor that is part of a
regulatory transcription system;
•Production of compounds that requires ubiquitous activity in the plant;
and
•Production of compounds that are required during all stages of plant
development.
The first constitutive promoters used for the expression of transgenes in
plants were isolated from plant pathogens.
The search for other constitutive promoters has continued, especially to
identify control regions that are able to drive expression of transgenes in
monocots. In some monocots such as cereals, it has been found that
sequences present in 5' untranslated transcribed regions (e.g., introns) of
certain structural genes are essential for efficient gene expression. Thus,
promoters that work well in dicots, which lack introns, do not generally
work well in monocots.
2. Tissue-Specific Promoters:
Tissue-specific or organ-specific promoters enable the expression of
concerned genes in specific tissues/organs or during certain stages of
development. These promoters drive those genes, which are expressed
specifically in roots, tubers, vascular bundles, seeds, etc. (Refer Table
below)
For example, vicilin and PHA promoters are seed-specific promoters,
TA29 is a tapetum-specific promoter, and Bcpl is specific to both
tapetum and microspores. Although heterologous promoters, i.e.,
promoters from other species, can be used, it is preferable to use
homologous promoters, i.e., promoters from the same species.
Tissue-specific promoters are indispensable in such cases where it is
desired to limit the expression of transgene to a specific
Role of Promoters in gene expression Ms.Smita
Shukla
7
tissue/organ/developmental stage. For example, promoter TA29 has been
used to drive barnase gene in order to produce male sterility.
This gene encodes an RNAse, which causes cytotoxicity to the tissue in
which it is expressed. Since TA29 promoter is tapetum- specific, it limits
expression of barnase to tapetum cells leading to male sterility without any
adverse effect on other tissues of the transgenic plants.
Similarly, seed-specific promoters limit the expression of transgenes to
seed, and are ideal for driving genes encoding seed storage proteins.
Tissue-specific expression of transgenes would reduce the cost of
transgene expression to the plant. It would also reduce selection pressure
against the insect pest (in cases of trangenes confering insect resistance)
and, thereby, reduce the risk of development of resistance by the insect
pest.
Summary
As mentioned in the Introduction, there are promoters controlling gene
expression in a tissue-dependent manner and according to the
developmental stage of the plant. The transgenes driven by these type of
promoters will only be expressed in tissues where the transgene product is
desired, leaving the rest of the tissues in the plant unmodified by transgene
expression.
Tissue-specific promoters may be induced by endogenous or exogenous
factors, so they can be classified as inducible promoters as well.
Unlike constitutive expression of genes, tissue-specific expression is the
result of several interacting levels of gene regulation. As such, it is then
preferable to use promoters from homologous or closely related plant
species to achieve efficient and reliable expression of transgenes in
particular tissues.
Role of Promoters in gene expression Ms.Smita
Shukla
8
The purpose of this section is to present those patents directed to plant
tissue-specific promoters in broad terms:
•Root promoters: Root promoters that enhance or suppress the
expression of a linked gene in root cells. In addition, the invention
comprises methods for the identification and isolation of plant tissue-
specific promoters in general.
•Fruit promoters: A tissue-specific promoter includes fruit specific
promoters that control the expression of genes in mature ovary tissue of a
fruit and in the receptacle tissue of accessory fruits such as strawberry,
apple and pear. The genes driven by the promoters influence fruit
development and ripening.
•Seed promoters: University of California have granted patents and patent
applications drawn to seed-specific promoters in broad terms.
Role of Promoters in gene expression Ms.Smita
Shukla
9
Transcription cassettes having a seed-specific promoter and recombinant
molecules containing a seed-maturation promoter are part of the
inventions.
3. Inducible Promoters:
Promoters that are activated in response to a specific physical factor,
e.g., light, temperature, heat, cold, wound etc., or a specific chemical
compound are called inducible promoters or, sometimes, stimulus-
responsive promoters. These promoters, especially chemical- inducible
promoters, provide fine control on the regulation of gene expression.
A number of native plant gene promoters are stimulus responsive, e.g.,
Adhl promoter (responds to anaerobic condition), cab promoter and
rbcs promoter (respond to light), etc. (Refer above table). But chemical
inducible promoters are synthesized from promoter sequences of different
organisms.
It is important that chemically-regulated promoters should be derived from
such organisms that are as distantly related to plants as possible, e.g., from
bacteria like E. coli, yeast, Drosophila, and mammals.
A tetracycline- regulated system that can either activate (negative
