SlideShare a Scribd company logo
Differences
 Between
  Series
    and
 Parallel
 Circuits
Series                  Parallel


ET = E1 + E2 + E3 +…    ET = E1 = E2 = E3 = …..


RT = R1 + R2 + R3 + …


IT = I1 = I2 = I3 = …


PT = P1 + P2 + P3 + …
Voltage relationship in a Parallel Circuit

                                The top of each resistor is
                                 connected to the same
                                 potential - + terminal of the
                                DC Supply.
                                The bottom of each resistor
            R1     R2   R3       is connected to the same
            12    24    48
24 V
                                 potential - - Terminal of the
                                 DC Supply.
                                Each Load (or Resistor) has
                                 the same potential applied.
Series                Parallel


ET = E1 + E2 + E3 +…    ET = E1 = E2 = E3 = …..


IT = I1 = I2 = I3 = …   IT = I1 + I2 + I3 + …


RT = R1 + R2 + R3 + …


PT = P1 + P2 + P3 + …
Current in a Parallel Circuit



                                                                              R1             R2             R3
                  R1                 R2            R3
                                                            24 V              12            24              48
24 V              12                24             48                I1 =2A        I2 =1A
        I1 =2A




                 R1            R2             R3                              R1            R2              R3
24 V             12            24             48                              12            24              48
                                                          24 V
       I1 =2A         I2 =1A        I3 =.5A                         I1 =2A         I2 =1A         I3 =.5A
                                                        IT = 3.5A
Circuit Current in a Parallel

          3.5A        1.5A            0.5A             The Sum of the currents entering
                                                        a point is equal to the sum of
                                                        currents leaving that point:
                                                       E.g. – 3.5A leaves the DC Power
                 R1             R2             R3
                               24              48
                                                        Supply and arrives at the first
24 V             12
       I1 =2A         I2 =1A         I3 =.5A            node (where R1 is connected); 2A
                                                        travels through R1; the remaining
                                                        1.5A travels to R2 and R3. From
                                                        the top side of the resistors, the
                                     0.5A
                                                        current entering a point is equal to
       3.5A           1.5A
                                                        the sum of the currents entering a
                                                        point.
Series                 Parallel


ET = E1 + E2 + E3 +…    ET = E1 = E2 = E3 = …..


IT = I1 = I2 = I3 = …   IT = I1 + I2 + I3 + …


RT = R1 + R2 + R3 + …   1/RT = 1/R1 + 1/R2 + 1/R3 +..


PT = P1 + P2 + P3 + …
Parallel Resistance
                                                              Using the Ohm’s Law Formula
                                                               (R = E/I), the resistance that
                         R1            R2             R3       the Power Source detects is
   24 V                  12            24             48       equal to 6.86 Ω.
                I1 =2A        I2 =1A        I3 =.5A
 IT = 3.5A                                                    Each resistor is called a
                                                               branch.
RT = E T/IT
RT = 24V/3.5A
RT = 6.86
Parallel Resistance
                                                               Using the Reciprocal Formula,
                                                                the Total Resistance equals
                         R1             R2             R3
                                                                6.86Ω, the same value arrived
   24 V
                I1 =2A
                         12
                              I2 =1A
                                        24             48       at by using the R = E/I
                                             I3 =.5A
 IT = 3.5A                                                      formula.
RT = E T/IT
RT = 24V/3.5A
RT = 6.86       1/RT = 1/R1 + 1/R2 + 1/R3
                1/RT = 1/12 + 1/24 + 1/48
                                                               NOTE: the total resistance of
                1/RT = (4 + 2 + 1)/48 = 7/48                    the circuit is always lower than
                7 RT = 48
                RT = 48/7                                       the lowest branch resistance.
                RT = 6.86
Parallel Resistance
                          R1            R2             R3
                                                               A Scientific Calculator can be
   24 V
 IT = 3.5A
                I1 =2A
                          12
                               I2 =1A
                                        24
                                             I3 =.5A
                                                       48
                                                                used to solve for the total
                                                                resistance in a parallel circuit.
RT = E T/I T
RT = 24V/3.5A
RT = 6.86           Using a Calculator
                   (Enter)12 (R1 value)

                         1/x (or X )
                                   -1




                               +

                   (Enter)24 (R2 value)

                             1/x

                            +
                   (Enter)48 (R3 value)

                             1/x
                              =

                            1/x
                             =
                            6.86
Parallel Resistance
                         R1            R2             R3
   24 V
 IT = 3.5A
                I1 =2A
                         12
                              I2 =1A
                                       24
                                            I3 =.5A
                                                      48      If only two resistors are in
RT = E T/IT
                                                               parallel, the Product over the
RT = 24V/3.5A
RT = 6.86                                                      Sum can be used.
                 R(1+2) = R1 x R2

