SlideShare a Scribd company logo
1 of 30
Download to read offline
EE 201 series/parallel combinations – 1
Series and parallel combinations
One of the simplest and most useful things we can do in a circuit is to
reduce the complexity by combining similar elements that have series or
parallel connections. Resistors, voltage sources, and current sources can
all be combined and replaced with equivalents in the right
circumstances.
We start with resistors. In many situations, we can reduce complex
resistor networks down to a few, or even a single, equivalent resistance.
As always, the exact approach depends on what we want to know about
the circuit, but resistor reduction is a tool that we will use over and over.
R3
R4
R5
R2
R1
+
–
VS
iS
1 kΩ
2.2 kΩ
330 Ω
470 Ω
1 kΩ
To set the stage, consider the
circuit at right. We might like to
determine the power from the
source, which requires knowing
the current. Of course, we don’t
know the source current
initially — we must find it by
finding the current flowing in
the resistors.
EE 201 series/parallel combinations – 2
–
+ vR1
–
+
vR2
iR1
iR2
+
–
VS
iS
–
+ vR3
iR3
–
+
vR4
iR4
– +
vR5
iR5
In the circuit, iS = iR1, so our goal
is to find that. Set to work with
Kirchoff’s Laws. Since we don’t
know anything at the outset, we
will have to come up with enough
equations to have a simultaneous
set that can be solved.
KCL: iR1 = iR2 + iR3 ; iR3 = iR4 = iR5.
KVL: VS – vR1 – vR2 = 0 ; vR2 – vR3 – vR4 – vR5 = 0.
Using Ohm’s Law to write voltages in terms of currents and then fiddling
around to reduce the equations to a manageable set, we arrive at three
equations relating, iR1, iR2, and iR3. (We are skipping all the details here
— there will be plenty of time for developing simultaneous equations
later.)
iR1 = iR2 + iR3
VS – iR1R1– iR2R2 = 0
iR2R2 – iR1(R3 + R4 + R5) = 0.
EE 201 series/parallel combinations – 3
Three equations, three unknowns.
iR1 = iR2 + iR3
VS – iR1R1– iR2R2 = 0
iR2R2 – iR1(R3 + R4 + R5) = 0.
Soon enough, we will be adept at handling problems like this. For now,
we will put our trust in Wolfram-Alpha (or something similar), and let it
grind out the answers.
iR1 = 5.02 mA.
iR2 = 2.26 mA.
iR3 = 2.76 mA.
Finally, iR1 = iS and the power being delivered by the source is
PS = VS·iS = (10 V)(5.02 mA) = 50.2 mW.
However, this business of finding three equations in three unknowns
and solving all that seems a lot of work to determine one number is in a
relatively simple circuit. Is there a simpler way? Of course, the answer is
“yes”.
EE 201 series/parallel combinations – 4
Equivalent Resistance
The original circuit was a single
source with a network of resistors
attached. The resistor currents are
related to the source current by KCL.
The resistor voltages are related to the
source voltage by KVL. The resistor
currents are related to the resistor
voltages by Ohm’s Law.
Then it seems reasonable that the
source current and source current
should be related by Ohm’s Law,
meaning that there must be some
equivalent resistance that represents
the cumulative effect of resistors in
the network:
Req =
VS
iS
R3
R4
R5
R2
R1
+
–
VS
iS
+
–
VS
iS
Req
EE 201 series/parallel combinations – 5
Equivalent Resistance
The question is how to find the equivalent resistance of the network.
The general approach would be to apply a “test generator” to the
network. A test generator is a voltage or current source with a value that
we can choose. For example, if we apply a test voltage source with
value Vt, as shown below, then we can calculate the current, it, that
flows into the network due to the applied source.
R3
R4
R5
R2
R1
+
–
Vt
it
The equivalent resistance
would then be .
Req =
Vt
it
In lab we could something similar by building the circuit, applying a
test voltage, and measuring the result current. In lab, this process goes
by a different name — it’s called “using an ohmmeter”.
EE 201 series/parallel combinations – 6
Of course, we have already done
this. The earlier calculation is
identical to this test generator idea
if we set Vt = 10 V. In the
calculation, we found the current to
be 5.02 mA. Then the equivalent
resistance is
Req = 10 V / 5.02 mA = 1.99 kΩ.
R3
R4
R5
R2
R1
+
–
Vt
it
However, this seems a bit pointless, because finding equivalent resistance
using a test generator was as much work as finding the source current directly.
In fact, it took one extra step to find the equivalent resistance.
But fear not. We can start with simple relationships for the equivalent
resistance of series and parallel combinations. Then we can use series and
parallel combinations to break down complex resistor networks and analyze
them in a piecemeal fashion. We will see that the equivalent resistance idea is
simple to implement in most cases and can be a powerful method for
analyzing circuits. We will use it repeatedly as move through EE 201 and 230.
EE 201 series/parallel combinations – 7
Series combination
Apply test voltage.
Define voltages
and currents.
By KCL: iR1 = iR2 = iR3 = it Expected, since they are in series.
By KVL: Vt – vR1 – vR2 – vR3 = 0.
Resistors are in series, meaning that the same current flows in all.
Use Ohm’s law to write voltages in terms of currents.
Vt − iR1R1 − iR2R2 − iR3R3 = 0
Vt − itR1 − itR2 − itR3 = it (R1 + R2 + R3) = 0
Req =
Vt
it
= R1 + R2 + R3
R1
R2
R3
Req
+
–
Vt
–
+ vR1
– +
vR3
–
+
vR2
iR1
iR3
iR2
it
EE 201 series/parallel combinations – 8
The equivalent resistance of resistors in series is simply the sum of the
individual resistance.
Series combination
Req =
N
∑
m=1
Rm
The calculation is easy.
The equivalent resistance is always bigger than any of the individual
resistors, Req > Rm.
In fact, if one resistor is much much bigger than the rest, the equivalent
resistance will be approximately equal to the one big resistor. For
example, in the three-resistor string on the previous page, if R1 = 10 kΩ,
R2 = 100 Ω, and R3 = 1 Ω, then Req = 10.101 kΩ ≈ 10 kΩ.
This is why we can ignore the resistance of wires in most cases.
Consider a 1-kΩ resistor with its two leads. If the resistor body has RB = 1
kΩ and the wires are each Rw ≈ 0.01 Ω, the series equivalent resistance
of the whole is resistor is then 1.00002 kΩ. In almost all practical cases,
the wire resistance is negligible.
EE 201 series/parallel combinations – 9
Parallel combination
Apply the test voltage.
Define voltages and currents.
By KVL: vt = vR1 = vR2 = vR3. Expected, since they are all in parallel
By KCL: it = iR1 + iR2 + iR3. Use Ohm’s law to write iR in terms of vR.
it =
vR1
R1
+
vR2
R2
+
vR3
R3
it =
vt
R1
+
vt
R2
+
vt
R3
= vt
(
1
R1
+
1
R2
+
1
R3 )
1
Req
=
it
vt
=
1
R1
+
1
R2
+
1
R3
R1 R2 R3
Req
–
+
vR1
–
+
vR2
–
+
vR3
iR1 iR2 iR3
+
–
Vt
it
Resistors in parallel –– they all have the same voltage across.
EE 201 series/parallel combinations – 10