regulation) or repress (positive regulation) transcription in the presence of
tetracycline has been developed.
Some examples of environment-responsive promoters are those of the
genes rbcs, Adhl, cab, hsp, etc. Nuclear gene rbcs encodes the smaller
subunit of RuBISCO (ribulose-1, 5-bisphosphate
carboxylase/oxygenase). This gene is expressed mainly in mature leaves
and, to a lesser extent, in stem and young leaf tissues, and its expression is
induced by light.
The – 166 to – 149 bp sequence of rbcS gene functions as light response
element (LRE) and is responsible for the expression of rbcS gene in
response to light. The alcohol dehydrogenase 1 (Adhl) gene of maize is
expressed only under anaerobic conditions due to the action of a
silencer sequence that suppresses expression in the presence of
oxygen.
Role of Promoters in gene expression Ms.Smita
Shukla
10
A number chemically regulated gene expression systems have been
constructed using genes and operator systems, preferably, from unrelated
organisms. Tetracycline-regulated system was the first such system to be
developed. Subsequently, several such expression systems were devised,
e.g., metal- regulated, steroid-regulated, plant hormone-regulated,
pathogenesis-regulated, wound-regulated, etc. expression systems.
Summary
As their name says, the activity of these promoters is induced by the
presence or absence of biotic or abiotic factors. Inducible promoters are a
very powerful tool in genetic engineering because the expression of genes
linked to them can be turned on or off at certain stages of development of
an organism or in a particular tissue.
This section presents a general view of promoters whose activity is
triggered by either chemical or physical factors. There are virtually
hundreds of inducible promoters that vary according to the organism
source and cells or tissues where they regulate gene transcription.
Inducible promoters are grouped as:
•Chemically-regulated promoters, including promoters whose
transcriptional activity is regulated by the presence or absence of
alcohol, tetracycline, steroids, metal and other compounds.
•Physically-regulated promoters, including promoters whose
transcriptional activity is regulated by the presence or absence of
light and low or high temperatures.
Chemically-regulated promoters
The activity of this class of promoters is modulated by chemical compounds
that either turn off or turn on gene transcription. As prerequisites, the
chemicals influencing promoter activity typically:
• should not be naturally present in the organism where expression of the
transgene is sought;
Role of Promoters in gene expression Ms.Smita
Shukla
11
• should not be toxic;
• should affect only the expression of the gene of interest;
• should be easy to apply or removal; and
• should induce a clearly detectable expression pattern of either high or
very low gene expression for their optimal use as modulators of gene
expression.
Physically-regulated promoters
Promoters induced by environmental factors such as water or salt stress,
anaerobic condition, temperature, illumination and wounding have
potential for use in the development of plants resistant to various stress
conditions. These promoters contain regulatory elements that respond to
such environmental stimuli.
Temperature-induced promoters include cold- and heat-shock-induced
promoters. In many cases, these promoters are able to operate under
normal temperature conditions, which vary according to the organism, but
when either cold or heat is applied, the promoters maintain activity. In
addition, expression can be enhanced by the application of higher or lower
temperature as compared to the normal temperature conditions. One of the
best studied eukaryotic heat-shock systems is the one found in
Drosophila (fruit fly).
4. Synthetic Promoters:
A promoter assembled by combining various primary elements required
for the defined promoter function may be referred to as a synthetic
promoter. The various elements used in such a promoter are, usually, of
diverse origin. Among these elements the TATA box, the transcription start
site or cap site, and the CCAAT consensus sequence are required for
accurate constitutive transcription. A synthetic promoter may be either
constitutive tissue-specific or inducible, depending on the functional
sequences used in its construction.
Attempts have been made to increase the activity of 35S promoter by
adding specific modules to the native promoter. Inclusion of an additional
Role of Promoters in gene expression Ms.Smita
Shukla
12
copy of the 35S enhancer (-208 to -46 bp), i.e., double 35S enhancer, caused
a 6-fold increase in 35S promoter activity.
Summary
As mentioned in the introductory information about promoters, a set of
minimum elements are required for an activity of eukaryotic promoter.
Among those elements are the TATA box, the transcription start site or
CAP site and the CCAAT consensus sequence, which is required for
accurate transcription.
From the sequences of these elements in diverse organisms, it is possible to
synthesize consensus sequences that may work across different organisms
and are not necessarily derived from a particular organism.
The group of patents under this section are directed to promoters whose
parts are synthesized as consensus sequences of the promoter elements
found in nature.

