SlideShare a Scribd company logo
Chapter 28. Direct-Current Circuits                                                         Physics, 6th Edition


                         Chapter 28. Direct-Current Circuits

Resistors in Series and Parallel (Ignore internal resistances for batteries in this section.)

28-1. A 5-Ω resistor is connected in series with a 3-Ω resistor and a 16-V battery. What is the

       effective resistance and what is the current in the circuit?
                                                                                       3Ω       5Ω
                 Re = R1 + R2 = 3 Ω +5 Ω;         Re = 8.00 Ω

                         V 16 V
                    I=    =                   I = 2.00 A
                         R 8Ω                                                               16 V


28-2. A 15-Ω resistor is connected in parallel with a 30-Ω resistor and a 30-V source of emf.

       What is the effective resistance and what total current is delivered?

                  R1 R2   (15 Ω)(30 Ω)
          Re =          =              ;         Re = 10.0 Ω
                 R1 + R2 15 Ω + 30 Ω                                                     15 Ω      30 Ω
                                                                                30 V

                        V 30 V
                   I=    =     ;         I = 3.00 A
                        R 10 Ω


28-3. In Problem 28-2, what is the current in 15 and 30-Ω resistors?

                                                                       30 V
                  For Parallel:       V15 = V30 = 30 V;        I15 =        ;    I15 = 2.00 A
                                                                       15 Ω

                             30 V
                    I 30 =        ;    I30 = 1.00 A         Note: I15 + I30 = IT = 3.00 A
                             30 Ω


28-4. What is the equivalent resistance of 2, 4, and 6-Ω resistors connected in parallel?

                                         2Ω        4Ω           6Ω




                                  Re = 2 Ω + 4 Ω+ 6 Ω;          Re = 12.0 Ω


                                                      129
Chapter 28. Direct-Current Circuits                                                Physics, 6th Edition


28-5. An 18-Ω resistor and a 9-Ω resistor are first connected in parallel and then in series with

       a 24-V battery. What is the effective resistance for each connection? Neglecting internal

       resistance, what is the total current delivered by the battery in each case?

                         R1 R2   (18 Ω)(9 Ω)                                    30 V
                 Re =          =             ;        Re = 6.00 Ω
                        R1 + R2 18 Ω + 9 Ω                                                   9Ω
                                                                                 18 Ω

                               V   24 V
                          I=     =      ;        I = 4.00 A
                               R 6.00 Ω

                   Re = R1 + R2 = 18 Ω +9 Ω;          Re = 27.0 Ω               18 Ω      9Ω

                                V 24 V
                           I=    =             I = 0.889 A                       24 V
                                R 27 Ω


28-6. A 12-Ω resistor and an 8-Ω resistor are first connected in parallel and then in series with

       a 28-V source of emf. What is the effective resistance and total current in each case?

                R1 R2   (12 Ω)(8 Ω)
        Re =          =             ;       Re = 4.80 Ω                                 12 Ω      8Ω
               R1 + R2 12 Ω + 8 Ω                                   28 V
                                                                           8Ω
                                                                    12 Ω                 28 V
                      V   28 V
                 I=     =      ;         I = 5.83 A
                      R 4.80 Ω

                                                                      V 28 V
       Re = R1 + R2 = 12 Ω +8 Ω;          Re = 20.0 Ω            I=    =           I = 1.40 A
                                                                      R 20 Ω


28-7. An 8-Ω resistor and a 3-Ω resistor are first connected in parallel and then in series with a

       12-V source. Find the effective resistance and total current for each connection?

                        (3 Ω)(8 Ω)                              V   12 V
                 Re =              ;    Re = 2.18 Ω        I=     =      ;      I = 5.50 A
                        3Ω+8Ω                                   R 2.18 Ω

                                                                     V 12 V
        Re = R1 + R2 = 3 Ω +8 Ω;         Re = 11.0 Ω            I=    =           I = 1.09 A
                                                                     R 11 Ω




                                                   130
Chapter 28. Direct-Current Circuits                                                   Physics, 6th Edition


28-8. Given three resistors of 80, 60, and 40 Ω, find their effective resistance when connected

       in series and when connected in parallel.

                        Series:    Re = 80 Ω + 60 Ω + 40 Ω ;        Re = 180 Ω

                                1    1    1    1    1
                   Parallel:       =∑ =     +    +     ;                 Re = 18.5 Ω
                                Re   Ri 80 Ω 60 Ω 40 Ω


28-9. Three resistances of 4, 9, and 11 Ω are connected first in series and then in parallel. Find

       the effective resistance for each connection.

                         Series:    Re = 4 Ω + 9 Ω + 11 Ω ;       Re = 24.0 Ω

                                  1    1   1   1    1
                    Parallel:        =∑ =    +   +     ;                Re = 2.21 Ω
                                  Re   Ri 4 Ω 9 Ω 11 Ω


*28-10. A 9-Ω resistor is connected in series with two parallel resistors of 6 and 12 Ω. What is

        the terminal potential difference if the total current from the battery is 4 A?

                (6 Ω)(12 Ω)                                                                  9Ω
         Re =               = 4 Ω;        Re = 4 Ω + 9 Ω = 13 Ω                  6Ω
                6 Ω + 12 Ω
                                                                                 12 Ω
                   VT = IR = (4 A)(13 Ω);       VT = 52.0 V                               VT
                                                                              4A


*28-11. For the circuit described in Problem 28-10, what is the voltage across the 9-Ω resistor

        and what is the current through the 6-Ω resistor?

                                V9 = (4 A)(9 Ω) = 36 V;       V9 = 36.0 V

                     The rest of the 52 V drops across each of the parallel resistors:

                                     V6 = V7 = 52 V – 36 V;       V6 = 16 V

                                          V6 16 V
                                   I6 =     =     ;       I6 = 2.67 A
                                          R6 6 Ω



                                                   131
Chapter 28. Direct-Current Circuits                                                       Physics, 6th Edition


*28-12. Find the equivalent resistance of the circuit drawn in Fig. 28-19.

             Start at far right and reduce circuit in steps: R’ = 1 Ω + 3 Ω + 2 Ω = 6 Ω;

                             (6 Ω)(3 Ω)
                    R '' =              = 2 Ω ; Re = 2 Ω + 4 Ω + 2 Ω ;             Re = 8 Ω
                             6Ω+3Ω

                  4Ω          1Ω              4Ω                          4Ω


                    3Ω         3Ω                  3Ω        6Ω               2Ω              8Ω

                  2Ω          2Ω                 2Ω                       2Ω


*28-13. Find the equivalent resistance of the circuit shown in Fig. 28-20.

                Start at far right and reduce circuit in steps: R = 1 Ω + 2 Ω = 3 Ω;

                                     (6 Ω)(3 Ω)
                              R' =              = 2 Ω ; R’’ = 2 Ω + 3 Ω = 5 Ω
                                     6Ω+3Ω

                                       (5 Ω)(4 Ω)
                                Re =              = 2.22 Ω ;       Re = 2.22 Ω
                                       5Ω+4Ω
                         1Ω

                                                                     4Ω
     4Ω                              4Ω       6Ω        3Ω                         4Ω         5Ω          Re
                       6Ω                                                 2Ω

             3Ω          2Ω                 3Ω                           3Ω


*28-14. If a potential difference of 24 V is applied to the circuit drawn in Fig. 28-19, what is the
                                                                         4Ω        1Ω              4Ω
          current and voltage across the 1-Ω resistor?
                                                                  24 V                        24 V
                           24 V                                           3Ω       3Ω                3Ω        6Ω
          Re = 8.00 Ω; I =      = 3.00 A;
                           8Ω
                                                                         2Ω        2Ω              2Ω
          The voltage across the 3 and 6-Ω parallel                                                     4Ω

          connection is found from It and the 2-Ω combination resistance:                            24 V
                                                                                                            2Ω
                                                                   6V
          V3 = V6 = (2 Ω)(3.00 A);        V6 = 6.00 V;        I6 =    = 1A
                                                                   6Ω                                   2Ω

          Thus, I1 = I6 = 1.00 A, and V1 = (1 A)(1 Ω) = 1 V;                  V1 = 1 V; I1 = 1 A


                                                        132
Chapter 28. Direct-Current Circuits                                                Physics, 6th Edition


*28-15. If a potential difference of 12-V is applied to the free ends in Fig. 28-20, what is the

        current and voltage across the 2-Ω resistor?                                             1Ω

                            12 V                                    12 V          4Ω
        Re = 2.22 Ω; I =          = 5.40 A;                                                  6Ω
                           2.22 Ω
                                                                                  3Ω             2Ω
                                          12 V
        Note that V5 = 12 V;       I5 =        = 2.40 A
                                           5Ω                         12 V        4Ω
                                                    4.8 V                                        3Ω
                                                                                       6Ω
        V3,6 = (2.4 A)(2 Ω) = 4.80 V;        I3 =         = 1.6 A
                                                     3Ω
                                                                                   3Ω
                                                                                                        4 Ω 5Ω
        I2 = I1 = 1.60 A; V2 = (1.6 A)(2 Ω) = 3.20 V
                                                                    12 V     4Ω                  12 V
                  I2 = 1.60 A;     V2 = 3.20 V                                              2Ω

                                                                              3Ω



EMF and Terminal Potential Difference
28-16. A load resistance of 8 Ω is connected in series with a 18-V battery whose internal

        resistance is 1.0 Ω. What current is delivered and what is the terminal voltage?

                                      E       18 V
                              I=         =            ;         I = 2.00 A
                                   r + RL 1.0 Ω + 8 Ω


28-17. A resistance of 6 Ω is placed across a 12-V battery whose internal resistance is 0.3 Ω.