The equivalent resistance will always be smaller than the resistance of
any individual branch: Req < Rm for all m.
If one resistor is much smaller than all other resistors in the parallel
combination, (so that its inverse is much bigger), then the equivalent
resistance will be approximately equal to that of the smallest resistor.
For example, if the three parallel resistors from the previous page had
values of R1 = 10 kΩ (1/R1 = 10–4 Ω–1), R2 = 100 Ω (1/R2 = 10–2 Ω–1), and
R3 = 1 Ω (1/R3 = 1 Ω–1), then Req = 0.99 Ω ≈ 1 Ω (1/Req = 1.0101 Ω–1).
In fact, if we use a wire (Rw ≈ 0) short circuit other components by
placing it parallel with other resistors, the equivalent resistance is zero
— everything in parallel is shorted out.
1
Req
=
N
∑
m=1
1
Rm
Parallel combination
The inverse of the equivalent resistance is equal to the sum of the
inverses of all the resistance in the parallel combination.
EE 201 series/parallel combinations – 11
Since the calculation for parallel resistors, with the need for inverses, can
be a bit messy, there are some short-cuts that can used for special cases.
If there are only two resistors in parallel:
(Product over sum, which might be easier to compute.)
Two identical resistors, R1 = R2 = R:
(e.g. Two 1-kΩ resistors in parallel gives 0.5 kΩ.)
N identical resistors in parallel (extending the idea):
.
If one resistor is much smaller than the rest (R1 << Rm) (to re-emphasize)
If R1 = 0 (short circuit), then Req = 0.
1
Req
=
1
R1
+
1
R2
=
R2
R1R2
+
R1
R1R2
=
R1 + R2
R1R2
Req =
R1R2
R1 + R2
Req =
R2
R + R
=
R
2
Req =
1
1
R
+
1
R
+ … +
1
R
=
R
N
Req =
1
1
R1
+
1
R2
+ … +
1
RN
≈ R1
EE 201 series/parallel combinations – 12
Breaking down networks using series and parallel
R3
R4
R5
Req R2
R1
But not all circuits are simple
combinations of series or parallel
resistors. The initial example circuit
clearly has some things that are in
series and some elements that have
a parallel-type connection.
The trick is to break the circuit into smaller pieces that are purely series
or parallel, find the equivalent of that piece and insert that back into the
original circuit, which will now be simpler. Then find another series or
parallel combination that can be simplified. Through a sequence of
steps, it may be possible to reduce even complex combinations to a
single equivalent resistance.
For the circuit above, we can start by
recognizing that the R3 - R4 - R5 series
combination can be reduced.
R345 = R3 + R4 + R5 = 1.8 kΩ.
R3
R4
R5
R345
1 kΩ
2.2 kΩ
330 Ω
470 Ω
1 kΩ
330 Ω
470 Ω
1 kΩ
EE 201 series/parallel combinations – 13
R345
Req R2
R1
Insert the single R345 resistor back
into the original circuit. Now, quite
obviously, R2 is in parallel with R345.
R345
R2345 R2
Calculate the equivalent resistance of
the parallel combination. Using the
two-resistor formula:
R2345 =
R2 ⋅ R345
R2 + R345
=
(2.2 kΩ) (1.8 kΩ)
(2.2 kΩ) + (1.8 kΩ)
= 990 Ω
Insert the R2345 equivalent back into
what is left of the original circuit.
Now, we easily calculate Req as the
series combined of R1 and R2345.
R2345
Req
R1
Req = R1 + R2345 = 1 kΩ + 0.99 kΩ = 1.99 kΩ.
1 kΩ
2.2 kΩ 1.8 kΩ
2.2 kΩ 1.8 kΩ
1 kΩ
0.99 kΩ
Calculating source power is now trivial.
EE 201 series/parallel combinations – 14
The equivalent resistance “method”
So we have a method for trying to find equivalent resistances without
having to resort to messy combinations of Kirchoff’s Laws.
1. Identify the pair of nodes
between which we want to find
equivalent resistance. Peer into it
with “Ohm’s eye”. Ohm’s eye
2. Starting at the opposite end of
the network, identify series and
parallel combinations that can be
reduced using the simple formulas.
R3
R4
R5
R2
R1
R3
R4
R5
R2
R1
R345
R345
R2
R1
R2345
3. Repeat with another series or
parallel combination to further
simplify the circuit.
EE 201 series/parallel combinations – 15
4. Continue the simplification
process, one series or parallel
combination at a time, until the
network is reduced to a single
resistor. (Or until the remaining
network is trivial.)
R2345
R1
Req
It is not necessary to insert numbers at each step — we could express
the results using symbols. We can insert numbers at the end, if needed.
For the example, the equivalent resistance expressed in symbols:
Req = R1 + R2345 = R1 +
R2 ⋅ R345
R2 + R345
= R1 +
R2 ⋅ (R3 + R4 + R5)
R2 + R3 + R4 + R5
With practice, many circuits can be simplified by inspection (i.e. in our
heads). We might even be able to calculate the values in our heads.
Not all resistive networks can be reduced using series / parallel
combinations. Consider the bridge circuit that was one of the Kirchoff’s
Laws practice problems — the bridging resistor is not in series or
parallel with any other resistors prevents any simplifications.
EE 201 series/parallel combinations – 16
Example 1
Find the equivalent
resistance looking into
the indicated port of the
“ladder network” shown.
R3
R4
Req R2
R1 R5
R6
1. Starting at the “far end”,
we see that R5 and R6 are
in series.
330 Ω
680 Ω
330 Ω 330 Ω
680 Ω 680 Ω
R3
R4
R2
R1
R56
330 Ω
680 Ω
330 Ω
680 Ω 1010 Ω
2. R4 is in parallel with R56.
R456 = (1/R4 + 1/R56 )–1 = 407 Ω.
R3
R456
R2
R1
330 Ω
680 Ω
330 Ω
407 Ω
R56 = R5 + R6 = 1010 Ω.
EE 201 series/parallel combinations – 17
Example 1 (con’t)
3. R3 and R456 are in series.
4. R2 is in parallel with R3456.
680 Ω 737 Ω
330 Ω
330 Ω
354 Ω
5. Finally, Req is the series
combination of R1 and R23456.
Req = 330 Ω + 354 Ω = 684 Ω.
R3456
R2
R1
R3456 = R3 + R456 = 1010 Ω.
R23456 =
1
1
R2
+
1
R3456
= 354 Ω
R23456
R1
Req
Req 684 Ω
EE 201 series/parallel combinations – 18
Example 2
Find the equivalent resistance looking into the indicated port of the
circuit shown below.
33 Ω
68 Ω
18 Ω
82 Ω
47 Ω
100 Ω
68 Ω
68 Ω
R2
R1
R4
R3
R5
R6
R9
R10
R7 R8
Req
39 Ω
220 Ω
At first class, this might seems impossible, but it’s actually not so bad.
We can pick it apart piece by piece. Start by noting that R7 is in parallel
with R8.
R78 =
1
1
R7
+ 1
R8
= 33.1 Ω
EE 201 series/parallel combinations – 19
Similarly, R5 is in parallel with R6 and R9 is in parallel with R10.
R56 =
1
1
R5
+
1
R6
= 32.0 Ω R910 =
1
1
R9
+
1
R10
= 34 Ω
R2
R1
R4
R3
R56
R910
R78
33 Ω
68 Ω
18 Ω
82 Ω
32 Ω
34 Ω
33 Ω
Next, we note that there are several series combinations
R1 in series with R2 :
R3 in series with R4 :
R56, R78, and R910 all in series :
Ra = R1 + R2 = 101 Ω
Rb = R3 + R4 = 100 Ω
Rc = R56 + R78 + R910 = 99 Ω
Example 2 (con’t)
EE 201 series/parallel combinations – 20
Finally, we see that the equivalent resistance is just the parallel
combination of Ra, Rb, and Rc.
Example 2 (con’t)
Ra Rb Rc
Req
Req =
1
1
Ra
+ 1
Rb
+ 1
Rc
= 33.3 Ω
101 Ω 100 Ω 99 Ω
Not that bad.
EE 201 series/parallel combinations – 21
Example 3
Find the equivalent resistance at the indicated port in the circuit below.
R3
R4
Req R2
R1 R5
There are a couple of interesting things going on here. First, we see some