                 R(1+2) =
                          R1 + R2
                          12 x 24
                                                              In the example, two resistors
                          12 + 24
                 R(1+2) =
                            288
                             36
                                                               are used and the resultant
                 R(1+2) =    8
                                                               resistance value replaces the
                                                               two resistors.
   24 V
                         R1
                         12
                                       R2
                                       24
                                                      R3
                                                      48
                                                              Then, the resultant value and
 IT = 3.5A
                I1 =2A        I2 =1A        I3 =.5A
                                                               the value of R3 can be used;
RT = E T/IT
                                                               the answer still comes up as
RT = 24V/3.5A
RT = 6.86                                                      6.86 Ω.
Series                Parallel


ET = E1 + E2 + E3 +…    ET = E1 = E2 = E3 = …..


IT = I1 = I2 = I3 = …   IT = I1 + I2 + I3 + …


RT = R1 + R2 + R3 + …   1/RT = 1/R1 + 1/R2 + 1/R3 +..


PT = P1 + P2 + P3 + …   PT = P1 + P2 + P3 + …..
Parallel Power

                                                                       The Total Power is the sum of
                                                                        the power consumed in each
                                                                        branch.
                               48W            24W             12W
                               R1              R2             R3
   24 V                        12             24              48
                     I1 =2A          I2 =1A         I3 =.5A
 IT = 3.5A
RT = 6.86

             PT = I T x E T         PT = P 1 + P 2+ P 3
             PT = 3.5A x 24V        PT = 48W + 24W + 12W
             PT = 84W               PT = 84W

More Related Content

Similar to Differences series parallel

PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
LUIS POWELL
 
5 ammeter and voltmeter
5 ammeter and voltmeter5 ammeter and voltmeter
5 ammeter and voltmeter
Neil MacIntosh
 
17 resistance in series and parallel
17 resistance in series and parallel17 resistance in series and parallel
17 resistance in series and parallel
mrtangextrahelp
 
Pracfinl.Key
Pracfinl.KeyPracfinl.Key
Pracfinl.Key
killah425
 
Electric circuits 1 series-parallel
Electric circuits 1   series-parallelElectric circuits 1   series-parallel
Electric circuits 1 series-parallel
Ignacio Anguera de Sojo Palerm
 
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
LUIS POWELL
 
DC CIRCUITS.ppt
DC CIRCUITS.pptDC CIRCUITS.ppt
DC CIRCUITS.ppt
gamingpro22
 
Industrial electronics n2
Industrial electronics n2Industrial electronics n2
Industrial electronics n2
Jude Jay
 
Resistors and resistance.ppt
Resistors and resistance.pptResistors and resistance.ppt
Resistors and resistance.ppt
mrmeredith
 
Physics chapter 22 & 23
Physics chapter 22 & 23Physics chapter 22 & 23
Physics chapter 22 & 23
shaffelder
 
Unit 103 power_point_7_resistors_parallel
Unit 103 power_point_7_resistors_parallelUnit 103 power_point_7_resistors_parallel
Unit 103 power_point_7_resistors_parallel
wirethehouse
 
Series Ckt. and Parallel.ppt
Series Ckt. and Parallel.pptSeries Ckt. and Parallel.ppt
Series Ckt. and Parallel.ppt
ElmerJrDiva
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
oyunbileg06
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
nomio0703
 
Single Phase Converter
Single Phase ConverterSingle Phase Converter
Single Phase Converter
Vinod Srivastava
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits new
rozi arrozi
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slides
guest5e66ab3
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
Shubham Sojitra
 
Currentelectricity
CurrentelectricityCurrentelectricity
Currentelectricity
Conferat Conferat
 
Anschp32
Anschp32Anschp32
Anschp32
FnC Music
 

Similar to Differences series parallel (20)

PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
 
5 ammeter and voltmeter
5 ammeter and voltmeter5 ammeter and voltmeter
5 ammeter and voltmeter
 
17 resistance in series and parallel
17 resistance in series and parallel17 resistance in series and parallel
17 resistance in series and parallel
 
Pracfinl.Key
Pracfinl.KeyPracfinl.Key
Pracfinl.Key
 
Electric circuits 1 series-parallel
Electric circuits 1   series-parallelElectric circuits 1   series-parallel
Electric circuits 1 series-parallel
 
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
 
DC CIRCUITS.ppt
DC CIRCUITS.pptDC CIRCUITS.ppt
DC CIRCUITS.ppt
 
Industrial electronics n2
Industrial electronics n2Industrial electronics n2
Industrial electronics n2
 
Resistors and resistance.ppt
Resistors and resistance.pptResistors and resistance.ppt
Resistors and resistance.ppt
 