        What is the current delivered to the circuit? What is the terminal potential difference?

                                      E      12 V
                              I=         =            ;         I = 1.90 A
                                   r + RL 0.3 Ω + 6 Ω

                       VT = E – Ir = 12 V – (1.90 A)(0.3 Ω);        VT = 11.4 V




                                                     133
Chapter 28. Direct-Current Circuits                                                 Physics, 6th Edition


28-18. Two resistors of 7 and 14 Ω are connected in parallel with a 16-V battery whose internal

        resistance is 0.25 Ω. What is the terminal potential difference and the current in

        delivered to the circuit?                                          16 V
                                                                                    7Ω       14 Ω
             (7 Ω)(14 Ω)                                                   0.25 Ω
        R' =             = 4.67 Ω ;      Re = 0.25 Ω + 4.67 Ω
             7 Ω + 14 Ω

                E      16 V
         I=          =        ;     I = 3.25 A         VT = E – Ir = 16 V – (3.25 A)(0.25 Ω);
              r + R ' 4.917 Ω

                                    VT = 15.2 V; I = 3.25 A


28-19. The open-circuit potential difference of a battery is 6 V. The current delivered to a 4-Ω

        resistor is 1.40 A. What is the internal resistance?

                                      E = IRL + Ir;    Ir = E - IRL

                             E − IRL 6 V - (1.40 A)(4 Ω)
                        r=          =                    ;            r = 0.286 Ω
                                I           1.40 A


28-20. A dc motor draws 20 A from a 120-V dc line. If the internal resistance is 0.2 Ω, what is

        the terminal voltage of the motor?

                       VT = E – Ir = 120 V – (20A)(0.2 Ω);            VT = 116 V


28-21. For the motor in Problem 28-21, what is the electric power drawn from the line? What

        portion of this power is dissipated because of heat losses? What power is delivered by

        the motor?

                              Pi = EI = (120 V)(20 A); Pi = 2400 W

                               PL = I2r = (20 A)2(0.2); PL = 80 W

                             Po = VTI = (116 V)(20 A); Po = 2320 W;

                        Note: Pi = PL + Po; 2400 W = 80 W + 2320 W


                                                 134
Chapter 28. Direct-Current Circuits                                                           Physics, 6th Edition


28-22. A 2-Ω and a 6-Ω resistor are connected in series with a 24-V battery of internal

        resistance 0.5 Ω. What is the terminal voltage and the power lost to internal resistance?

                                                                     E   24 V
                   Re = 2 Ω + 6 Ω + 0.5 Ω = 8.50 Ω;             I=     =      = 2.82 A
                                                                     Re 8.5 Ω

                        VT = E – Ir = 24 V – (2.82 A)(0.5 Ω); VT = 22.6 V

                              PL = I2 r = (2.82 A)2 (0.5 Ω);          PL = 3.99 W



*28-23. Determine the total current and the current through each resistor for Fig. 28-21 when

        E = 24 V, R1 = 6 Ω, R2 = 3 Ω, R3 = 1 Ω, R4 = 2 Ω,and r = 0.4 Ω.
                                                                                             R3 = 1 Ω
                                                                                                                   24 V
               (3 Ω)(6 Ω)
        R1,2 =            = 2 Ω ; R1,2,3 = 2 Ω + 1 Ω = 3 Ω                    R1              R2           2Ω
                3Ω + 6 Ω                                                            6Ω             R4
                                                                                             3Ω                    0.4 Ω

               (3 Ω)(2 Ω)                               R3 = 1 Ω
        Re =              = 1.20 Ω;                                          24 V                           24 V
                3Ω + 2 Ω                                                                 3Ω
                                                                     2Ω                               2Ω
                                                        2Ω     R4                             R4             0.4 Ω
                                                                              0.4 Ω
        Re = 1.20 Ω + 0.4 Ω = 1.60 Ω

                    24 V                                                              24 V                  24 V
            IT =          ;      IT = 15.0 A
                   1.60 Ω                                           1.2 Ω                     1.6 Ω
                                                                                      0.4 Ω
                                                        18 V
        V4 = V1.2= (1.2 Ω)(15 A) = 18 V          I4 =
                                                         2Ω

        I4 = 9.0 A;    I3 = 15 A – 9 A = 6 A;           V3 = (6 A)(1 Ω) = 6 V; V1 = V2 = 18 V – 6 V;

                                                      12 V                   12 V
                      V1 = V2 = 12 V;          I2 =        = 4 A;     I1 =        =2A;
                                                       3Ω                     6Ω

                          IT = 15 A, I1 = 2 A, I2 = 4 Ω, I3 = 6 Α, I4 = 9 A.


         The solution is easier using Kirchhoff’s laws, developed later in this chapter.




                                                       135
Chapter 28. Direct-Current Circuits                                                       Physics, 6th Edition


*28-24. Find the total current and the current through each resistor for Fig. 28-21 when E = 50 V,

        R1 = 12 Ω, R2 = 6 Ω, R3 = 6 Ω, R4 = 8 Ω,and r = 0.4 Ω.                           R3 = 6 Ω
                                                                                                                    50 V
              (12 Ω)(6 Ω)                                                R1               R2             8Ω
       R1,2 =             = 4 Ω ; R1,2,3 = 4 Ω + 6 Ω = 10 Ω                     12 Ω            R4
               12 Ω + 6 Ω                                                                6Ω                         0.4 Ω
                                                   R3 = 6 Ω
             (10 Ω)(8 Ω)                                                 50 V          10 Ω
                                                                                                             50 V
          R=             = 4.44 Ω
             10 Ω + 8 Ω                                           4Ω                              8Ω
                                                   4Ω      R4                              R4                 0.4 Ω
                                                                         0.4 Ω
        Re = 4.44 Ω + 0.4 Ω = 4.84 Ω
                                                                                 24 V                        50 V
                    50 V                                                                  1.6 Ω
            IT =          ;    IT = 10.3 A                      2.86 Ω
                   4.84 Ω                                                         0.4 Ω

                                                         45.9 V
        V4 = Vp= (4.44 Ω)(10.3 A) = 45.9 V        I4 =
                                                          8Ω

          I4 = 5.73 A; I3 = 10.3 A – 5.73 A = 4.59 A; V3 = (4.59 A)(6 Ω) = 27.5 V;

                                                           18.4 V                         18.4 V
          V1 = V2 = 45.9 V – 27.5 V = 18.4 V;       I2 =          = 3.06 A;       I1 =           = 1.53 A ;
                                                            6Ω                             12 Ω

                   IT = 10.3 A, I1 = 1.53 A, I2 = 3.06 Ω, I3 = 4.59 Α, I4 = 5.73 A.



Kirchhoff’s Laws

28-25. Apply Kirchhoff’s second rule to the current loop in Fig. 28-22. What is the net voltage

        around the loop? What is the net IR drop? What is the current in the loop?

        Indicate output directions of emf’s, assume direction of                                  20 V
                                                                                                             +
                                                                                       2Ω

        current, and trace in a clockwise direction for loop rule:
                                                                                                         I
               ΣE = ΣIR; 20 V – 4 V = I(6 Ω) + I(2 Ω);
                                                                                                6Ω
                                                                                   4V
                                       16 V
               (8 Ω)I = 16 V;       I=      ;      I = 2.00 A
                                        8Ω

                   Net voltage drop = Σ E = 16 V;          ΣIR = (8 Ω)(2 A) = 16 V


                                                 136
Chapter 28. Direct-Current Circuits                                                      Physics, 6th Edition


28-26. Answer the same questions for Problem 28-25 where the polarity of the 20-V battery is

        changed, that is, its output direction is now to the left? ( Refer to Fig. in Prob. 28-25. )

                  Σ E = -20 V – 4 V = -24 V; ΣIR = I(2 Ω) + I(6 Ω = (8Ω)I

          ΣE = ΣIR; -24 V = (8 Ω)I;           I = -4.00 A;       ΣIR = (8 Ω)(-4 A) = -24 V

        The minus sign means the current is counterclockwise (against the assume direction)


*28-27. Use Kirchhoff’s laws to solve for the currents through the circuit shown as Fig. 28-23.
                                                                                             4Ω
        First law at point P: I1 + I2 = I3     Current rule
                                                                                        I1
                    nd
          Loop A (2 law):       ΣE = ΣIR        Loop rule                    2 ΩP             A       5V

                                                                                                       Ω
                                                                                                      6I
                5 V – 4 V = (4 Ω)I1 + (2 Ω)I1 – (6 Ω)I2                                                2


                                                                                        4V             I2
             Simplifying we obtain:        (1) 6I1 – 6I2 = 1 A
                                                                             3Ω                   B    I3
                                                                                                                  1Ω

         Loop B: 4 V – 3 V = (6 Ω)I2 + (3 Ω)I3 + (1 Ω)I3

             Simplifying:     (2)   6I2 + 4I3 = 1 A, but I3 = I1 + I2                         3V


         Substituting we have: 6I2 + 4(I1 + I2) = 1 A          or   (3) 4I1 + 10I2 = 1 A

        From which,      I1 = 0.25 A – 2.5 I2 ; Substituting into (1): 6(0.25 A – 2.5I2 ) – 6 I2 = 1 A

        1.5 A – 15I2 – 6I2 = 1 A;       -21I2 = -0.5 A;   I2 = 0.00238 A;      I2 = 23.8 mA

        Putting this into (1), we have: 6I1 – 6(0.0238 A) = 1 A, and           I1 = 190 mA

         Now, I1 + I2 = I3    so that      I3 = 23.8 mA + 190 mA        or     I3 = 214 mA

                                                                                                  3Ω
*28-28. Use Kirchhoff’s laws to solve for the currents in Fig. 28-24.                        I1