“diagonal” resistors. Secondly, we see a “dangling” resistor, R5, which is not
connected to anything on one side.
First, the diagonal resistors are essentially an optical illusion — current and
voltage do not care about the spatial orientation of the components. We can
re-draw the circuit in the more familiar grid-like arrangement, with no change
in how the circuit behaves.
R3
R4
Req R2
R1 R5
1 kΩ
1.5 kΩ
470 Ω
10 kΩ
5.6 kΩ
EE 201 series/parallel combinations – 22
Example 3 (con’t)
Now, about the dangling resistor. Since the right-hand side of R5 is
“open circuited”, we can view R5 as being in series with a resistor with
value approaching infinity. (An open circuit is essentially a resistor with
R → ∞.) A series combination of any finite resistor infinity is also
infinity. (Mathematicians are cringing now.) So essentially, the dangling
R5 is the same as an open circuit — in principle, we could have left it
off entirely with no change in equivalent resistance. (In the future, we
will see a number of situations where there are dangling components
like this, and we need to know how to handle them.)
R5
Roc + R5
(→ ∞)
R5
Roc
(→ ∞)
EE 201 series/parallel combinations – 23
Example 3 (con’t)
Now that we straightened out the diagonals and trimmed off the
dangler, the circuit looks familiar and simple
And the calculation is straight-forward:
R34 = R3 + R4 = 15.6 kΩ
Req = R1 + R234 = 2.37 kΩ
R234 =
1
1
R2
+
1
R34
= 1.37 kΩ
R3
R4
Req R2
R1
1 kΩ
1.5 kΩ
10 kΩ
5.6 kΩ
EE 201 series/parallel combinations – 24
Example 3a
Same circuit, but now find the equivalent resistance looking from the
other end.
R3
R4
Req
R2
R1 R5
1 kΩ
1.5 kΩ
470 Ω
10 kΩ
5.6 kΩ
The previous comments about
the diagonals and the
dangling resistor apply, except
that now R1 is the dangler.
R3
R4
R2
R5
We start at the “far end” and work towards the eyeball.
R23 = R2 + R3 = 11.5 kΩ
Req = R5 + R234 = 4.24 kΩ
R234 =
1
1
R23
+ 1
R4
= 3.77 kΩ
EE 201 series/parallel combinations – 25
Voltage sources in series.
Consider the simple series circuit at right. We can
write a KVL equation around the loop:
VS1 – vR1 – VS2 – vR2 = 0.
Addition and subtraction are commutative, so we
can re-arrange the ordering in the equation.
VS1 – VS2 – vR1 – vR2 = 0.
This would imply that we can re-order the
components in the circuit. The re-ordered circuit is
must behave the same as the top circuit.
Now we can use Ohm’s Law to write
VS1 – VS2 – iR1·R1 – iR2·R2 = 0.
Since the same current flows in all components in
the series string, iS1 = iS2 = iR1 = iR2 = iS.
VS1 – VS2 – iS (R1 + R2) = 0.
We know that we can combine series resistors. It
appears that we can also combine series voltage
sources: VS12 – iS R12 = 0.
+
–
VS1
R1
+
–
VS2
R2
–
+ vR1
– +
vR2
+
–
VS1
+
–
R2
– +
vR2
R1
–
+
vR1
VS2
+
–
VS12 R12
VS12 = VS1 − VS2
R12 = R1 + R2
EE 201 series/parallel combinations – 26
Voltage sources in series.
The little exercise on the previous slide show us important ideas about
series connections.
1. The ordering of components in the series string is irrelevant — we can
re-order the voltage sources and resistors to suit our needs.
2. Just like resistors in series, we can combine voltage sources in series
and treat them as a single source.
The idea of putting voltage sources in series should be familiar to most —
in electronic gadgets it is common to connect several 1.5-V batteries in
series to create 3-V or 4.5-V or 6-V or whatever voltage is needed to
power a circuit.
When combining series voltage sources, there might some uncertainty
about whether to add or subtract the values (particularly for neophytes).
The ambiguity can always removed by writing a proper KVL equation
around the loop. Kirchoff will make it clear whether to add to or subtract.
EE 201 series/parallel combinations – 27
Current sources in parallel.
Consider the simple circuit at right. We can
write a KCL equation at the top node:
IS1 – iR1 + IS2 – iR2 = 0.
Addition and subtraction are commutative, so
we can re-arrange the ordering in the equation.
IS1 + IS2 – iR1 – iR2 = 0.
This would imply that we can re-order the
components in the circuit. The re-ordered
circuit must be identical to the top circuit.
We can use Ohm’s Law to write
IS1 + IS2 −
vR1
R1
+
vR2
R2
= 0
IS1 R1 IS2 R2
iR1 iR2
IS1 R1
IS2 R2
iR1 iR2
IS12 R12
All the components have the same voltage across, vIS1 = vIS2 = vR2 = vR2 = vS,
We know that we can combine the parallel resistors, and it appears that we
can combine the current sources as well.
IS1 + IS2 −
vS
R1
−
vS
R2
= 0 → IS12 −
vS
R12
= 0 IS12 = IS1 + IS2 R12 =
(
1
R1
+
1
R2
)
−1
EE 201 series/parallel combinations – 28
Current sources in parallel.
The little exercise on the previous slide show us to important ideas about
parallel connections.
1. The ordering of components in the parallel arrangement is irrelevant
— we can re-order the current sources and resistors to suit our needs.
2. We can combine current sources in parallel and treat them as a single
source.
When combining parallel current sources, there is often some uncertainty
about whether to add or subtract the values. The ambiguity can always
removed by writing a proper KCL equation at the node where they are
connected. Kirchoff will make it clear whether to add to or subtract.
EE 201 series/parallel combinations – 29
Example 4
Below is a conglomeration of sources and resistors. Simplify the circuit
by combining the series and parallel components.
22 Ω
10 Ω
33 Ω
47 Ω 15 Ω 68 Ω
12 V
6 V
1.5 V
0.5 A 0.25 A 0.75 A
Three resistors in series on the left: RL = R1 + R2 + R3 = 65 Ω
Three sources in series on the left: VL = VS3 + VS1 – VS2 = 14.5 V
Three resistors in parallel on the right:
Three sources in parallel on the right:
IR = IS1 – IS2 + IS3 = 1 A.
RR = (R−1
4 + R−1
5 + R−1
6 )
−1
= 9.74 Ω
+
–
VL
RL
RR IR
+
–
VS1 +
–
R1
+
–
IS1 IS2 IS3
R4 R5 R6
R2
VS2
VS3
R3
14.5 V
65 Ω
9.7 Ω 1 A
EE 201 series/parallel combinations – 30
Voltage sources in parallel, current sources in series
From a theoretical point of view, these combinations are not allowable. They
lead to untenable conundrums with Kirchoff’s Laws.
+
–
VS1
+
–
VS2
12 V 6 V
KVL: VS1 – VS2 = 6 V ≠ 0!! Yikes!
IS1
IS2
2 A
1 A
KCL: IS1 ≠ IS2 : In ≠ Out. Yikes!
So in 201 circuits, we avoid these. However, everyone
knows that sometimes voltage sources are connected to
parallel — charging a battery is essentially requires
connecting one source to another. If there were no other
considerations, then the resistance of the wire (which we
generally ignore in 201) comes into play.
+
–
VS1
+
–
VS2
Rw = small!
i =
VS1 − VS2
Rw
= BIG!
If we connect two random batteries together (or short out a battery —
VS2 = 0), bad things may happen. A practical battery charger will have some
means to limit current. In fact, it may actually be current source.