Physics chapter 22 & 23
Physics chapter 22 & 23Physics chapter 22 & 23
Physics chapter 22 & 23
 
Unit 103 power_point_7_resistors_parallel
Unit 103 power_point_7_resistors_parallelUnit 103 power_point_7_resistors_parallel
Unit 103 power_point_7_resistors_parallel
 
Series Ckt. and Parallel.ppt
Series Ckt. and Parallel.pptSeries Ckt. and Parallel.ppt
Series Ckt. and Parallel.ppt
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
 
Single Phase Converter
Single Phase ConverterSingle Phase Converter
Single Phase Converter
 
Chapter vii direct current circuits new
Chapter vii direct current circuits newChapter vii direct current circuits new
Chapter vii direct current circuits new
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slides
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
Currentelectricity
CurrentelectricityCurrentelectricity
Currentelectricity
 
Anschp32
Anschp32Anschp32
Anschp32
 

More from EMEC101

Vom reading
Vom  readingVom  reading
Vom reading
EMEC101
 
Voltage losses fuse
Voltage losses fuseVoltage losses fuse
Voltage losses fuse
EMEC101
 
Switch happy
Switch happySwitch happy
Switch happy
EMEC101
 
Switch wiring alternative
Switch wiring alternativeSwitch wiring alternative
Switch wiring alternative
EMEC101
 
Simple basic problems
Simple basic problemsSimple basic problems
Simple basic problems
EMEC101
 
Review fundamentals
Review fundamentalsReview fundamentals
Review fundamentals
EMEC101
 
Resistor troubleshooting
Resistor troubleshootingResistor troubleshooting
Resistor troubleshooting
EMEC101
 
Resistance change affects
Resistance change affectsResistance change affects
Resistance change affects
EMEC101
 
Receptacles and switches
Receptacles and switchesReceptacles and switches
Receptacles and switches
EMEC101
 
Potentiometers
PotentiometersPotentiometers
Potentiometers
EMEC101
 
Parallel choices
Parallel choicesParallel choices
Parallel choices
EMEC101
 
Number conversions
Number conversionsNumber conversions
Number conversions
EMEC101
 
Harder series problems
Harder series problemsHarder series problems
Harder series problems
EMEC101
 
Dmm reading
Dmm readingDmm reading
Dmm reading
EMEC101
 
Breadboard
BreadboardBreadboard
Breadboard
EMEC101
 
Safety presentation
Safety presentationSafety presentation
Safety presentation
EMEC101
 

More from EMEC101 (16)

Vom reading
Vom  readingVom  reading
Vom reading
 
Voltage losses fuse
Voltage losses fuseVoltage losses fuse
Voltage losses fuse
 
Switch happy
Switch happySwitch happy
Switch happy
 
Switch wiring alternative
Switch wiring alternativeSwitch wiring alternative
Switch wiring alternative
 
Simple basic problems
Simple basic problemsSimple basic problems
Simple basic problems
 
Review fundamentals
Review fundamentalsReview fundamentals
Review fundamentals
 
Resistor troubleshooting
Resistor troubleshootingResistor troubleshooting
Resistor troubleshooting
 
Resistance change affects
Resistance change affectsResistance change affects
Resistance change affects
 
Receptacles and switches
Receptacles and switchesReceptacles and switches
Receptacles and switches
 
Potentiometers
PotentiometersPotentiometers
Potentiometers
 
Parallel choices
Parallel choicesParallel choices
Parallel choices
 
Number conversions
Number conversionsNumber conversions
Number conversions
 
Harder series problems
Harder series problemsHarder series problems
Harder series problems
 