        Current rule:    I1 + I3 = I2    or (1) I3 = I2 – I1                 20 V                     A     5V
                                                                                                      4Ω
                                                                                                            I2
        Loop A: 20 V = (3 Ω)I1 + (4 Ω)I2 ; (2) 3I1 + 4I2 = 20 A                     P
                                                                                             4V             I2
        Loop B: 8 V = (6 Ω)I3 + (4 Ω)I2;         (3) 3I3 + 2I2 = 4 A            2Ω                    B            4Ω
                                                                                                             I3
       Outside Loop: 20 V – 8 V = (3 Ω)Ι1 – (6 Ω)Ι3 or I1 – 2 I3 = 4 A
                                                                                                      8V

                                                   137
Chapter 28. Direct-Current Circuits                                                           Physics, 6th Edition


*28-28. (Cont.) (3) 3I3 + 2I2 = 4 A and I3 = I2 – I1
                                                                                                3Ω

           3(I2 – I1) + 2I2 = 4 A;     3I1 = 5I2 – 4 A                                   I1

          (2) 3I1 + 4I2 = 20 A; (5I2 – 4 A) + 4I2 = 20;                       20 V                 A    5V
                                                                                                   4Ω
                                                                                                        I2
                                                                                   P
         I2 = 2.67 A; 3I1 = 5(2.67 A) – 4 A; I1 = 3.11 A
                                                                                           4V           I2
           I3 = I2 – I1 = 2.67 A – 3.11 A = -0.444 A                             2Ω                B             4Ω
                                                                                                            I3
         Note: I3 goes in opposite direction to that assumed.
                                                                                                   8V
                I1 = 3.11 A, I2 = 2.67 A, I3 = 0.444 A


*28-29. Apply Kirchhoff’s laws to the circuit of Fig. 28-25. Find the currents in each branch.

            Current rule: (1)        I1 + I4 = I2 + I3                             1.5 Ω                    3V
                                                                                   Ω
         Applying loop rule gives six possible equations:                               3Ω              I1

         (2) 1.5I1 + 3I2 = 3 A; (3) 3I2 – 5I3 = 0                                             I2
                                                                                        5Ω             I3
         (4) 5I3 + 6I4 = 6A;         (5) 1.5I1 – 6I4 = -3A
                                                                                                        I4
                                                                              6V              6Ω
         (6) 6I4 + 3I2 = 6 A         (7) 1.5I1 + 5I3 = 3A

         Put I4 = I2 + I3 – I1; into (4): 5I3 + 6(I2 + I3 – I1) = 6 A  -6I1 + 6I2 + 11I3 = 6 A

         Now, solving (2) for I1 gives: I1 = 2 A – 2I2, which can be used in the above equation.

         -6(2 A – 2I2) + 6I2 + 11I3 = 6 A, which gives: 18I2 + 11I3 = 18 A

         But, from (3), we put I2 =     5
                                            3   I 3 into above equation to find that:    I3 = 0.439 A

                    From (2): 1.5I1 + 3(0.439 A) = 3 A;               and I1 = 0.536 A

                    From (3): 3I2 – 5(0.439 A) = 0; and I2 = 0.736 A

                    From (4): 5(0.439 A) + 6I4 = 6 A; and                 I4 = 0.634 A

         Currents in each branch are: I1 = 536 mA, I2 = 732 mA, I3 = 439 mA, I4 = 634 mA

         Note: Not all of the equations are independent. Elimination of two may yield another.

         It is best to start with the current rule, and use it to eliminate one of the currents quickly.


                                                         138
Chapter 28. Direct-Current Circuits                                                Physics, 6th Edition


The Wheatstone Bridge

28-30. A Wheatstone bridge is used to measure the resistance Rx of a coil of wire. The

        resistance box is adjusted for 6 Ω, and the contact key is positioned at the 45 cm mark

        when measured from point A of Fig. 28-13. Find Rx.            ( Note: l1 + l2 = 100 cm )

                                   R3l2 (6 Ω)(55 cm)
                            Rx =       =             ;       Rx = 7.33 Ω
                                    l1     (45 cm)

28-31. Commercially available Wheatstone bridges are portable and have a self-contained

        galvanometer. The ratio R2/R1 can be set at any integral power of ten between 0.001 and

        1000 by a single dual switch. When this ratio is set to 100 and the known resistance R is

        adjusted to 46.7 Ω, the galvanometer current is zero. What is the unknown resistance?

                                     R2
                           Rx = R3      = (46.7 Ω)(100) ;    Rx = 4670 Ω
                                     R1


28-32. In a commercial Wheatstone bridge, R1 and R2 have the resistances of 20 and 40 Ω,

        respectively. If the resistance Rx is 14 Ω, what must be the known resistance R3 for zero

        galvanometer deflection?

                                      R2          20 Ω
                            Rx = R3      = (14 Ω)      ;     Rx = 7.00 Ω
                                      R1          40 Ω


Challenge Problems:

28-33. Resistances of 3, 6, and 9 Ω are first connected in series and then in parallel with an 36-V

        source of potential difference. Neglecting internal resistance, what is the current leaving

        the positive terminal of the battery?

                                                                 36 V
                 Re = ΣRi = 3 Ω + 6 Ω + 9 Ω = 18 Ω;         I=        ;   I = 2.00 A
                                                                 18 Ω



                                                139
Chapter 28. Direct-Current Circuits                                               Physics, 6th Edition


                   1    1   1   1   1                      36 V
28-33. (Cont.)        =∑ =    +   +    ; Re = 1.64 Ω; I =        ; I = 22.0 A
                   Re   Ri 3 Ω 6 Ω 9 Ω                    1.64 Ω

28-34. Three 3-Ω resistors are connected in parallel. This combination is then placed in series

        with another 3-Ω resistor. What is the equivalent resistance?
                                                                                            3Ω
         1   1   1   1
           =   +   +    = 1 Ω;             Re = R’ + 3 Ω
         R' 3 Ω 3 Ω 3 Ω                                                                             V
                                                                      3Ω     3Ω    3Ω

                      Re = 1 Ω + 3 Ω;     Re = 4 Ω


*28-35. Three resistors of 4, 8, and 12 Ω are connected in series with a battery. A switch allows

        the battery to be connected or disconnected from the circuit? When the switch is open, a

        voltmeter across the terminals of the battery reads 50 V. When the switch is closed, the

        voltmeter reads 48 V. What is the internal resistance in the battery?

                  RL = 4 Ω + 8 Ω + 12 Ω = 24 Ω;         E = 50 V; VT = 48 V = IRL

                             48 V
                        I=        = 2.00 A ; E – VT = Ir; 50 V – 48 V = Ir
                             24 V

                                        50 V - 48 V
                                   r=               ;    r = 1.00 Ω
                                          2.00 A

*28-36. The generator in Fig. 28-26 develops an emf of E1 = 24 V and has an internal resistance

        of 0.2 Ω. The generator is used to charge a battery E2 = 12 V whose internal resistance

        is 0.3 Ω. Assume that R1 = 4 Ω and R2 = 6 Ω. What is the terminal voltage across the

        generator? What is the terminal voltage across the battery?

                             24 V - 12 V
                 I=                             = 1.14 A
                      6 Ω + 4 Ω + 0.2 Ω + 0.3 Ω                                                  12 V
                                                                             4Ω
          V1= E1 – Ir = 24 V – (1.14 A)(0.2 Ω) = 23.8 V;          24 V                  r
                                                                         r   6Ω
                 V2 = 12 V + (1.14 A)(0.3 Ω) = 12.3 V



                                                 140
Chapter 28. Direct-Current Circuits                                                     Physics, 6th Edition


*28-37.   What is the power consumed in charging the battery for Problem 28-36. Show that the

          power delivered by the generator is equal to the power losses due to resistance and the

          power consumed in charging the battery.

          P = E I = (24 V)(1.143 A)        Pe = 27.43 W                                                         12 V
                                                                                    4Ω
          PR= I2 Re = (1.143 A)2 (10.5 Ω); PR = 13.69 W             24 V                      r
                                                                           r        6Ω
          PV = (12 V)(1.143 A) = 13.72 W;        Pe = PR + PV;

                   27.4 W = 13.7 W + 13.7 W


 *28-38. Assume the following values for the parameters of the circuit illustrated in Fig. 28-8:

          E1 = 100 V, E2 = 20 V, r1 = 0.3 Ω. r2 = 0.4 Ω, and R = 4 Ω.What are the terminal

          voltages V1 and V2? What is the power lost through the 4-Ω resistor?

                           100 V - 20 V                                                                                20 V
                   I=                       = 17.0 A                100 V
                        4 Ω + 0.3 Ω + 0.4 Ω
                                                                                r        4Ω            r
              V1= E1 – Ir = 100 V – (17.0 A)(0.3 Ω) = 94.9 V;

                V2 = 20 V + (17.0 A)(0.4 Ω) = 26.8 V;           P = I2 R = (17 A)2(4 Ω) = 1160 W


 *28-39. Solve for the currents in each branch for Fig. 28-27.                                5Ω                12 V

          Current rule:   I1 = I2 + I3 ;    Loops: Σ E = Σ IR’s                          I1

                                                                                                  A
          (1) 5I1 + 10I2 = 12 A;      (2) -10I2 + 20I3 = 6 A                                      10 Ω
                                                                                                      I2
                                                                                    P
          (2) -5I2 + 10I3 = 3 A;      (3) 5I1 + 20I3 = 18 A                                            I2
                                                                                          4V

          From (1): 5(I2 + I3) + 10 I2 = 12 A  15I2 + 5I3 = 12 A
                                                                               20 Ω               B        I3

          Multiplying this equation by –2:     -30I2 – 10I3 = -24 A
                                                                                                  6V
          Now add this to (2): -35I2 + 0 = -21 A          and    I2 = 0.600 A

          Now, from (1) and from (2):       I1 = 1.20 A and      I3 = 0.600 A



                                                  141
Chapter 28. Direct-Current Circuits                                                 Physics, 6th Edition


*28-40. If the current in the 6-Ω resistor of Fig. 28-28 is 2 A, what is the emf of the battery?