More Related Content

What's hot

Setp by step design of transformer
Setp by step design of transformerSetp by step design of transformer
Setp by step design of transformerbinodsahu8
 
Power System Analysis!
Power System Analysis!Power System Analysis!
Power System Analysis!PRABHAHARAN429
 
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...sanjana mun
 
UNIT 3 - Magnetostatics - Problems
UNIT 3 - Magnetostatics - ProblemsUNIT 3 - Magnetostatics - Problems
UNIT 3 - Magnetostatics - ProblemsKannanKrishnana
 
Superposition theorem
Superposition theoremSuperposition theorem
Superposition theoremNisarg Amin
 
Circuit breaker arc phenomena
Circuit breaker arc phenomenaCircuit breaker arc phenomena
Circuit breaker arc phenomenaBhavin Pradhan
 
Transformer Designing
Transformer Designing Transformer Designing
Transformer Designing Praveen Sharma
 
ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)AB Amit
 
Transformer design principles
Transformer design principlesTransformer design principles
Transformer design principlesLeonardo ENERGY
 
The transformer
The transformerThe transformer
The transformerSrajan Raj
 
Three phase power measurement
Three phase power measurementThree phase power measurement
Three phase power measurementJayaraju Gaddala
 
Generalised circuit constants
Generalised circuit constantsGeneralised circuit constants
Generalised circuit constantsKaustubh Nande
 
Experiment no. 9
Experiment no. 9Experiment no. 9
Experiment no. 9Suhas Chate
 

What's hot (20)

Setp by step design of transformer
Setp by step design of transformerSetp by step design of transformer
Setp by step design of transformer
 
Power System Analysis!
Power System Analysis!Power System Analysis!
Power System Analysis!
 
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...
Electrical circuit verification of K irchhoff’s Current Law(KCL) & Current di...
 
Verification of KVL and Voltage Divider Rule
Verification of KVL and Voltage Divider RuleVerification of KVL and Voltage Divider Rule
Verification of KVL and Voltage Divider Rule
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Unsymmetrical Fault
Unsymmetrical FaultUnsymmetrical Fault
Unsymmetrical Fault
 
Duality concept
Duality conceptDuality concept
Duality concept
 
UNIT 3 - Magnetostatics - Problems
UNIT 3 - Magnetostatics - ProblemsUNIT 3 - Magnetostatics - Problems
UNIT 3 - Magnetostatics - Problems
 
Underground cables
Underground cablesUnderground cables
Underground cables
 
Superposition theorem
Superposition theoremSuperposition theorem
Superposition theorem
 
Underground cables (1)
Underground cables  (1)Underground cables  (1)
Underground cables (1)
 
Circuit breaker arc phenomena
Circuit breaker arc phenomenaCircuit breaker arc phenomena
Circuit breaker arc phenomena
 
Transformer Designing
Transformer Designing Transformer Designing
Transformer Designing
 
Chapter2
Chapter2Chapter2
Chapter2
 
ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)
 
Transformer design principles
Transformer design principlesTransformer design principles
Transformer design principles
 