More Related Content

What's hot

Markers and reporter genes
Markers and reporter genesMarkers and reporter genes
Markers and reporter genes
RajDip Basnet
 
Pest and herbicide resistance
Pest and herbicide resistancePest and herbicide resistance
Pest and herbicide resistance
Akumpaul
 
Genome editing
Genome editingGenome editing
Genome editing
Sudeep Pandey
 
Molecular tagging
Molecular tagging Molecular tagging
Molecular tagging
Dr. Kirti Mehta
 
Promoter and its types
Promoter and its typesPromoter and its types
Promoter and its types
Fawad Kaleem
 
Shuttle vector - a plasmid vector used in rDNA technology.
Shuttle vector - a plasmid vector used in rDNA technology. Shuttle vector - a plasmid vector used in rDNA technology.
Shuttle vector - a plasmid vector used in rDNA technology.
neeru02
 
Artificial chromosomes
Artificial chromosomesArtificial chromosomes
Artificial chromosomes
Darshana Ajith
 
Phagemid vector
Phagemid vectorPhagemid vector
Phagemid vector
microbiology Notes
 
Plant expression vectors
Plant expression vectorsPlant expression vectors
Plant expression vectors
Abhishek Indurkar
 
Express sequence tags
Express sequence tagsExpress sequence tags
Express sequence tags
Dhananjay Desai
 
Chromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloningChromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloning
Promila Sheoran
 
reporter gene
reporter genereporter gene
reporter gene
Ritasree Sarma
 
Screening and selection of recombinants
Screening and selection of recombinants Screening and selection of recombinants
Screening and selection of recombinants
Kristu Jayanti College
 
Ri Plasmid
Ri PlasmidRi Plasmid
Ri Plasmid
egoistic_ek
 
Gene silencing
Gene silencing Gene silencing
Gene silencing
Parvez Sheik
 
Viral vector gene transfer - plant viruses as a vector for gene transfer
Viral vector gene transfer - plant viruses as a vector for gene transferViral vector gene transfer - plant viruses as a vector for gene transfer
Viral vector gene transfer - plant viruses as a vector for gene transfer
Nithiya Pappuraj
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformation
MUHAMMAD JAKIR HOSSAIN
 
Ti plasmid
Ti plasmidTi plasmid
Ti plasmid
Arunima Sur
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene transferAgrobacterium mediated gene transfer
Agrobacterium mediated gene transfer
Nishanth S
 
Vector less gene transfer
Vector less gene transferVector less gene transfer
Vector less gene transfer
Manjesh Saakre
 

What's hot (20)

Markers and reporter genes
Markers and reporter genesMarkers and reporter genes
Markers and reporter genes
 
Pest and herbicide resistance
Pest and herbicide resistancePest and herbicide resistance
Pest and herbicide resistance
 
Genome editing
Genome editingGenome editing
Genome editing
 
Molecular tagging
Molecular tagging Molecular tagging
Molecular tagging
 
Promoter and its types
Promoter and its typesPromoter and its types
Promoter and its types
 
Shuttle vector - a plasmid vector used in rDNA technology.
Shuttle vector - a plasmid vector used in rDNA technology. Shuttle vector - a plasmid vector used in rDNA technology.
Shuttle vector - a plasmid vector used in rDNA technology.
 
Artificial chromosomes
Artificial chromosomesArtificial chromosomes
Artificial chromosomes
 
Phagemid vector
Phagemid vectorPhagemid vector
Phagemid vector
 
Plant expression vectors
Plant expression vectorsPlant expression vectors
Plant expression vectors
 
Express sequence tags
Express sequence tagsExpress sequence tags
Express sequence tags
 
Chromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloningChromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloning
 
reporter gene
reporter genereporter gene
reporter gene
 
Screening and selection of recombinants
Screening and selection of recombinants Screening and selection of recombinants
Screening and selection of recombinants
 
Ri Plasmid
Ri PlasmidRi Plasmid
Ri Plasmid
 
Gene silencing
Gene silencing Gene silencing
Gene silencing
 
Viral vector gene transfer - plant viruses as a vector for gene transfer
Viral vector gene transfer - plant viruses as a vector for gene transferViral vector gene transfer - plant viruses as a vector for gene transfer
Viral vector gene transfer - plant viruses as a vector for gene transfer
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformation
 
Ti plasmid
Ti plasmidTi plasmid
Ti plasmid
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene transferAgrobacterium mediated gene transfer
Agrobacterium mediated gene transfer
 
Vector less gene transfer
Vector less gene transferVector less gene transfer
Vector less gene transfer
 

Similar to Promoters in gene expression

New promoters and selection methods
New promoters and selection methods New promoters and selection methods
New promoters and selection methods
Dr. Kirti Mehta
 
Pge topic 4
Pge topic 4Pge topic 4
Pge topic 4
Jan Mamun
 
regulation of genome activity
 regulation of genome activity regulation of genome activity
regulation of genome activity
Nawfal Aldujaily
 
Markers - Transgenics.pptx
Markers - Transgenics.pptxMarkers - Transgenics.pptx
Expression vector
Expression vectorExpression vector
Expression vector
Ahmed Madni
 
application of biotechnology in pharmaceuticals
application of biotechnology in pharmaceuticalsapplication of biotechnology in pharmaceuticals
application of biotechnology in pharmaceuticals
SansarBookdepot
 
Pharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfPharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdf
BALASUNDARESAN M
 
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdfLecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
Kristu Jayanti College
 
Growth factors and their receptors
Growth factors and their receptorsGrowth factors and their receptors
Growth factors and their receptors
ANIL KUMAR
 
Signalling mechanism in cell growth
Signalling mechanism in cell growthSignalling mechanism in cell growth
Signalling mechanism in cell growthbijitadutta123
 
Gene expression and regulation
Gene expression and regulationGene expression and regulation
Gene expression and regulation
vinoth kumar
 
Genomic proteomics
Genomic proteomicsGenomic proteomics
Genomic proteomics
meethy
 
An introductiontoendocrinology
An introductiontoendocrinologyAn introductiontoendocrinology
An introductiontoendocrinologyAmour Massoud
 
Eukaryotic gene expression
Eukaryotic gene expressionEukaryotic gene expression
Eukaryotic gene expression
AnuKiruthika
 
Eukaryotic gene expression
Eukaryotic gene expressionEukaryotic gene expression
Eukaryotic gene expression
AnuKiruthika
 
plant hormone
 plant hormone plant hormone
plant hormone
poonam singh
 
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
Purushottam Mahajan
 
Nematode effector proteins
Nematode effector proteinsNematode effector proteins
Nematode effector proteins
Mathi chandhran
 
Role of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable CropsRole of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable Crops
Neha Verma
 
Role of Phytohormones in Tissue Culture
Role of Phytohormones in Tissue CultureRole of Phytohormones in Tissue Culture
Role of Phytohormones in Tissue Culture
Apoorva Ashu
 

Similar to Promoters in gene expression (20)

New promoters and selection methods
New promoters and selection methods New promoters and selection methods
New promoters and selection methods
 
Pge topic 4
Pge topic 4Pge topic 4
Pge topic 4
 
regulation of genome activity
 regulation of genome activity regulation of genome activity
regulation of genome activity
 
Markers - Transgenics.pptx
Markers - Transgenics.pptxMarkers - Transgenics.pptx
Markers - Transgenics.pptx
 
Expression vector
Expression vectorExpression vector
Expression vector
 
application of biotechnology in pharmaceuticals
application of biotechnology in pharmaceuticalsapplication of biotechnology in pharmaceuticals
application of biotechnology in pharmaceuticals
 
Pharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfPharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdf
 
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdfLecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
 
Growth factors and their receptors
Growth factors and their receptorsGrowth factors and their receptors
Growth factors and their receptors
 
Signalling mechanism in cell growth
Signalling mechanism in cell growthSignalling mechanism in cell growth
Signalling mechanism in cell growth
 
Gene expression and regulation
Gene expression and regulationGene expression and regulation
Gene expression and regulation
 
Genomic proteomics
Genomic proteomicsGenomic proteomics
Genomic proteomics
 
An introductiontoendocrinology
An introductiontoendocrinologyAn introductiontoendocrinology
An introductiontoendocrinology
 
Eukaryotic gene expression
Eukaryotic gene expressionEukaryotic gene expression
Eukaryotic gene expression
 
Eukaryotic gene expression
Eukaryotic gene expressionEukaryotic gene expression
Eukaryotic gene expression
 
plant hormone
 plant hormone plant hormone
plant hormone
 
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
Transmembrane Enzyme Linked receptors Transmembrane JAK-STAT binding receptor...
 
Nematode effector proteins
Nematode effector proteinsNematode effector proteins
Nematode effector proteins
 
Role of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable CropsRole of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable Crops
 
Role of Phytohormones in Tissue Culture
Role of Phytohormones in Tissue CultureRole of Phytohormones in Tissue Culture
Role of Phytohormones in Tissue Culture
 

More from Smita Shukla

Brain drug delivery
Brain drug deliveryBrain drug delivery
Brain drug delivery
Smita Shukla
 
Anti-viral Agents
Anti-viral AgentsAnti-viral Agents
Anti-viral Agents
Smita Shukla
 
Chemotherapeutic agent
Chemotherapeutic agentChemotherapeutic agent
Chemotherapeutic agent
Smita Shukla
 
Pulmonary review
Pulmonary reviewPulmonary review
Pulmonary review
Smita Shukla
 
Pulmonary drug delivery
Pulmonary drug deliveryPulmonary drug delivery
Pulmonary drug delivery
Smita Shukla
 
Drug delivery fact sheet
Drug delivery fact sheetDrug delivery fact sheet
Drug delivery fact sheet
Smita Shukla
 