        Neglect internal resistance. What is the power loss through the 1-Ω resistor?
                                                                          2A               1Ω
              V6 = (2 A)(6 Ω) = 12 V; V3 = 12 V = I3(3 Ω)
                                                                                                IT        E
                      12 V                                                6Ω    3Ω
                 I3 =      = 4 A ; IT = 2 A + 4 A = 6 A;                                   I3
                       3Ω

           V1 = (1 Ω)(6 A) = 6 V; E = 6 V + 12 V = 18 V; P = IT2 R = (6 A)2(1 Ω) = 36 W


Critical Thinking Problems

*28-41. A three-way light bulb uses two resistors, a 50-W filament and a 100-W filament. A

       three-way switch allows each to be connected in series and provides a third possibility by

       connecting the two filaments in parallel? Draw a possible arrangement of switches than

       will accomplish these tasks. Assume that the household voltage is 120 V. What are the

       resistances of each filament? What is the power of the parallel combination?
                                                                               I1
       Switch can be set at A, B, or C to give three possibilities:
                                                                                                     IT
           V2        (120 V) 2               (120 V) 2                         R1     R2
        P=    ; R1 =           = 288 Ω; R2 =           = 144 Ω                              I2
           R           50 W                   100 W                                   B                       120 V

                                      (288 Ω)(144 Ω)                           A           C
                For Parallel: Re =                   = 96 Ω
                                      288 Ω + 144 Ω

                                   V 2 (120 V) 2
                                P=    =          ;       P = 150 W
                                    R    96 Ω




                                                142
Chapter 28. Direct-Current Circuits                                                    Physics, 6th Edition


*28-42. The circuit illustrated in Fig. 28-7 consists of a 12-V battery, a 4-Ω resistor, and a

       switch. When new, the internal resistance of the battery is 0.4 Ω, and a voltmeter is

       placed across the terminals of the battery. What will be the reading of the voltmeter

       when the switch is open and when it is closed? After a long period of time, the

       experiment is repeated and it is noted that open circuit reading is unchanged, but the

       terminal voltage has reduced by 10 percent. How do you explain the lower terminal

       voltage? What is the internal resistance of the old battery?

                          E       12 V
       When new: I =          =            ;        I = 2.73 A                                      4Ω
                         R + r 4 Ω + 0.4 Ω

       VT = E – Ir = 12 V – (2.73 A)(0.4 Ω);        VT = 10.9 V

       VT reduced by 10% due to increase of rint. V’ = 10.9 V – 0.1(10.9 V); V’ = 9.81 V

                                               9.81 V                                      E −V '
                  V’ = IRL = 9.81 V;      I=          = 2.45 A;    V ' = E − Ir ;     r=
                                                4Ω                                           I

                                    E − V ' 12 V - 9.81 V
                               r=          =              ;        r = 0.893 Ω
                                      I        2.45 A

*28-43. Given three resistors of 3, 9, and 18 Ω,list all the possible equivalent resistances that can

       be obtained through various connections?

                                          1   1   1    1
                       All in parallel:     =   +   +     ;           Re = 2 Ω
                                          Re 3 Ω 9 Ω 18 Ω

               All in series: Re = R1 + R2 + R3 = 3 Ω + 9 Ω + 18 Ω;           Re = 30 Ω

                                                        (3 Ω)(9 Ω)
           Parallel (3,9) in series with (18): Re =                + 18 Ω;      Re = 20.2 Ω
                                                        3Ω+9Ω

                                                        (3 Ω)(18 Ω)
           Parallel (3,18) in series with (9): Re =                 + 9 Ω;          Re = 11.6 Ω
                                                        3 Ω + 18 Ω

                                                        (9 Ω)(18 Ω)
           Parallel (9,18) in series with (3): Re =                 + 3 Ω;          Re = 9.00 Ω
                                                        9 Ω + 18 Ω


                                                  143
Chapter 28. Direct-Current Circuits                                                           Physics, 6th Edition


                                                               (12 Ω)(18 Ω)
*28-43 (Cont.)Series (3 + 9) in parallel with (18): Re =                    ;               Re = 20.2 Ω
                                                               12 Ω + 18 Ω

                                                               (9 Ω)(21 Ω)
                 Series (3 + 18) in parallel with (9): Re =                ;            Re = 6.30 Ω
                                                               9 Ω + 21 Ω

                                                               (3 Ω)(27 Ω)
                 Series (9 + 18) in parallel with (3): Re =                ;            Re = 2.70 Ω
                                                               3 Ω + 27 Ω


*28-44. Refer to Fig. 28-21, assume that E = 24 V, R1 = 8 Ω,R2 = 3 Ω, R3 = 2 Ω,R4 = 4 Ω,and r

        = 0.5 Ω.     What current is delivered to the circuit by the 24-V battery? What are the

        voltage and current for the 8-Ω resistor?                                              R3 = 2 Ω
                                                                                                              24 V
              (3 Ω)(8 Ω)                                                                             4Ω
       R1,2 =            = 2.18 Ω ; R1,2,3 = 2.18 Ω + 2 Ω = 4.18 Ω                     8Ω      R2
               3 Ω+8 Ω                                                                                R4       0.5 Ω
                                                                                       R1      3Ω
                                                    R3 = 2 Ω
             (4.18 Ω)(4 Ω)
        Re =               = 2.04 Ω;                                       24 V             4.18 Ω
                                                                                                             24 V
              4.18 Ω + 4 Ω                               R4       4Ω                                    4Ω
                                                    2.18 Ω                                      R4            0.5 Ω
                                                                               0.5 Ω
        Re = 2.04 Ω + 0.5 Ω = 2.54 Ω

                                                                                       24 V                  24 V
                     24 V
            IT =           ;   IT = 9.43 A                                                     2.54 Ω
                    2.54 Ω                                     2.04 Ω
                                                                                        0.5 Ω
        V4 = V1,2,3 = (9.43 A) (2.04 Ω) = 19.3 V

                19.3 V
         I4 =          = 4.82 A ;   I3 = 9.43 A – 4.82 A = 4.61 A;         V3 = (4.61 A)(2 Ω) = 9.23 V
                 4Ω

                                                                               10.1 V
           V1 = V2 = 19.3 V – 9.23 V;        V1 = V2 = 10.1 V;          I1 =          = 1.26 A ;
                                                                                8Ω

                    Finally, for the 8-Ω resistor: V1 = 10.1 V and I1 = 1.26 A




                                                 144
Chapter 28. Direct-Current Circuits                                                          Physics, 6th Edition


*28-45. What is the effective resistance of the external circuit for Fig. 28-29 if internal resistance

        is neglected. What is the current through the 1-Ω resistor?
                   4Ω            1Ω                      4Ω           1Ω                            4Ω        1Ω
                                                         R1        R3            R5
         24 V                                   24 V                                     24 V
                     6Ω                    3Ω              6Ω         8Ω       3Ω                    6Ω       2.18 Ω
                                   8Ω                      R2          R4



                (3 Ω)(8 Ω)
       R4,5 =              = 2.18 Ω ;           R3,4,5 = 2.18 Ω + 1 Ω = 3.18 Ω                       4Ω
                 3 Ω+8 Ω
                                                                                             24 V
                                                                                                         6Ω     3.18 Ω
                         (3.18 Ω)(6 Ω)
            R1,2,3,4 =                 ;          R1,2,3,4 = 2.08 Ω
                          3.18 Ω + 6 Ω

                  Re = 2.08 Ω + 4 Ω;            Re = 6.08 Ω                                     4Ω
                                                                                      24 V                    24 V
                I3 in the 1-Ω resistor is same as I in R3,4,5

                                          24 V
                                  IT =          = 3.95 A
                                         6.08 Ω

                          V2,3,4,5 = (3.95 A)(2.08 Ω) = 8.21 V;             Also V3,4,5 = 8.21 V

                                 8.21 V
                     I 3,4,5 =          = 2.58 A;      Therefore        I3 = 2.58 A in 1-Ω resistor
                                 3.18 Ω

                                                Re = 6.08 Ω;     I3 = 2.58 A




                                                       145

More Related Content

What's hot

Em 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solutionEm 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solution
Sporsho
 
Exercicios sinais senoidais
Exercicios sinais senoidaisExercicios sinais senoidais
Exercicios sinais senoidais
Glauber Pires
 
Vector lesson and problems
Vector lesson and problemsVector lesson and problems
Vector lesson and problemsJohn Trinh
 
Current transformer requirements for protection 1
Current transformer requirements for protection 1Current transformer requirements for protection 1
Current transformer requirements for protection 1abumusab
 
electricidad y magnetismo ejercicios resueltos Capitulo 3
electricidad y magnetismo  ejercicios resueltos  Capitulo 3electricidad y magnetismo  ejercicios resueltos  Capitulo 3
electricidad y magnetismo ejercicios resueltos Capitulo 3
J Alexander A Cabrera
 
Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3
dr walid
 
ECNH 3015 Examples of PU system
ECNH 3015  Examples of PU systemECNH 3015  Examples of PU system
ECNH 3015 Examples of PU system
Chandrabhan Sharma
 
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
Anthony Martinez
 

What's hot (20)