The transformer
The transformerThe transformer
The transformer
 
Three phase power measurement
Three phase power measurementThree phase power measurement
Three phase power measurement
 
Generalised circuit constants
Generalised circuit constantsGeneralised circuit constants
Generalised circuit constants
 
Experiment no. 9
Experiment no. 9Experiment no. 9
Experiment no. 9
 

Similar to How to Simplify Complex Resistor Circuits Using Series and Parallel Combinations

Series and parallel
Series and parallelSeries and parallel
Series and parallelmubashir ali
 
Current electricity | Fuse, Series and parallel
Current electricity | Fuse, Series and parallelCurrent electricity | Fuse, Series and parallel
Current electricity | Fuse, Series and parallelAhamed Yoonus S
 
Resistors in Series.pptx
Resistors in Series.pptxResistors in Series.pptx
Resistors in Series.pptxNithishwaran
 
Resistors in Series.pptx
Resistors in Series.pptxResistors in Series.pptx
Resistors in Series.pptxNithishwaran
 
Parallel circuit
Parallel circuitParallel circuit
Parallel circuitY_Oberlin
 
Chapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisikaChapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisikarisyanti ALENTA
 
BACK to BASIC 3.pdf
BACK to BASIC 3.pdfBACK to BASIC 3.pdf
BACK to BASIC 3.pdfEdgar Rios
 
Thevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysisThevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysisBashar Imam
 
2. apply ohm's law to electrical circuits
2. apply ohm's law to electrical circuits2. apply ohm's law to electrical circuits
2. apply ohm's law to electrical circuitssanewton
 
Grade 9, U2-L5 Equivalent Resistance and Complex CCT's
Grade 9, U2-L5 Equivalent Resistance and Complex CCT'sGrade 9, U2-L5 Equivalent Resistance and Complex CCT's
Grade 9, U2-L5 Equivalent Resistance and Complex CCT'sgruszecki1
 
Circuits and circuits elements
Circuits and circuits elementsCircuits and circuits elements
Circuits and circuits elementsPandu Ekoyudho
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slidesguest5e66ab3
 
Combinations of resistors
Combinations of resistorsCombinations of resistors
Combinations of resistorsabdulsallam
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docx
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docxSheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docx
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docxmaoanderton
 

Similar to How to Simplify Complex Resistor Circuits Using Series and Parallel Combinations (20)

Series and parallel
Series and parallelSeries and parallel
Series and parallel
 
Current electricity | Fuse, Series and parallel
Current electricity | Fuse, Series and parallelCurrent electricity | Fuse, Series and parallel
Current electricity | Fuse, Series and parallel
 
Resistors in Series.pptx
Resistors in Series.pptxResistors in Series.pptx
Resistors in Series.pptx
 
Resistors in Series.pptx
Resistors in Series.pptxResistors in Series.pptx
Resistors in Series.pptx
 
Parallel circuit
Parallel circuitParallel circuit
Parallel circuit
 
Chapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisikaChapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisika
 
BACK to BASIC 3.pdf
BACK to BASIC 3.pdfBACK to BASIC 3.pdf
BACK to BASIC 3.pdf
 
ec ppt
ec pptec ppt
ec ppt
 
2 ohms law
2   ohms law2   ohms law
2 ohms law
 
5.2
5.25.2
5.2
 
Thevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysisThevenin's theorem PPT, Network analysis
Thevenin's theorem PPT, Network analysis
 
2. apply ohm's law to electrical circuits
2. apply ohm's law to electrical circuits2. apply ohm's law to electrical circuits
2. apply ohm's law to electrical circuits
 
Grade 9, U2-L5 Equivalent Resistance and Complex CCT's
Grade 9, U2-L5 Equivalent Resistance and Complex CCT'sGrade 9, U2-L5 Equivalent Resistance and Complex CCT's
Grade 9, U2-L5 Equivalent Resistance and Complex CCT's
 
Circuits and circuits elements
Circuits and circuits elementsCircuits and circuits elements
Circuits and circuits elements
 
Electric Circuits Ppt Slides
Electric Circuits Ppt SlidesElectric Circuits Ppt Slides
Electric Circuits Ppt Slides
 
D.c.circuits
D.c.circuitsD.c.circuits
D.c.circuits
 
Combinations of resistors
Combinations of resistorsCombinations of resistors
Combinations of resistors
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docx
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docxSheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docx
Sheet1ResistorcolorResistance (kohms)40 ohm resistor39.94 ohm1brow.docx
 

More from LLOYDARENAS1

continuous probability distributions.ppt
continuous probability distributions.pptcontinuous probability distributions.ppt
continuous probability distributions.pptLLOYDARENAS1
 
Introduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxIntroduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxLLOYDARENAS1
 
Intro_ACKT (1).ppt
Intro_ACKT (1).pptIntro_ACKT (1).ppt
Intro_ACKT (1).pptLLOYDARENAS1
 
BISECTION METHOD QUIZ.pptx
BISECTION METHOD QUIZ.pptxBISECTION METHOD QUIZ.pptx
BISECTION METHOD QUIZ.pptxLLOYDARENAS1
 
mws_gen_nle_ppt_falseposition.ppt
mws_gen_nle_ppt_falseposition.pptmws_gen_nle_ppt_falseposition.ppt
mws_gen_nle_ppt_falseposition.pptLLOYDARENAS1
 

More from LLOYDARENAS1 (8)

continuous probability distributions.ppt
continuous probability distributions.pptcontinuous probability distributions.ppt
continuous probability distributions.ppt
 
30700_rubric.pdf
30700_rubric.pdf30700_rubric.pdf
30700_rubric.pdf
 
LOGIC CKT.ppt
LOGIC CKT.pptLOGIC CKT.ppt
LOGIC CKT.ppt
 
process.ppt
process.pptprocess.ppt
process.ppt
 
Introduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxIntroduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptx
 
Intro_ACKT (1).ppt
Intro_ACKT (1).pptIntro_ACKT (1).ppt
Intro_ACKT (1).ppt
 
BISECTION METHOD QUIZ.pptx
BISECTION METHOD QUIZ.pptxBISECTION METHOD QUIZ.pptx
BISECTION METHOD QUIZ.pptx
 
mws_gen_nle_ppt_falseposition.ppt
mws_gen_nle_ppt_falseposition.pptmws_gen_nle_ppt_falseposition.ppt
mws_gen_nle_ppt_falseposition.ppt
 

Recently uploaded

CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 

Recently uploaded (20)

CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 

How to Simplify Complex Resistor Circuits Using Series and Parallel Combinations

  • 1. EE 201 series/parallel combinations – 1 Series and parallel combinations One of the simplest and most useful things we can do in a circuit is to reduce the complexity by combining similar elements that have series or parallel connections. Resistors, voltage sources, and current sources can all be combined and replaced with equivalents in the right circumstances. We start with resistors. In many situations, we can reduce complex resistor networks down to a few, or even a single, equivalent resistance. As always, the exact approach depends on what we want to know about the circuit, but resistor reduction is a tool that we will use over and over. R3 R4 R5 R2 R1 + – VS iS 1 kΩ 2.2 kΩ 330 Ω 470 Ω 1 kΩ To set the stage, consider the circuit at right. We might like to determine the power from the source, which requires knowing the current. Of course, we don’t know the source current initially — we must find it by finding the current flowing in the resistors.
  • 2. EE 201 series/parallel combinations – 2 – + vR1 – + vR2 iR1 iR2 + – VS iS – + vR3 iR3 – + vR4 iR4 – + vR5 iR5 In the circuit, iS = iR1, so our goal is to find that. Set to work with Kirchoff’s Laws. Since we don’t know anything at the outset, we will have to come up with enough equations to have a simultaneous set that can be solved. KCL: iR1 = iR2 + iR3 ; iR3 = iR4 = iR5. KVL: VS – vR1 – vR2 = 0 ; vR2 – vR3 – vR4 – vR5 = 0. Using Ohm’s Law to write voltages in terms of currents and then fiddling around to reduce the equations to a manageable set, we arrive at three equations relating, iR1, iR2, and iR3. (We are skipping all the details here — there will be plenty of time for developing simultaneous equations later.) iR1 = iR2 + iR3 VS – iR1R1– iR2R2 = 0 iR2R2 – iR1(R3 + R4 + R5) = 0.
  • 3. EE 201 series/parallel combinations – 3 Three equations, three unknowns. iR1 = iR2 + iR3 VS – iR1R1– iR2R2 = 0 iR2R2 – iR1(R3 + R4 + R5) = 0. Soon enough, we will be adept at handling problems like this. For now, we will put our trust in Wolfram-Alpha (or something similar), and let it grind out the answers. iR1 = 5.02 mA. iR2 = 2.26 mA. iR3 = 2.76 mA. Finally, iR1 = iS and the power being delivered by the source is PS = VS·iS = (10 V)(5.02 mA) = 50.2 mW. However, this business of finding three equations in three unknowns and solving all that seems a lot of work to determine one number is in a relatively simple circuit. Is there a simpler way? Of course, the answer is “yes”.
  • 4. EE 201 series/parallel combinations – 4 Equivalent Resistance The original circuit was a single source with a network of resistors attached. The resistor currents are related to the source current by KCL. The resistor voltages are related to the source voltage by KVL. The resistor currents are related to the resistor voltages by Ohm’s Law. Then it seems reasonable that the source current and source current should be related by Ohm’s Law, meaning that there must be some equivalent resistance that represents the cumulative effect of resistors in the network: Req = VS iS R3 R4 R5 R2 R1 + – VS iS + – VS iS Req
  • 5. EE 201 series/parallel combinations – 5 Equivalent Resistance The question is how to find the equivalent resistance of the network. The general approach would be to apply a “test generator” to the network. A test generator is a voltage or current source with a value that we can choose. For example, if we apply a test voltage source with value Vt, as shown below, then we can calculate the current, it, that flows into the network due to the applied source. R3 R4 R5 R2 R1 + – Vt it The equivalent resistance would then be . Req = Vt it In lab we could something similar by building the circuit, applying a test voltage, and measuring the result current. In lab, this process goes by a different name — it’s called “using an ohmmeter”.
  • 6. EE 201 series/parallel combinations – 6 Of course, we have already done this. The earlier calculation is identical to this test generator idea if we set Vt = 10 V. In the calculation, we found the current to be 5.02 mA. Then the equivalent resistance is Req = 10 V / 5.02 mA = 1.99 kΩ. R3 R4 R5 R2 R1 + – Vt it However, this seems a bit pointless, because finding equivalent resistance using a test generator was as much work as finding the source current directly. In fact, it took one extra step to find the equivalent resistance. But fear not. We can start with simple relationships for the equivalent resistance of series and parallel combinations. Then we can use series and parallel combinations to break down complex resistor networks and analyze them in a piecemeal fashion. We will see that the equivalent resistance idea is simple to implement in most cases and can be a powerful method for analyzing circuits. We will use it repeatedly as move through EE 201 and 230.
  • 7. EE 201 series/parallel combinations – 7 Series combination Apply test voltage. Define voltages and currents. By KCL: iR1 = iR2 = iR3 = it Expected, since they are in series. By KVL: Vt – vR1 – vR2 – vR3 = 0. Resistors are in series, meaning that the same current flows in all. Use Ohm’s law to write voltages in terms of currents. Vt − iR1R1 − iR2R2 − iR3R3 = 0 Vt − itR1 − itR2 − itR3 = it (R1 + R2 + R3) = 0 Req = Vt it = R1 + R2 + R3 R1 R2 R3 Req + – Vt – + vR1 – + vR3 – + vR2 iR1 iR3 iR2 it
  • 8. EE 201 series/parallel combinations – 8 The equivalent resistance of resistors in series is simply the sum of the individual resistance. Series combination Req = N ∑ m=1 Rm The calculation is easy. The equivalent resistance is always bigger than any of the individual resistors, Req > Rm. In fact, if one resistor is much much bigger than the rest, the equivalent resistance will be approximately equal to the one big resistor. For example, in the three-resistor string on the previous page, if R1 = 10 kΩ, R2 = 100 Ω, and R3 = 1 Ω, then Req = 10.101 kΩ ≈ 10 kΩ. This is why we can ignore the resistance of wires in most cases. Consider a 1-kΩ resistor with its two leads. If the resistor body has RB = 1 kΩ and the wires are each Rw ≈ 0.01 Ω, the series equivalent resistance of the whole is resistor is then 1.00002 kΩ. In almost all practical cases, the wire resistance is negligible.