Beta lactam antibiotics
Beta lactam antibioticsBeta lactam antibiotics
Beta lactam antibiotics
Smita Shukla
 
Antiamoebic drugs
Antiamoebic drugsAntiamoebic drugs
Antiamoebic drugs
Smita Shukla
 
Anthelmintics
AnthelminticsAnthelmintics
Anthelmintics
Smita Shukla
 
Agents affecting immune system
Agents affecting immune systemAgents affecting immune system
Agents affecting immune system
Smita Shukla
 
Drug targeting
Drug targetingDrug targeting
Drug targeting
Smita Shukla
 
Female reproductive hormones
Female reproductive hormonesFemale reproductive hormones
Female reproductive hormones
Smita Shukla
 
Synthetic antibacterial agents
Synthetic antibacterial agentsSynthetic antibacterial agents
Synthetic antibacterial agents
Smita Shukla
 
Cloning
CloningCloning
Cloning
Smita Shukla
 
Signal transduction
Signal transductionSignal transduction
Signal transduction
Smita Shukla
 
Enzymes used in Genetic Engineering
Enzymes used in Genetic EngineeringEnzymes used in Genetic Engineering
Enzymes used in Genetic Engineering
Smita Shukla
 
Unit 1 genetic engineering
Unit 1 genetic engineeringUnit 1 genetic engineering
Unit 1 genetic engineering
Smita Shukla
 
Unit 4
Unit 4Unit 4
Unit 4
Smita Shukla
 
Bioresource and waste management
Bioresource and waste managementBioresource and waste management
Bioresource and waste management
Smita Shukla
 
Transgenics
TransgenicsTransgenics
Transgenics
Smita Shukla
 

More from Smita Shukla (20)

Brain drug delivery
Brain drug deliveryBrain drug delivery
Brain drug delivery
 
Anti-viral Agents
Anti-viral AgentsAnti-viral Agents
Anti-viral Agents
 
Chemotherapeutic agent
Chemotherapeutic agentChemotherapeutic agent
Chemotherapeutic agent
 
Pulmonary review
Pulmonary reviewPulmonary review
Pulmonary review
 
Pulmonary drug delivery
Pulmonary drug deliveryPulmonary drug delivery
Pulmonary drug delivery
 
Drug delivery fact sheet
Drug delivery fact sheetDrug delivery fact sheet
Drug delivery fact sheet
 
Beta lactam antibiotics
Beta lactam antibioticsBeta lactam antibiotics
Beta lactam antibiotics
 
Antiamoebic drugs
Antiamoebic drugsAntiamoebic drugs
Antiamoebic drugs
 
Anthelmintics
AnthelminticsAnthelmintics
Anthelmintics
 
Agents affecting immune system
Agents affecting immune systemAgents affecting immune system
Agents affecting immune system
 
Drug targeting
Drug targetingDrug targeting
Drug targeting
 
Female reproductive hormones
Female reproductive hormonesFemale reproductive hormones
Female reproductive hormones
 
Synthetic antibacterial agents
Synthetic antibacterial agentsSynthetic antibacterial agents
Synthetic antibacterial agents
 
Cloning
CloningCloning
Cloning
 
Signal transduction
Signal transductionSignal transduction
Signal transduction
 
Enzymes used in Genetic Engineering
Enzymes used in Genetic EngineeringEnzymes used in Genetic Engineering
Enzymes used in Genetic Engineering
 
Unit 1 genetic engineering
Unit 1 genetic engineeringUnit 1 genetic engineering
Unit 1 genetic engineering
 
Unit 4
Unit 4Unit 4
Unit 4
 
Bioresource and waste management
Bioresource and waste managementBioresource and waste management
Bioresource and waste management
 
Transgenics
TransgenicsTransgenics
Transgenics
 

Recently uploaded

Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 

Recently uploaded (20)

Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 

Promoters in gene expression

  • 1. Role of Promoters in gene expression Ms.Smita Shukla 1 PROMOTERS: A promoter is a DNA sequence that can recruit transcriptional machinery and lead to transcription of the downstream DNA sequence. The specific sequence of the promoter determines the strength of the promoter (a strong promoter leads to a high rate of transcription initiation). In addition to sequences that "promote" transcription, a promoter may include additional sequences known as operators that control the strength of the promoter. For example, a promoter may include a binding site for a protein that attracts or obstructs the RNAP binding to the promoter. The presence or absence of the protein will affect the strength of the promoter. Such a promoter is known as a regulated promoter. An input/output description of promoter function Sometimes, we ignore the details of how a promoter works and think of a promoter as a device that converts inputs into outputs. You can do this when designing a multi-component system that includes promoters whose activity must be regulated by other species in the system. A promoter can be thought of as a device that outputs a certain number of transcribing RNA polymerases per unit time. Promoters can have different numbers of inputs. A constitutive promoter has no inputs. Technically, even a constitutive promoter has inputs, such as the level of free RNA polymerase, but we often assume that levels of free RNA polymerase are either unchanging, or never be the limiting factor in transcription initiation. The level of a repressor that negatively regulates a promoter is an input to a promoter. Types of promoters used to regulate gene expression Promoters used in biotechnology are of different types according to the intended type of control of gene expression. They can be generally divided into: 1. Constitutive promoters: These promoters direct expression in virtually all tissues and are largely, if not entirely, independent of environmental and developmental factors. As their expression is normally not conditioned by endogenous factors, constitutive promoters are usually active across species and even across kingdoms.
  • 2. Role of Promoters in gene expression Ms.Smita Shukla 2 2. Tissue-specific or development-stage-specific promoters: These direct the expression of a gene in specific tissue(s) or at certain stages of development. For plants, promoter elements that are expressed or affect the expression of genes in the vascular system, photosynthetic tissues, tubers, roots and other vegetative organs, or seeds and other reproductive organs can be found in heterologous systems (e.g. distantly related species or even other kingdoms) but the most specificity is generally achieved with homologous promoters (i.e. from the same species, genus or family). This is probably because the coordinate expression of transcription factors is necessary for regulation of the promoter's activity. 3. Inducible promoters: Their performance is not conditioned to endogenous factors but to environmental conditions and external stimuli that can be artificially controlled. Within this group, there are promoters modulated by abiotic factors such as light, oxygen levels, heat, cold and wounding. Since some of these factors are difficult to control outside an experimental setting, promoters that respond to chemical compounds, not found naturally in the organism of interest, are of particular interest. Along those lines, promoters that respond to antibiotics, copper, alcohol, steroids, and herbicides, among other compounds, have been adapted and refined to allow the induction of gene activity at will and independently of other biotic or abiotic factors. 4. Synthetic promoters: Promoters made by bringing together the primary elements of a promoter region from diverse origins. 4 Different Plant Promoters in Gene Construct Some of the plant promoters in gene construct are as follows: 1. Constitutive Promoters 2. Tissue-Specific Promoters 3.Inducible Promoters 4. Synthetic Promoters. As a rule, promoters of all structural genes that encode proteins are located upstream of the start site, the site from which transcription begins. The promoter determines (1) the level of expression, (2) the developmental
  • 3. Role of Promoters in gene expression Ms.Smita Shukla 3 stage and/or the tissues in which it will be expressed, and (3) the physical/chemical factor by which the gene expression will be regulated. A promoter suitable for gene expression in prokaryotes will not function in eukaryotes, and vice-versa. Further, animal promoters are not suitable for plants, and promoters that function well in dicots are usually much less active in monocots, and vice-versa. Therefore, considerable thought has to be given to the selection of an appropriate promoter for transgene expression. A variety of promoters are used to drive transgenes in plants, some of which are listed in Table below. These are essentially naturally occurring promoters belonging to the following three broad groups: (1) constitutive promoters, (2) tissue- specific promoters, and (3) promoters activated by specific physical/chemical factors. In addition, number of (4) synthetic promoters have been developed to achieve a defined regulation of the transgene expression.
  • 4. Role of Promoters in gene expression Ms.Smita Shukla 4 Table: Some of the constitutive promoters used for driving the expression of transgenes in different plant species. 1. Constitutive Promoters: Genes driven by constitutive promoters are expressed in all the tissues and during all developmental stages of the organism, and their expression is largely unaffected by physical chemical stimuli. Some examples of such promoters are 35S promoter, ubiquitin (Ubi) promoter, actinl (Act1) promoter, nopaline synthase (nos) promoter, octopine synthase (ocs) promoter, mannopine synthase (mas) promoter, etc. The 35S, nos ocs, and mas promoters have been obtained from plant pathogens, and were the first to be used; Ubil and Actl promoters are from plant genes. In case of many constitutive promoters, the level of gene expression in different tissues may show some variation, and some promoters may respond to physical/chemical stimuli. For example, Actl promoter contains elements that appear to negatively regulate promoter activity in a tissue- specific manner, particularly in roots. Similarly, Ubi 1 promoter shows some increase in promoter activity in response to temperature stress.