Dmm reading
Dmm readingDmm reading
Dmm reading
 
Breadboard
BreadboardBreadboard
Breadboard
 
Safety presentation
Safety presentationSafety presentation
Safety presentation
 

Differences series parallel

  • 1. Differences Between Series and Parallel Circuits
  • 2. Series Parallel ET = E1 + E2 + E3 +… ET = E1 = E2 = E3 = ….. RT = R1 + R2 + R3 + … IT = I1 = I2 = I3 = … PT = P1 + P2 + P3 + …
  • 3. Voltage relationship in a Parallel Circuit  The top of each resistor is connected to the same potential - + terminal of the  DC Supply.  The bottom of each resistor R1 R2 R3 is connected to the same 12 24 48 24 V potential - - Terminal of the DC Supply.  Each Load (or Resistor) has the same potential applied.
  • 4. Series Parallel ET = E1 + E2 + E3 +… ET = E1 = E2 = E3 = ….. IT = I1 = I2 = I3 = … IT = I1 + I2 + I3 + … RT = R1 + R2 + R3 + … PT = P1 + P2 + P3 + …
  • 5. Current in a Parallel Circuit R1 R2 R3 R1 R2 R3 24 V 12 24 48 24 V 12 24 48 I1 =2A I2 =1A I1 =2A R1 R2 R3 R1 R2 R3 24 V 12 24 48 12 24 48 24 V I1 =2A I2 =1A I3 =.5A I1 =2A I2 =1A I3 =.5A IT = 3.5A
  • 6. Circuit Current in a Parallel 3.5A 1.5A 0.5A  The Sum of the currents entering a point is equal to the sum of currents leaving that point:  E.g. – 3.5A leaves the DC Power R1 R2 R3 24 48 Supply and arrives at the first 24 V 12 I1 =2A I2 =1A I3 =.5A node (where R1 is connected); 2A travels through R1; the remaining 1.5A travels to R2 and R3. From the top side of the resistors, the 0.5A current entering a point is equal to 3.5A 1.5A the sum of the currents entering a point.
  • 7. Series Parallel ET = E1 + E2 + E3 +… ET = E1 = E2 = E3 = ….. IT = I1 = I2 = I3 = … IT = I1 + I2 + I3 + … RT = R1 + R2 + R3 + … 1/RT = 1/R1 + 1/R2 + 1/R3 +.. PT = P1 + P2 + P3 + …
  • 8. Parallel Resistance  Using the Ohm’s Law Formula (R = E/I), the resistance that R1 R2 R3 the Power Source detects is 24 V 12 24 48 equal to 6.86 Ω. I1 =2A I2 =1A I3 =.5A IT = 3.5A  Each resistor is called a branch. RT = E T/IT RT = 24V/3.5A RT = 6.86
  • 9. Parallel Resistance  Using the Reciprocal Formula, the Total Resistance equals R1 R2 R3 6.86Ω, the same value arrived 24 V I1 =2A 12 I2 =1A 24 48 at by using the R = E/I I3 =.5A IT = 3.5A formula. RT = E T/IT RT = 24V/3.5A RT = 6.86 1/RT = 1/R1 + 1/R2 + 1/R3 1/RT = 1/12 + 1/24 + 1/48  NOTE: the total resistance of 1/RT = (4 + 2 + 1)/48 = 7/48 the circuit is always lower than 7 RT = 48 RT = 48/7 the lowest branch resistance. RT = 6.86
  • 10. Parallel Resistance R1 R2 R3  A Scientific Calculator can be 24 V IT = 3.5A I1 =2A 12 I2 =1A 24 I3 =.5A 48 used to solve for the total resistance in a parallel circuit. RT = E T/I T RT = 24V/3.5A RT = 6.86 Using a Calculator (Enter)12 (R1 value) 1/x (or X ) -1 + (Enter)24 (R2 value) 1/x + (Enter)48 (R3 value) 1/x = 1/x = 6.86
  • 11. Parallel Resistance R1 R2 R3 24 V IT = 3.5A I1 =2A 12 I2 =1A 24 I3 =.5A 48  If only two resistors are in RT = E T/IT parallel, the Product over the RT = 24V/3.5A RT = 6.86 Sum can be used. R(1+2) = R1 x R2 R(1+2) = R1 + R2 12 x 24  In the example, two resistors 12 + 24 R(1+2) = 288 36 are used and the resultant R(1+2) = 8 resistance value replaces the two resistors. 24 V R1 12 R2 24 R3 48  Then, the resultant value and IT = 3.5A I1 =2A I2 =1A I3 =.5A the value of R3 can be used; RT = E T/IT the answer still comes up as RT = 24V/3.5A RT = 6.86 6.86 Ω.
  • 12. Series Parallel ET = E1 + E2 + E3 +… ET = E1 = E2 = E3 = ….. IT = I1 = I2 = I3 = … IT = I1 + I2 + I3 + … RT = R1 + R2 + R3 + … 1/RT = 1/R1 + 1/R2 + 1/R3 +.. PT = P1 + P2 + P3 + … PT = P1 + P2 + P3 + …..
  • 13. Parallel Power  The Total Power is the sum of the power consumed in each branch. 48W 24W 12W R1 R2 R3 24 V 12 24 48 I1 =2A I2 =1A I3 =.5A IT = 3.5A RT = 6.86 PT = I T x E T PT = P 1 + P 2+ P 3 PT = 3.5A x 24V PT = 48W + 24W + 12W PT = 84W PT = 84W

Editor's Notes

  1. Parallel circuits can be visualized as circuits in the home; everything is in parallel.
  2. In series, the sum of the voltage drops in the circuit always equals the Applied Voltage. In Parallel, all of the loads have the Applied Voltage connected to them individually and of equal potential.