  • 9. EE 201 series/parallel combinations – 9 Parallel combination Apply the test voltage. Define voltages and currents. By KVL: vt = vR1 = vR2 = vR3. Expected, since they are all in parallel By KCL: it = iR1 + iR2 + iR3. Use Ohm’s law to write iR in terms of vR. it = vR1 R1 + vR2 R2 + vR3 R3 it = vt R1 + vt R2 + vt R3 = vt ( 1 R1 + 1 R2 + 1 R3 ) 1 Req = it vt = 1 R1 + 1 R2 + 1 R3 R1 R2 R3 Req – + vR1 – + vR2 – + vR3 iR1 iR2 iR3 + – Vt it Resistors in parallel –– they all have the same voltage across.
  • 10. EE 201 series/parallel combinations – 10 The equivalent resistance will always be smaller than the resistance of any individual branch: Req < Rm for all m. If one resistor is much smaller than all other resistors in the parallel combination, (so that its inverse is much bigger), then the equivalent resistance will be approximately equal to that of the smallest resistor. For example, if the three parallel resistors from the previous page had values of R1 = 10 kΩ (1/R1 = 10–4 Ω–1), R2 = 100 Ω (1/R2 = 10–2 Ω–1), and R3 = 1 Ω (1/R3 = 1 Ω–1), then Req = 0.99 Ω ≈ 1 Ω (1/Req = 1.0101 Ω–1). In fact, if we use a wire (Rw ≈ 0) short circuit other components by placing it parallel with other resistors, the equivalent resistance is zero — everything in parallel is shorted out. 1 Req = N ∑ m=1 1 Rm Parallel combination The inverse of the equivalent resistance is equal to the sum of the inverses of all the resistance in the parallel combination.
  • 11. EE 201 series/parallel combinations – 11 Since the calculation for parallel resistors, with the need for inverses, can be a bit messy, there are some short-cuts that can used for special cases. If there are only two resistors in parallel: (Product over sum, which might be easier to compute.) Two identical resistors, R1 = R2 = R: (e.g. Two 1-kΩ resistors in parallel gives 0.5 kΩ.) N identical resistors in parallel (extending the idea): . If one resistor is much smaller than the rest (R1 << Rm) (to re-emphasize) If R1 = 0 (short circuit), then Req = 0. 1 Req = 1 R1 + 1 R2 = R2 R1R2 + R1 R1R2 = R1 + R2 R1R2 Req = R1R2 R1 + R2 Req = R2 R + R = R 2 Req = 1 1 R + 1 R + … + 1 R = R N Req = 1 1 R1 + 1 R2 + … + 1 RN ≈ R1
  • 12. EE 201 series/parallel combinations – 12 Breaking down networks using series and parallel R3 R4 R5 Req R2 R1 But not all circuits are simple combinations of series or parallel resistors. The initial example circuit clearly has some things that are in series and some elements that have a parallel-type connection. The trick is to break the circuit into smaller pieces that are purely series or parallel, find the equivalent of that piece and insert that back into the original circuit, which will now be simpler. Then find another series or parallel combination that can be simplified. Through a sequence of steps, it may be possible to reduce even complex combinations to a single equivalent resistance. For the circuit above, we can start by recognizing that the R3 - R4 - R5 series combination can be reduced. R345 = R3 + R4 + R5 = 1.8 kΩ. R3 R4 R5 R345 1 kΩ 2.2 kΩ 330 Ω 470 Ω 1 kΩ 330 Ω 470 Ω 1 kΩ
  • 13. EE 201 series/parallel combinations – 13 R345 Req R2 R1 Insert the single R345 resistor back into the original circuit. Now, quite obviously, R2 is in parallel with R345. R345 R2345 R2 Calculate the equivalent resistance of the parallel combination. Using the two-resistor formula: R2345 = R2 ⋅ R345 R2 + R345 = (2.2 kΩ) (1.8 kΩ) (2.2 kΩ) + (1.8 kΩ) = 990 Ω Insert the R2345 equivalent back into what is left of the original circuit. Now, we easily calculate Req as the series combined of R1 and R2345. R2345 Req R1 Req = R1 + R2345 = 1 kΩ + 0.99 kΩ = 1.99 kΩ. 1 kΩ 2.2 kΩ 1.8 kΩ 2.2 kΩ 1.8 kΩ 1 kΩ 0.99 kΩ Calculating source power is now trivial.
  • 14. EE 201 series/parallel combinations – 14 The equivalent resistance “method” So we have a method for trying to find equivalent resistances without having to resort to messy combinations of Kirchoff’s Laws. 1. Identify the pair of nodes between which we want to find equivalent resistance. Peer into it with “Ohm’s eye”. Ohm’s eye 2. Starting at the opposite end of the network, identify series and parallel combinations that can be reduced using the simple formulas. R3 R4 R5 R2 R1 R3 R4 R5 R2 R1 R345 R345 R2 R1 R2345 3. Repeat with another series or parallel combination to further simplify the circuit.
  • 15. EE 201 series/parallel combinations – 15 4. Continue the simplification process, one series or parallel combination at a time, until the network is reduced to a single resistor. (Or until the remaining network is trivial.) R2345 R1 Req It is not necessary to insert numbers at each step — we could express the results using symbols. We can insert numbers at the end, if needed. For the example, the equivalent resistance expressed in symbols: Req = R1 + R2345 = R1 + R2 ⋅ R345 R2 + R345 = R1 + R2 ⋅ (R3 + R4 + R5) R2 + R3 + R4 + R5 With practice, many circuits can be simplified by inspection (i.e. in our heads). We might even be able to calculate the values in our heads. Not all resistive networks can be reduced using series / parallel combinations. Consider the bridge circuit that was one of the Kirchoff’s Laws practice problems — the bridging resistor is not in series or parallel with any other resistors prevents any simplifications.
  • 16. EE 201 series/parallel combinations – 16 Example 1 Find the equivalent resistance looking into the indicated port of the “ladder network” shown. R3 R4 Req R2 R1 R5 R6 1. Starting at the “far end”, we see that R5 and R6 are in series. 330 Ω 680 Ω 330 Ω 330 Ω 680 Ω 680 Ω R3 R4 R2 R1 R56 330 Ω 680 Ω 330 Ω 680 Ω 1010 Ω 2. R4 is in parallel with R56. R456 = (1/R4 + 1/R56 )–1 = 407 Ω. R3 R456 R2 R1 330 Ω 680 Ω 330 Ω 407 Ω R56 = R5 + R6 = 1010 Ω.