  • 5. Role of Promoters in gene expression Ms.Smita Shukla 5 Use of constitutive promoters to produce transgenic plants offers certain advantages: (1) They can be used to drive scorable/selectable reporter genes, which are critical for molecular biology studies, and for the development of transgenic plants. (2) Their use will be essential in the case of such proteins that are required in all tissues and/or during all stages of plant development. Finally, (3) They will be useful in driving genes encoding such transcription factors that are involved in transcription regulation. The 35S promoter is the most commonly used constitutive promoter in dicot plants, but it does not work satisfactorily in most monocot species. This promoter is ideal for driving marker genes. Some modifications of 35S promoter show several-fold increase in their activity. Maize ubiquitin gene (Ubil) promoter includes the first intron of this gene. It is reported to function well both in monocots and dicots, and its activity increases transiently in response to temperature stress. The promoter of rice actin gene (Actl) shows strong constitutive activity in monocots. As in the case of Ubil, the presence of first intron of the gene Actl is critical for efficient function of the Actl promoter. Summary There are several advantages to using constitutive promoters in expression vectors used in plant biotechnology, such as: •High level of production of proteins used to select transgenic cells or plants;
  • 6. Role of Promoters in gene expression Ms.Smita Shukla 6 •High level of expression of reporter proteins or scorable markers, allowing easy detection and quantification; •High level of production of a transcription factor that is part of a regulatory transcription system; •Production of compounds that requires ubiquitous activity in the plant; and •Production of compounds that are required during all stages of plant development. The first constitutive promoters used for the expression of transgenes in plants were isolated from plant pathogens. The search for other constitutive promoters has continued, especially to identify control regions that are able to drive expression of transgenes in monocots. In some monocots such as cereals, it has been found that sequences present in 5' untranslated transcribed regions (e.g., introns) of certain structural genes are essential for efficient gene expression. Thus, promoters that work well in dicots, which lack introns, do not generally work well in monocots. 2. Tissue-Specific Promoters: Tissue-specific or organ-specific promoters enable the expression of concerned genes in specific tissues/organs or during certain stages of development. These promoters drive those genes, which are expressed specifically in roots, tubers, vascular bundles, seeds, etc. (Refer Table below) For example, vicilin and PHA promoters are seed-specific promoters, TA29 is a tapetum-specific promoter, and Bcpl is specific to both tapetum and microspores. Although heterologous promoters, i.e., promoters from other species, can be used, it is preferable to use homologous promoters, i.e., promoters from the same species. Tissue-specific promoters are indispensable in such cases where it is desired to limit the expression of transgene to a specific
  • 7. Role of Promoters in gene expression Ms.Smita Shukla 7 tissue/organ/developmental stage. For example, promoter TA29 has been used to drive barnase gene in order to produce male sterility. This gene encodes an RNAse, which causes cytotoxicity to the tissue in which it is expressed. Since TA29 promoter is tapetum- specific, it limits expression of barnase to tapetum cells leading to male sterility without any adverse effect on other tissues of the transgenic plants. Similarly, seed-specific promoters limit the expression of transgenes to seed, and are ideal for driving genes encoding seed storage proteins. Tissue-specific expression of transgenes would reduce the cost of transgene expression to the plant. It would also reduce selection pressure against the insect pest (in cases of trangenes confering insect resistance) and, thereby, reduce the risk of development of resistance by the insect pest. Summary As mentioned in the Introduction, there are promoters controlling gene expression in a tissue-dependent manner and according to the developmental stage of the plant. The transgenes driven by these type of promoters will only be expressed in tissues where the transgene product is desired, leaving the rest of the tissues in the plant unmodified by transgene expression. Tissue-specific promoters may be induced by endogenous or exogenous factors, so they can be classified as inducible promoters as well. Unlike constitutive expression of genes, tissue-specific expression is the result of several interacting levels of gene regulation. As such, it is then preferable to use promoters from homologous or closely related plant species to achieve efficient and reliable expression of transgenes in particular tissues.
  • 8. Role of Promoters in gene expression Ms.Smita Shukla 8 The purpose of this section is to present those patents directed to plant tissue-specific promoters in broad terms: •Root promoters: Root promoters that enhance or suppress the expression of a linked gene in root cells. In addition, the invention comprises methods for the identification and isolation of plant tissue- specific promoters in general. •Fruit promoters: A tissue-specific promoter includes fruit specific promoters that control the expression of genes in mature ovary tissue of a fruit and in the receptacle tissue of accessory fruits such as strawberry, apple and pear. The genes driven by the promoters influence fruit development and ripening. •Seed promoters: University of California have granted patents and patent applications drawn to seed-specific promoters in broad terms.