Anschp27
Anschp27Anschp27
Anschp27
 
Anschp31
Anschp31Anschp31
Anschp31
 
Anschp23
Anschp23Anschp23
Anschp23
 
Anschp29
Anschp29Anschp29
Anschp29
 
Anschp38
Anschp38Anschp38
Anschp38
 
Anschp33
Anschp33Anschp33
Anschp33
 
Anschp22
Anschp22Anschp22
Anschp22
 
Em 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solutionEm 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solution
 
Exercicios sinais senoidais
Exercicios sinais senoidaisExercicios sinais senoidais
Exercicios sinais senoidais
 
Vector lesson and problems
Vector lesson and problemsVector lesson and problems
Vector lesson and problems
 
Anschp37
Anschp37Anschp37
Anschp37
 
Anschp35
Anschp35Anschp35
Anschp35
 
Current transformer requirements for protection 1
Current transformer requirements for protection 1Current transformer requirements for protection 1
Current transformer requirements for protection 1
 
Lista 3° ano
Lista 3° anoLista 3° ano
Lista 3° ano
 
Anschp19
Anschp19Anschp19
Anschp19
 
electricidad y magnetismo ejercicios resueltos Capitulo 3
electricidad y magnetismo  ejercicios resueltos  Capitulo 3electricidad y magnetismo  ejercicios resueltos  Capitulo 3
electricidad y magnetismo ejercicios resueltos Capitulo 3
 
Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3
 
ECNH 3015 Examples of PU system
ECNH 3015  Examples of PU systemECNH 3015  Examples of PU system
ECNH 3015 Examples of PU system
 
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
Mecanica estatica evaluacion 01 anthony martinez 25260432 (1)
 
Anschp21
Anschp21Anschp21
Anschp21
 

Similar to PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS

PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
LUIS POWELL
 
17 resistance in series and parallel
17 resistance in series and parallel17 resistance in series and parallel
17 resistance in series and parallelmrtangextrahelp
 
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física IIProblemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
LUIS POWELL
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
LUIS POWELL
 
Differences series parallel
Differences series parallelDifferences series parallel
Differences series parallel
EMEC101
 
Parallel circuit
Parallel circuitParallel circuit
Parallel circuitY_Oberlin
 
lecture12.pdf
lecture12.pdflecture12.pdf
lecture12.pdf
SuryanshKhati2
 
Resistance 2
Resistance 2Resistance 2
Resistance 2
Adityaroy110
 
Unit 103 power_point_8_resistors_series
Unit 103 power_point_8_resistors_seriesUnit 103 power_point_8_resistors_series
Unit 103 power_point_8_resistors_serieswirethehouse
 
Resistors measurement in series and parallel circuits
Resistors measurement in series and parallel circuitsResistors measurement in series and parallel circuits
Resistors measurement in series and parallel circuitsAnkur Shrivastava
 
5 ammeter and voltmeter
5 ammeter and voltmeter5 ammeter and voltmeter
5 ammeter and voltmeter
Neil MacIntosh
 
Dhiman debnath rollno1023
Dhiman debnath rollno1023Dhiman debnath rollno1023
Dhiman debnath rollno1023
Dhiman12Debnath
 
Series circuit
Series circuitSeries circuit
Series circuitY_Oberlin
 
series_parallel.pdf
series_parallel.pdfseries_parallel.pdf
series_parallel.pdf
LLOYDARENAS1
 
Thevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysisThevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysis
Bashar Imam
 
Electricity -internal resistance.pptx
Electricity -internal resistance.pptxElectricity -internal resistance.pptx
Electricity -internal resistance.pptx
www.fixURscore.com
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slides
guest5e66ab3
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handoutnomio0703
 
ohms law.pptx
ohms law.pptxohms law.pptx
ohms law.pptx
VeeraSnigdha1
 

Similar to PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS (20)

PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
 
17 resistance in series and parallel
17 resistance in series and parallel17 resistance in series and parallel
17 resistance in series and parallel
 
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física IIProblemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
 
Differences series parallel
Differences series parallelDifferences series parallel
Differences series parallel
 
Parallel circuit
Parallel circuitParallel circuit
Parallel circuit
 
lecture12.pdf
lecture12.pdflecture12.pdf
lecture12.pdf
 
Resistance 2
Resistance 2Resistance 2
Resistance 2
 
Unit 103 power_point_8_resistors_series
Unit 103 power_point_8_resistors_seriesUnit 103 power_point_8_resistors_series
Unit 103 power_point_8_resistors_series
 
Resistors measurement in series and parallel circuits
Resistors measurement in series and parallel circuitsResistors measurement in series and parallel circuits
Resistors measurement in series and parallel circuits
 
5 ammeter and voltmeter
5 ammeter and voltmeter5 ammeter and voltmeter
5 ammeter and voltmeter
 
Dhiman debnath rollno1023
Dhiman debnath rollno1023Dhiman debnath rollno1023
Dhiman debnath rollno1023
 
Series circuit
Series circuitSeries circuit
Series circuit
 
series_parallel.pdf
series_parallel.pdfseries_parallel.pdf
series_parallel.pdf
 
Thevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysisThevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysis
 
Electricity -internal resistance.pptx
Electricity -internal resistance.pptxElectricity -internal resistance.pptx
Electricity -internal resistance.pptx
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slides
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
 
ohms law.pptx
ohms law.pptxohms law.pptx
ohms law.pptx
 

More from LUIS POWELL

CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA IICAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
LUIS POWELL
 
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA IICATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
LUIS POWELL
 
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA IICAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
LUIS POWELL
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
LUIS POWELL
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
LUIS POWELL
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
LUIS POWELL
 
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física IIProblemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
LUIS POWELL
 
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
LUIS POWELL
 
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - DefinitivoCapítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
LUIS POWELL
 
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
LUIS POWELL
 
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  SearsProblemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
LUIS POWELL
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
LUIS POWELL
 
Programa (6) Sintético de Física II
Programa (6) Sintético de Física IIPrograma (6) Sintético de Física II
Programa (6) Sintético de Física II
LUIS POWELL
 
Tecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación VirtualTecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación Virtual
LUIS POWELL
 
Pasos (17) de la Investigación Científica
Pasos (17) de la Investigación CientíficaPasos (17) de la Investigación Científica
Pasos (17) de la Investigación Científica
LUIS POWELL
 
Presentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión AlternativaPresentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión Alternativa
LUIS POWELL
 

More from LUIS POWELL (16)

CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA IICAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
 
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA IICATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
 
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA IICAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
 
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física IIProblemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II
 
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
 
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - DefinitivoCapítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
 
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
 
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  SearsProblemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
 
Programa (6) Sintético de Física II
Programa (6) Sintético de Física IIPrograma (6) Sintético de Física II
Programa (6) Sintético de Física II
 
Tecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación VirtualTecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación Virtual
 
Pasos (17) de la Investigación Científica
Pasos (17) de la Investigación CientíficaPasos (17) de la Investigación Científica
Pasos (17) de la Investigación Científica
 
Presentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión AlternativaPresentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión Alternativa
 