  • 9. Role of Promoters in gene expression Ms.Smita Shukla 9 Transcription cassettes having a seed-specific promoter and recombinant molecules containing a seed-maturation promoter are part of the inventions. 3. Inducible Promoters: Promoters that are activated in response to a specific physical factor, e.g., light, temperature, heat, cold, wound etc., or a specific chemical compound are called inducible promoters or, sometimes, stimulus- responsive promoters. These promoters, especially chemical- inducible promoters, provide fine control on the regulation of gene expression. A number of native plant gene promoters are stimulus responsive, e.g., Adhl promoter (responds to anaerobic condition), cab promoter and rbcs promoter (respond to light), etc. (Refer above table). But chemical inducible promoters are synthesized from promoter sequences of different organisms. It is important that chemically-regulated promoters should be derived from such organisms that are as distantly related to plants as possible, e.g., from bacteria like E. coli, yeast, Drosophila, and mammals. A tetracycline- regulated system that can either activate (negative regulation) or repress (positive regulation) transcription in the presence of tetracycline has been developed. Some examples of environment-responsive promoters are those of the genes rbcs, Adhl, cab, hsp, etc. Nuclear gene rbcs encodes the smaller subunit of RuBISCO (ribulose-1, 5-bisphosphate carboxylase/oxygenase). This gene is expressed mainly in mature leaves and, to a lesser extent, in stem and young leaf tissues, and its expression is induced by light. The – 166 to – 149 bp sequence of rbcS gene functions as light response element (LRE) and is responsible for the expression of rbcS gene in response to light. The alcohol dehydrogenase 1 (Adhl) gene of maize is expressed only under anaerobic conditions due to the action of a silencer sequence that suppresses expression in the presence of oxygen.
  • 10. Role of Promoters in gene expression Ms.Smita Shukla 10 A number chemically regulated gene expression systems have been constructed using genes and operator systems, preferably, from unrelated organisms. Tetracycline-regulated system was the first such system to be developed. Subsequently, several such expression systems were devised, e.g., metal- regulated, steroid-regulated, plant hormone-regulated, pathogenesis-regulated, wound-regulated, etc. expression systems. Summary As their name says, the activity of these promoters is induced by the presence or absence of biotic or abiotic factors. Inducible promoters are a very powerful tool in genetic engineering because the expression of genes linked to them can be turned on or off at certain stages of development of an organism or in a particular tissue. This section presents a general view of promoters whose activity is triggered by either chemical or physical factors. There are virtually hundreds of inducible promoters that vary according to the organism source and cells or tissues where they regulate gene transcription. Inducible promoters are grouped as: •Chemically-regulated promoters, including promoters whose transcriptional activity is regulated by the presence or absence of alcohol, tetracycline, steroids, metal and other compounds. •Physically-regulated promoters, including promoters whose transcriptional activity is regulated by the presence or absence of light and low or high temperatures. Chemically-regulated promoters The activity of this class of promoters is modulated by chemical compounds that either turn off or turn on gene transcription. As prerequisites, the chemicals influencing promoter activity typically: • should not be naturally present in the organism where expression of the transgene is sought;
  • 11. Role of Promoters in gene expression Ms.Smita Shukla 11 • should not be toxic; • should affect only the expression of the gene of interest; • should be easy to apply or removal; and • should induce a clearly detectable expression pattern of either high or very low gene expression for their optimal use as modulators of gene expression. Physically-regulated promoters Promoters induced by environmental factors such as water or salt stress, anaerobic condition, temperature, illumination and wounding have potential for use in the development of plants resistant to various stress conditions. These promoters contain regulatory elements that respond to such environmental stimuli. Temperature-induced promoters include cold- and heat-shock-induced promoters. In many cases, these promoters are able to operate under normal temperature conditions, which vary according to the organism, but when either cold or heat is applied, the promoters maintain activity. In addition, expression can be enhanced by the application of higher or lower temperature as compared to the normal temperature conditions. One of the best studied eukaryotic heat-shock systems is the one found in Drosophila (fruit fly). 4. Synthetic Promoters: A promoter assembled by combining various primary elements required for the defined promoter function may be referred to as a synthetic promoter. The various elements used in such a promoter are, usually, of diverse origin. Among these elements the TATA box, the transcription start site or cap site, and the CCAAT consensus sequence are required for accurate constitutive transcription. A synthetic promoter may be either constitutive tissue-specific or inducible, depending on the functional sequences used in its construction. Attempts have been made to increase the activity of 35S promoter by adding specific modules to the native promoter. Inclusion of an additional
  • 12. Role of Promoters in gene expression Ms.Smita Shukla 12 copy of the 35S enhancer (-208 to -46 bp), i.e., double 35S enhancer, caused a 6-fold increase in 35S promoter activity. Summary As mentioned in the introductory information about promoters, a set of minimum elements are required for an activity of eukaryotic promoter. Among those elements are the TATA box, the transcription start site or CAP site and the CCAAT consensus sequence, which is required for accurate transcription. From the sequences of these elements in diverse organisms, it is possible to synthesize consensus sequences that may work across different organisms and are not necessarily derived from a particular organism. The group of patents under this section are directed to promoters whose parts are synthesized as consensus sequences of the promoter elements found in nature.