Recently uploaded

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS

  • 1. Chapter 28. Direct-Current Circuits Physics, 6th Edition Chapter 28. Direct-Current Circuits Resistors in Series and Parallel (Ignore internal resistances for batteries in this section.) 28-1. A 5-Ω resistor is connected in series with a 3-Ω resistor and a 16-V battery. What is the effective resistance and what is the current in the circuit? 3Ω 5Ω Re = R1 + R2 = 3 Ω +5 Ω; Re = 8.00 Ω V 16 V I= = I = 2.00 A R 8Ω 16 V 28-2. A 15-Ω resistor is connected in parallel with a 30-Ω resistor and a 30-V source of emf. What is the effective resistance and what total current is delivered? R1 R2 (15 Ω)(30 Ω) Re = = ; Re = 10.0 Ω R1 + R2 15 Ω + 30 Ω 15 Ω 30 Ω 30 V V 30 V I= = ; I = 3.00 A R 10 Ω 28-3. In Problem 28-2, what is the current in 15 and 30-Ω resistors? 30 V For Parallel: V15 = V30 = 30 V; I15 = ; I15 = 2.00 A 15 Ω 30 V I 30 = ; I30 = 1.00 A Note: I15 + I30 = IT = 3.00 A 30 Ω 28-4. What is the equivalent resistance of 2, 4, and 6-Ω resistors connected in parallel? 2Ω 4Ω 6Ω Re = 2 Ω + 4 Ω+ 6 Ω; Re = 12.0 Ω 129
  • 2. Chapter 28. Direct-Current Circuits Physics, 6th Edition 28-5. An 18-Ω resistor and a 9-Ω resistor are first connected in parallel and then in series with a 24-V battery. What is the effective resistance for each connection? Neglecting internal resistance, what is the total current delivered by the battery in each case? R1 R2 (18 Ω)(9 Ω) 30 V Re = = ; Re = 6.00 Ω R1 + R2 18 Ω + 9 Ω 9Ω 18 Ω V 24 V I= = ; I = 4.00 A R 6.00 Ω Re = R1 + R2 = 18 Ω +9 Ω; Re = 27.0 Ω 18 Ω 9Ω V 24 V I= = I = 0.889 A 24 V R 27 Ω 28-6. A 12-Ω resistor and an 8-Ω resistor are first connected in parallel and then in series with a 28-V source of emf. What is the effective resistance and total current in each case? R1 R2 (12 Ω)(8 Ω) Re = = ; Re = 4.80 Ω 12 Ω 8Ω R1 + R2 12 Ω + 8 Ω 28 V 8Ω 12 Ω 28 V V 28 V I= = ; I = 5.83 A R 4.80 Ω V 28 V Re = R1 + R2 = 12 Ω +8 Ω; Re = 20.0 Ω I= = I = 1.40 A R 20 Ω 28-7. An 8-Ω resistor and a 3-Ω resistor are first connected in parallel and then in series with a 12-V source. Find the effective resistance and total current for each connection? (3 Ω)(8 Ω) V 12 V Re = ; Re = 2.18 Ω I= = ; I = 5.50 A 3Ω+8Ω R 2.18 Ω V 12 V Re = R1 + R2 = 3 Ω +8 Ω; Re = 11.0 Ω I= = I = 1.09 A R 11 Ω 130
  • 3. Chapter 28. Direct-Current Circuits Physics, 6th Edition 28-8. Given three resistors of 80, 60, and 40 Ω, find their effective resistance when connected in series and when connected in parallel. Series: Re = 80 Ω + 60 Ω + 40 Ω ; Re = 180 Ω 1 1 1 1 1 Parallel: =∑ = + + ; Re = 18.5 Ω Re Ri 80 Ω 60 Ω 40 Ω 28-9. Three resistances of 4, 9, and 11 Ω are connected first in series and then in parallel. Find the effective resistance for each connection. Series: Re = 4 Ω + 9 Ω + 11 Ω ; Re = 24.0 Ω 1 1 1 1 1 Parallel: =∑ = + + ; Re = 2.21 Ω Re Ri 4 Ω 9 Ω 11 Ω *28-10. A 9-Ω resistor is connected in series with two parallel resistors of 6 and 12 Ω. What is the terminal potential difference if the total current from the battery is 4 A? (6 Ω)(12 Ω) 9Ω Re = = 4 Ω; Re = 4 Ω + 9 Ω = 13 Ω 6Ω 6 Ω + 12 Ω 12 Ω VT = IR = (4 A)(13 Ω); VT = 52.0 V VT 4A *28-11. For the circuit described in Problem 28-10, what is the voltage across the 9-Ω resistor and what is the current through the 6-Ω resistor? V9 = (4 A)(9 Ω) = 36 V; V9 = 36.0 V The rest of the 52 V drops across each of the parallel resistors: V6 = V7 = 52 V – 36 V; V6 = 16 V V6 16 V I6 = = ; I6 = 2.67 A R6 6 Ω 131
  • 4. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-12. Find the equivalent resistance of the circuit drawn in Fig. 28-19. Start at far right and reduce circuit in steps: R’ = 1 Ω + 3 Ω + 2 Ω = 6 Ω; (6 Ω)(3 Ω) R '' = = 2 Ω ; Re = 2 Ω + 4 Ω + 2 Ω ; Re = 8 Ω 6Ω+3Ω 4Ω 1Ω 4Ω 4Ω 3Ω 3Ω 3Ω 6Ω 2Ω 8Ω 2Ω 2Ω 2Ω 2Ω *28-13. Find the equivalent resistance of the circuit shown in Fig. 28-20. Start at far right and reduce circuit in steps: R = 1 Ω + 2 Ω = 3 Ω; (6 Ω)(3 Ω) R' = = 2 Ω ; R’’ = 2 Ω + 3 Ω = 5 Ω 6Ω+3Ω (5 Ω)(4 Ω) Re = = 2.22 Ω ; Re = 2.22 Ω 5Ω+4Ω 1Ω 4Ω 4Ω 4Ω 6Ω 3Ω 4Ω 5Ω Re 6Ω 2Ω 3Ω 2Ω 3Ω 3Ω *28-14. If a potential difference of 24 V is applied to the circuit drawn in Fig. 28-19, what is the 4Ω 1Ω 4Ω current and voltage across the 1-Ω resistor? 24 V 24 V 24 V 3Ω 3Ω 3Ω 6Ω Re = 8.00 Ω; I = = 3.00 A; 8Ω 2Ω 2Ω 2Ω The voltage across the 3 and 6-Ω parallel 4Ω connection is found from It and the 2-Ω combination resistance: 24 V 2Ω 6V V3 = V6 = (2 Ω)(3.00 A); V6 = 6.00 V; I6 = = 1A 6Ω 2Ω Thus, I1 = I6 = 1.00 A, and V1 = (1 A)(1 Ω) = 1 V; V1 = 1 V; I1 = 1 A 132
  • 5. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-15. If a potential difference of 12-V is applied to the free ends in Fig. 28-20, what is the current and voltage across the 2-Ω resistor? 1Ω 12 V 12 V 4Ω Re = 2.22 Ω; I = = 5.40 A; 6Ω 2.22 Ω 3Ω 2Ω 12 V Note that V5 = 12 V; I5 = = 2.40 A 5Ω 12 V 4Ω 4.8 V 3Ω 6Ω V3,6 = (2.4 A)(2 Ω) = 4.80 V; I3 = = 1.6 A 3Ω 3Ω 4 Ω 5Ω I2 = I1 = 1.60 A; V2 = (1.6 A)(2 Ω) = 3.20 V 12 V 4Ω 12 V I2 = 1.60 A; V2 = 3.20 V 2Ω 3Ω EMF and Terminal Potential Difference 28-16. A load resistance of 8 Ω is connected in series with a 18-V battery whose internal resistance is 1.0 Ω. What current is delivered and what is the terminal voltage? E 18 V I= = ; I = 2.00 A r + RL 1.0 Ω + 8 Ω 28-17. A resistance of 6 Ω is placed across a 12-V battery whose internal resistance is 0.3 Ω. What is the current delivered to the circuit? What is the terminal potential difference? E 12 V I= = ; I = 1.90 A r + RL 0.3 Ω + 6 Ω VT = E – Ir = 12 V – (1.90 A)(0.3 Ω); VT = 11.4 V 133
  • 6. Chapter 28. Direct-Current Circuits Physics, 6th Edition 28-18. Two resistors of 7 and 14 Ω are connected in parallel with a 16-V battery whose internal resistance is 0.25 Ω. What is the terminal potential difference and the current in delivered to the circuit? 16 V 7Ω 14 Ω (7 Ω)(14 Ω) 0.25 Ω R' = = 4.67 Ω ; Re = 0.25 Ω + 4.67 Ω 7 Ω + 14 Ω E 16 V I= = ; I = 3.25 A VT = E – Ir = 16 V – (3.25 A)(0.25 Ω); r + R ' 4.917 Ω VT = 15.2 V; I = 3.25 A 28-19. The open-circuit potential difference of a battery is 6 V. The current delivered to a 4-Ω resistor is 1.40 A. What is the internal resistance? E = IRL + Ir; Ir = E - IRL E − IRL 6 V - (1.40 A)(4 Ω) r= = ; r = 0.286 Ω I 1.40 A 28-20. A dc motor draws 20 A from a 120-V dc line. If the internal resistance is 0.2 Ω, what is the terminal voltage of the motor? VT = E – Ir = 120 V – (20A)(0.2 Ω); VT = 116 V 28-21. For the motor in Problem 28-21, what is the electric power drawn from the line? What portion of this power is dissipated because of heat losses? What power is delivered by the motor? Pi = EI = (120 V)(20 A); Pi = 2400 W PL = I2r = (20 A)2(0.2); PL = 80 W Po = VTI = (116 V)(20 A); Po = 2320 W; Note: Pi = PL + Po; 2400 W = 80 W + 2320 W 134
  • 7. Chapter 28. Direct-Current Circuits Physics, 6th Edition 28-22. A 2-Ω and a 6-Ω resistor are connected in series with a 24-V battery of internal resistance 0.5 Ω. What is the terminal voltage and the power lost to internal resistance? E 24 V Re = 2 Ω + 6 Ω + 0.5 Ω = 8.50 Ω; I= = = 2.82 A Re 8.5 Ω VT = E – Ir = 24 V – (2.82 A)(0.5 Ω); VT = 22.6 V PL = I2 r = (2.82 A)2 (0.5 Ω); PL = 3.99 W *28-23. Determine the total current and the current through each resistor for Fig. 28-21 when E = 24 V, R1 = 6 Ω, R2 = 3 Ω, R3 = 1 Ω, R4 = 2 Ω,and r = 0.4 Ω. R3 = 1 Ω 24 V (3 Ω)(6 Ω) R1,2 = = 2 Ω ; R1,2,3 = 2 Ω + 1 Ω = 3 Ω R1 R2 2Ω 3Ω + 6 Ω 6Ω R4 3Ω 0.4 Ω (3 Ω)(2 Ω) R3 = 1 Ω Re = = 1.20 Ω; 24 V 24 V 3Ω + 2 Ω 3Ω 2Ω 2Ω 2Ω R4 R4 0.4 Ω 0.4 Ω Re = 1.20 Ω + 0.4 Ω = 1.60 Ω 24 V 24 V 24 V IT = ; IT = 15.0 A 1.60 Ω 1.2 Ω 1.6 Ω 0.4 Ω 18 V V4 = V1.2= (1.2 Ω)(15 A) = 18 V I4 = 2Ω I4 = 9.0 A; I3 = 15 A – 9 A = 6 A; V3 = (6 A)(1 Ω) = 6 V; V1 = V2 = 18 V – 6 V; 12 V 12 V V1 = V2 = 12 V; I2 = = 4 A; I1 = =2A; 3Ω 6Ω IT = 15 A, I1 = 2 A, I2 = 4 Ω, I3 = 6 Α, I4 = 9 A. The solution is easier using Kirchhoff’s laws, developed later in this chapter. 135
  • 8. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-24. Find the total current and the current through each resistor for Fig. 28-21 when E = 50 V, R1 = 12 Ω, R2 = 6 Ω, R3 = 6 Ω, R4 = 8 Ω,and r = 0.4 Ω. R3 = 6 Ω 50 V (12 Ω)(6 Ω) R1 R2 8Ω R1,2 = = 4 Ω ; R1,2,3 = 4 Ω + 6 Ω = 10 Ω 12 Ω R4 12 Ω + 6 Ω 6Ω 0.4 Ω R3 = 6 Ω (10 Ω)(8 Ω) 50 V 10 Ω 50 V R= = 4.44 Ω 10 Ω + 8 Ω 4Ω 8Ω 4Ω R4 R4 0.4 Ω 0.4 Ω Re = 4.44 Ω + 0.4 Ω = 4.84 Ω 24 V 50 V 50 V 1.6 Ω IT = ; IT = 10.3 A 2.86 Ω 4.84 Ω 0.4 Ω 45.9 V V4 = Vp= (4.44 Ω)(10.3 A) = 45.9 V I4 = 8Ω I4 = 5.73 A; I3 = 10.3 A – 5.73 A = 4.59 A; V3 = (4.59 A)(6 Ω) = 27.5 V; 18.4 V 18.4 V V1 = V2 = 45.9 V – 27.5 V = 18.4 V; I2 = = 3.06 A; I1 = = 1.53 A ; 6Ω 12 Ω IT = 10.3 A, I1 = 1.53 A, I2 = 3.06 Ω, I3 = 4.59 Α, I4 = 5.73 A. Kirchhoff’s Laws 28-25. Apply Kirchhoff’s second rule to the current loop in Fig. 28-22. What is the net voltage around the loop? What is the net IR drop? What is the current in the loop? Indicate output directions of emf’s, assume direction of 20 V + 2Ω current, and trace in a clockwise direction for loop rule: I ΣE = ΣIR; 20 V – 4 V = I(6 Ω) + I(2 Ω); 6Ω 4V 16 V (8 Ω)I = 16 V; I= ; I = 2.00 A 8Ω Net voltage drop = Σ E = 16 V; ΣIR = (8 Ω)(2 A) = 16 V 136
  • 9. Chapter 28. Direct-Current Circuits Physics, 6th Edition 28-26. Answer the same questions for Problem 28-25 where the polarity of the 20-V battery is changed, that is, its output direction is now to the left? ( Refer to Fig. in Prob. 28-25. ) Σ E = -20 V – 4 V = -24 V; ΣIR = I(2 Ω) + I(6 Ω = (8Ω)I ΣE = ΣIR; -24 V = (8 Ω)I; I = -4.00 A; ΣIR = (8 Ω)(-4 A) = -24 V The minus sign means the current is counterclockwise (against the assume direction) *28-27. Use Kirchhoff’s laws to solve for the currents through the circuit shown as Fig. 28-23. 4Ω First law at point P: I1 + I2 = I3 Current rule I1 nd Loop A (2 law): ΣE = ΣIR Loop rule 2 ΩP A 5V Ω 6I 5 V – 4 V = (4 Ω)I1 + (2 Ω)I1 – (6 Ω)I2 2 4V I2 Simplifying we obtain: (1) 6I1 – 6I2 = 1 A 3Ω B I3 1Ω Loop B: 4 V – 3 V = (6 Ω)I2 + (3 Ω)I3 + (1 Ω)I3 Simplifying: (2) 6I2 + 4I3 = 1 A, but I3 = I1 + I2 3V Substituting we have: 6I2 + 4(I1 + I2) = 1 A or (3) 4I1 + 10I2 = 1 A From which, I1 = 0.25 A – 2.5 I2 ; Substituting into (1): 6(0.25 A – 2.5I2 ) – 6 I2 = 1 A 1.5 A – 15I2 – 6I2 = 1 A; -21I2 = -0.5 A; I2 = 0.00238 A; I2 = 23.8 mA Putting this into (1), we have: 6I1 – 6(0.0238 A) = 1 A, and I1 = 190 mA Now, I1 + I2 = I3 so that I3 = 23.8 mA + 190 mA or I3 = 214 mA 3Ω *28-28. Use Kirchhoff’s laws to solve for the currents in Fig. 28-24. I1 Current rule: I1 + I3 = I2 or (1) I3 = I2 – I1 20 V A 5V 4Ω I2 Loop A: 20 V = (3 Ω)I1 + (4 Ω)I2 ; (2) 3I1 + 4I2 = 20 A P 4V I2 Loop B: 8 V = (6 Ω)I3 + (4 Ω)I2; (3) 3I3 + 2I2 = 4 A 2Ω B 4Ω I3 Outside Loop: 20 V – 8 V = (3 Ω)Ι1 – (6 Ω)Ι3 or I1 – 2 I3 = 4 A 8V 137
  • 10. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-28. (Cont.) (3) 3I3 + 2I2 = 4 A and I3 = I2 – I1 3Ω 3(I2 – I1) + 2I2 = 4 A; 3I1 = 5I2 – 4 A I1 (2) 3I1 + 4I2 = 20 A; (5I2 – 4 A) + 4I2 = 20; 20 V A 5V 4Ω I2 P I2 = 2.67 A; 3I1 = 5(2.67 A) – 4 A; I1 = 3.11 A 4V I2 I3 = I2 – I1 = 2.67 A – 3.11 A = -0.444 A 2Ω B 4Ω I3 Note: I3 goes in opposite direction to that assumed. 8V I1 = 3.11 A, I2 = 2.67 A, I3 = 0.444 A *28-29. Apply Kirchhoff’s laws to the circuit of Fig. 28-25. Find the currents in each branch. Current rule: (1) I1 + I4 = I2 + I3 1.5 Ω 3V Ω Applying loop rule gives six possible equations: 3Ω I1 (2) 1.5I1 + 3I2 = 3 A; (3) 3I2 – 5I3 = 0 I2 5Ω I3 (4) 5I3 + 6I4 = 6A; (5) 1.5I1 – 6I4 = -3A I4 6V 6Ω (6) 6I4 + 3I2 = 6 A (7) 1.5I1 + 5I3 = 3A Put I4 = I2 + I3 – I1; into (4): 5I3 + 6(I2 + I3 – I1) = 6 A  -6I1 + 6I2 + 11I3 = 6 A Now, solving (2) for I1 gives: I1 = 2 A – 2I2, which can be used in the above equation. -6(2 A – 2I2) + 6I2 + 11I3 = 6 A, which gives: 18I2 + 11I3 = 18 A But, from (3), we put I2 = 5 3 I 3 into above equation to find that: I3 = 0.439 A From (2): 1.5I1 + 3(0.439 A) = 3 A; and I1 = 0.536 A From (3): 3I2 – 5(0.439 A) = 0; and I2 = 0.736 A From (4): 5(0.439 A) + 6I4 = 6 A; and I4 = 0.634 A Currents in each branch are: I1 = 536 mA, I2 = 732 mA, I3 = 439 mA, I4 = 634 mA Note: Not all of the equations are independent. Elimination of two may yield another. It is best to start with the current rule, and use it to eliminate one of the currents quickly. 138
  • 11. Chapter 28. Direct-Current Circuits Physics, 6th Edition The Wheatstone Bridge 28-30. A Wheatstone bridge is used to measure the resistance Rx of a coil of wire. The resistance box is adjusted for 6 Ω, and the contact key is positioned at the 45 cm mark when measured from point A of Fig. 28-13. Find Rx. ( Note: l1 + l2 = 100 cm ) R3l2 (6 Ω)(55 cm) Rx = = ; Rx = 7.33 Ω l1 (45 cm) 28-31. Commercially available Wheatstone bridges are portable and have a self-contained galvanometer. The ratio R2/R1 can be set at any integral power of ten between 0.001 and 1000 by a single dual switch. When this ratio is set to 100 and the known resistance R is adjusted to 46.7 Ω, the galvanometer current is zero. What is the unknown resistance? R2 Rx = R3 = (46.7 Ω)(100) ; Rx = 4670 Ω R1 28-32. In a commercial Wheatstone bridge, R1 and R2 have the resistances of 20 and 40 Ω, respectively. If the resistance Rx is 14 Ω, what must be the known resistance R3 for zero galvanometer deflection? R2 20 Ω Rx = R3 = (14 Ω) ; Rx = 7.00 Ω R1 40 Ω Challenge Problems: 28-33. Resistances of 3, 6, and 9 Ω are first connected in series and then in parallel with an 36-V source of potential difference. Neglecting internal resistance, what is the current leaving the positive terminal of the battery? 36 V Re = ΣRi = 3 Ω + 6 Ω + 9 Ω = 18 Ω; I= ; I = 2.00 A 18 Ω 139
  • 12. Chapter 28. Direct-Current Circuits Physics, 6th Edition 1 1 1 1 1 36 V 28-33. (Cont.) =∑ = + + ; Re = 1.64 Ω; I = ; I = 22.0 A Re Ri 3 Ω 6 Ω 9 Ω 1.64 Ω 28-34. Three 3-Ω resistors are connected in parallel. This combination is then placed in series with another 3-Ω resistor. What is the equivalent resistance? 3Ω 1 1 1 1 = + + = 1 Ω; Re = R’ + 3 Ω R' 3 Ω 3 Ω 3 Ω V 3Ω 3Ω 3Ω Re = 1 Ω + 3 Ω; Re = 4 Ω *28-35. Three resistors of 4, 8, and 12 Ω are connected in series with a battery. A switch allows the battery to be connected or disconnected from the circuit? When the switch is open, a voltmeter across the terminals of the battery reads 50 V. When the switch is closed, the voltmeter reads 48 V. What is the internal resistance in the battery? RL = 4 Ω + 8 Ω + 12 Ω = 24 Ω; E = 50 V; VT = 48 V = IRL 48 V I= = 2.00 A ; E – VT = Ir; 50 V – 48 V = Ir 24 V 50 V - 48 V r= ; r = 1.00 Ω 2.00 A *28-36. The generator in Fig. 28-26 develops an emf of E1 = 24 V and has an internal resistance of 0.2 Ω. The generator is used to charge a battery E2 = 12 V whose internal resistance is 0.3 Ω. Assume that R1 = 4 Ω and R2 = 6 Ω. What is the terminal voltage across the generator? What is the terminal voltage across the battery? 24 V - 12 V I= = 1.14 A 6 Ω + 4 Ω + 0.2 Ω + 0.3 Ω 12 V 4Ω V1= E1 – Ir = 24 V – (1.14 A)(0.2 Ω) = 23.8 V; 24 V r r 6Ω V2 = 12 V + (1.14 A)(0.3 Ω) = 12.3 V 140
  • 13. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-37. What is the power consumed in charging the battery for Problem 28-36. Show that the power delivered by the generator is equal to the power losses due to resistance and the power consumed in charging the battery. P = E I = (24 V)(1.143 A) Pe = 27.43 W 12 V 4Ω PR= I2 Re = (1.143 A)2 (10.5 Ω); PR = 13.69 W 24 V r r 6Ω PV = (12 V)(1.143 A) = 13.72 W; Pe = PR + PV; 27.4 W = 13.7 W + 13.7 W *28-38. Assume the following values for the parameters of the circuit illustrated in Fig. 28-8: E1 = 100 V, E2 = 20 V, r1 = 0.3 Ω. r2 = 0.4 Ω, and R = 4 Ω.What are the terminal voltages V1 and V2? What is the power lost through the 4-Ω resistor? 100 V - 20 V 20 V I= = 17.0 A 100 V 4 Ω + 0.3 Ω + 0.4 Ω r 4Ω r V1= E1 – Ir = 100 V – (17.0 A)(0.3 Ω) = 94.9 V; V2 = 20 V + (17.0 A)(0.4 Ω) = 26.8 V; P = I2 R = (17 A)2(4 Ω) = 1160 W *28-39. Solve for the currents in each branch for Fig. 28-27. 5Ω 12 V Current rule: I1 = I2 + I3 ; Loops: Σ E = Σ IR’s I1 A (1) 5I1 + 10I2 = 12 A; (2) -10I2 + 20I3 = 6 A 10 Ω I2 P (2) -5I2 + 10I3 = 3 A; (3) 5I1 + 20I3 = 18 A I2 4V From (1): 5(I2 + I3) + 10 I2 = 12 A  15I2 + 5I3 = 12 A 20 Ω B I3 Multiplying this equation by –2: -30I2 – 10I3 = -24 A 6V Now add this to (2): -35I2 + 0 = -21 A and I2 = 0.600 A Now, from (1) and from (2): I1 = 1.20 A and I3 = 0.600 A 141
  • 14. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-40. If the current in the 6-Ω resistor of Fig. 28-28 is 2 A, what is the emf of the battery? Neglect internal resistance. What is the power loss through the 1-Ω resistor? 2A 1Ω V6 = (2 A)(6 Ω) = 12 V; V3 = 12 V = I3(3 Ω) IT E 12 V 6Ω 3Ω I3 = = 4 A ; IT = 2 A + 4 A = 6 A; I3 3Ω V1 = (1 Ω)(6 A) = 6 V; E = 6 V + 12 V = 18 V; P = IT2 R = (6 A)2(1 Ω) = 36 W Critical Thinking Problems *28-41. A three-way light bulb uses two resistors, a 50-W filament and a 100-W filament. A three-way switch allows each to be connected in series and provides a third possibility by connecting the two filaments in parallel? Draw a possible arrangement of switches than will accomplish these tasks. Assume that the household voltage is 120 V. What are the resistances of each filament? What is the power of the parallel combination? I1 Switch can be set at A, B, or C to give three possibilities: IT V2 (120 V) 2 (120 V) 2 R1 R2 P= ; R1 = = 288 Ω; R2 = = 144 Ω I2 R 50 W 100 W B 120 V (288 Ω)(144 Ω) A C For Parallel: Re = = 96 Ω 288 Ω + 144 Ω V 2 (120 V) 2 P= = ; P = 150 W R 96 Ω 142
  • 15. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-42. The circuit illustrated in Fig. 28-7 consists of a 12-V battery, a 4-Ω resistor, and a switch. When new, the internal resistance of the battery is 0.4 Ω, and a voltmeter is placed across the terminals of the battery. What will be the reading of the voltmeter when the switch is open and when it is closed? After a long period of time, the experiment is repeated and it is noted that open circuit reading is unchanged, but the terminal voltage has reduced by 10 percent. How do you explain the lower terminal voltage? What is the internal resistance of the old battery? E 12 V When new: I = = ; I = 2.73 A 4Ω R + r 4 Ω + 0.4 Ω VT = E – Ir = 12 V – (2.73 A)(0.4 Ω); VT = 10.9 V VT reduced by 10% due to increase of rint. V’ = 10.9 V – 0.1(10.9 V); V’ = 9.81 V 9.81 V E −V ' V’ = IRL = 9.81 V; I= = 2.45 A; V ' = E − Ir ; r= 4Ω I E − V ' 12 V - 9.81 V r= = ; r = 0.893 Ω I 2.45 A *28-43. Given three resistors of 3, 9, and 18 Ω,list all the possible equivalent resistances that can be obtained through various connections? 1 1 1 1 All in parallel: = + + ; Re = 2 Ω Re 3 Ω 9 Ω 18 Ω All in series: Re = R1 + R2 + R3 = 3 Ω + 9 Ω + 18 Ω; Re = 30 Ω (3 Ω)(9 Ω) Parallel (3,9) in series with (18): Re = + 18 Ω; Re = 20.2 Ω 3Ω+9Ω (3 Ω)(18 Ω) Parallel (3,18) in series with (9): Re = + 9 Ω; Re = 11.6 Ω 3 Ω + 18 Ω (9 Ω)(18 Ω) Parallel (9,18) in series with (3): Re = + 3 Ω; Re = 9.00 Ω 9 Ω + 18 Ω 143
  • 16. Chapter 28. Direct-Current Circuits Physics, 6th Edition (12 Ω)(18 Ω) *28-43 (Cont.)Series (3 + 9) in parallel with (18): Re = ; Re = 20.2 Ω 12 Ω + 18 Ω (9 Ω)(21 Ω) Series (3 + 18) in parallel with (9): Re = ; Re = 6.30 Ω 9 Ω + 21 Ω (3 Ω)(27 Ω) Series (9 + 18) in parallel with (3): Re = ; Re = 2.70 Ω 3 Ω + 27 Ω *28-44. Refer to Fig. 28-21, assume that E = 24 V, R1 = 8 Ω,R2 = 3 Ω, R3 = 2 Ω,R4 = 4 Ω,and r = 0.5 Ω. What current is delivered to the circuit by the 24-V battery? What are the voltage and current for the 8-Ω resistor? R3 = 2 Ω 24 V (3 Ω)(8 Ω) 4Ω R1,2 = = 2.18 Ω ; R1,2,3 = 2.18 Ω + 2 Ω = 4.18 Ω 8Ω R2 3 Ω+8 Ω R4 0.5 Ω R1 3Ω R3 = 2 Ω (4.18 Ω)(4 Ω) Re = = 2.04 Ω; 24 V 4.18 Ω 24 V 4.18 Ω + 4 Ω R4 4Ω 4Ω 2.18 Ω R4 0.5 Ω 0.5 Ω Re = 2.04 Ω + 0.5 Ω = 2.54 Ω 24 V 24 V 24 V IT = ; IT = 9.43 A 2.54 Ω 2.54 Ω 2.04 Ω 0.5 Ω V4 = V1,2,3 = (9.43 A) (2.04 Ω) = 19.3 V 19.3 V I4 = = 4.82 A ; I3 = 9.43 A – 4.82 A = 4.61 A; V3 = (4.61 A)(2 Ω) = 9.23 V 4Ω 10.1 V V1 = V2 = 19.3 V – 9.23 V; V1 = V2 = 10.1 V; I1 = = 1.26 A ; 8Ω Finally, for the 8-Ω resistor: V1 = 10.1 V and I1 = 1.26 A 144
  • 17. Chapter 28. Direct-Current Circuits Physics, 6th Edition *28-45. What is the effective resistance of the external circuit for Fig. 28-29 if internal resistance is neglected. What is the current through the 1-Ω resistor? 4Ω 1Ω 4Ω 1Ω 4Ω 1Ω R1 R3 R5 24 V 24 V 24 V 6Ω 3Ω 6Ω 8Ω 3Ω 6Ω 2.18 Ω 8Ω R2 R4 (3 Ω)(8 Ω) R4,5 = = 2.18 Ω ; R3,4,5 = 2.18 Ω + 1 Ω = 3.18 Ω 4Ω 3 Ω+8 Ω 24 V 6Ω 3.18 Ω (3.18 Ω)(6 Ω) R1,2,3,4 = ; R1,2,3,4 = 2.08 Ω 3.18 Ω + 6 Ω Re = 2.08 Ω + 4 Ω; Re = 6.08 Ω 4Ω 24 V 24 V I3 in the 1-Ω resistor is same as I in R3,4,5 24 V IT = = 3.95 A 6.08 Ω V2,3,4,5 = (3.95 A)(2.08 Ω) = 8.21 V; Also V3,4,5 = 8.21 V 8.21 V I 3,4,5 = = 2.58 A; Therefore I3 = 2.58 A in 1-Ω resistor 3.18 Ω Re = 6.08 Ω; I3 = 2.58 A 145