  • 17. EE 201 series/parallel combinations – 17 Example 1 (con’t) 3. R3 and R456 are in series. 4. R2 is in parallel with R3456. 680 Ω 737 Ω 330 Ω 330 Ω 354 Ω 5. Finally, Req is the series combination of R1 and R23456. Req = 330 Ω + 354 Ω = 684 Ω. R3456 R2 R1 R3456 = R3 + R456 = 1010 Ω. R23456 = 1 1 R2 + 1 R3456 = 354 Ω R23456 R1 Req Req 684 Ω
  • 18. EE 201 series/parallel combinations – 18 Example 2 Find the equivalent resistance looking into the indicated port of the circuit shown below. 33 Ω 68 Ω 18 Ω 82 Ω 47 Ω 100 Ω 68 Ω 68 Ω R2 R1 R4 R3 R5 R6 R9 R10 R7 R8 Req 39 Ω 220 Ω At first class, this might seems impossible, but it’s actually not so bad. We can pick it apart piece by piece. Start by noting that R7 is in parallel with R8. R78 = 1 1 R7 + 1 R8 = 33.1 Ω
  • 19. EE 201 series/parallel combinations – 19 Similarly, R5 is in parallel with R6 and R9 is in parallel with R10. R56 = 1 1 R5 + 1 R6 = 32.0 Ω R910 = 1 1 R9 + 1 R10 = 34 Ω R2 R1 R4 R3 R56 R910 R78 33 Ω 68 Ω 18 Ω 82 Ω 32 Ω 34 Ω 33 Ω Next, we note that there are several series combinations R1 in series with R2 : R3 in series with R4 : R56, R78, and R910 all in series : Ra = R1 + R2 = 101 Ω Rb = R3 + R4 = 100 Ω Rc = R56 + R78 + R910 = 99 Ω Example 2 (con’t)
  • 20. EE 201 series/parallel combinations – 20 Finally, we see that the equivalent resistance is just the parallel combination of Ra, Rb, and Rc. Example 2 (con’t) Ra Rb Rc Req Req = 1 1 Ra + 1 Rb + 1 Rc = 33.3 Ω 101 Ω 100 Ω 99 Ω Not that bad.
  • 21. EE 201 series/parallel combinations – 21 Example 3 Find the equivalent resistance at the indicated port in the circuit below. R3 R4 Req R2 R1 R5 There are a couple of interesting things going on here. First, we see some “diagonal” resistors. Secondly, we see a “dangling” resistor, R5, which is not connected to anything on one side. First, the diagonal resistors are essentially an optical illusion — current and voltage do not care about the spatial orientation of the components. We can re-draw the circuit in the more familiar grid-like arrangement, with no change in how the circuit behaves. R3 R4 Req R2 R1 R5 1 kΩ 1.5 kΩ 470 Ω 10 kΩ 5.6 kΩ
  • 22. EE 201 series/parallel combinations – 22 Example 3 (con’t) Now, about the dangling resistor. Since the right-hand side of R5 is “open circuited”, we can view R5 as being in series with a resistor with value approaching infinity. (An open circuit is essentially a resistor with R → ∞.) A series combination of any finite resistor infinity is also infinity. (Mathematicians are cringing now.) So essentially, the dangling R5 is the same as an open circuit — in principle, we could have left it off entirely with no change in equivalent resistance. (In the future, we will see a number of situations where there are dangling components like this, and we need to know how to handle them.) R5 Roc + R5 (→ ∞) R5 Roc (→ ∞)
  • 23. EE 201 series/parallel combinations – 23 Example 3 (con’t) Now that we straightened out the diagonals and trimmed off the dangler, the circuit looks familiar and simple And the calculation is straight-forward: R34 = R3 + R4 = 15.6 kΩ Req = R1 + R234 = 2.37 kΩ R234 = 1 1 R2 + 1 R34 = 1.37 kΩ R3 R4 Req R2 R1 1 kΩ 1.5 kΩ 10 kΩ 5.6 kΩ
  • 24. EE 201 series/parallel combinations – 24 Example 3a Same circuit, but now find the equivalent resistance looking from the other end. R3 R4 Req R2 R1 R5 1 kΩ 1.5 kΩ 470 Ω 10 kΩ 5.6 kΩ The previous comments about the diagonals and the dangling resistor apply, except that now R1 is the dangler. R3 R4 R2 R5 We start at the “far end” and work towards the eyeball. R23 = R2 + R3 = 11.5 kΩ Req = R5 + R234 = 4.24 kΩ R234 = 1 1 R23 + 1 R4 = 3.77 kΩ
  • 25. EE 201 series/parallel combinations – 25 Voltage sources in series. Consider the simple series circuit at right. We can write a KVL equation around the loop: VS1 – vR1 – VS2 – vR2 = 0. Addition and subtraction are commutative, so we can re-arrange the ordering in the equation. VS1 – VS2 – vR1 – vR2 = 0. This would imply that we can re-order the components in the circuit. The re-ordered circuit is must behave the same as the top circuit. Now we can use Ohm’s Law to write VS1 – VS2 – iR1·R1 – iR2·R2 = 0. Since the same current flows in all components in the series string, iS1 = iS2 = iR1 = iR2 = iS. VS1 – VS2 – iS (R1 + R2) = 0. We know that we can combine series resistors. It appears that we can also combine series voltage sources: VS12 – iS R12 = 0. + – VS1 R1 + – VS2 R2 – + vR1 – + vR2 + – VS1 + – R2 – + vR2 R1 – + vR1 VS2 + – VS12 R12 VS12 = VS1 − VS2 R12 = R1 + R2
  • 26. EE 201 series/parallel combinations – 26 Voltage sources in series. The little exercise on the previous slide show us important ideas about series connections. 1. The ordering of components in the series string is irrelevant — we can re-order the voltage sources and resistors to suit our needs. 2. Just like resistors in series, we can combine voltage sources in series and treat them as a single source. The idea of putting voltage sources in series should be familiar to most — in electronic gadgets it is common to connect several 1.5-V batteries in series to create 3-V or 4.5-V or 6-V or whatever voltage is needed to power a circuit. When combining series voltage sources, there might some uncertainty about whether to add or subtract the values (particularly for neophytes). The ambiguity can always removed by writing a proper KVL equation around the loop. Kirchoff will make it clear whether to add to or subtract.
  • 27. EE 201 series/parallel combinations – 27 Current sources in parallel. Consider the simple circuit at right. We can write a KCL equation at the top node: IS1 – iR1 + IS2 – iR2 = 0. Addition and subtraction are commutative, so we can re-arrange the ordering in the equation. IS1 + IS2 – iR1 – iR2 = 0. This would imply that we can re-order the components in the circuit. The re-ordered circuit must be identical to the top circuit. We can use Ohm’s Law to write IS1 + IS2 − vR1 R1 + vR2 R2 = 0 IS1 R1 IS2 R2 iR1 iR2 IS1 R1 IS2 R2 iR1 iR2 IS12 R12 All the components have the same voltage across, vIS1 = vIS2 = vR2 = vR2 = vS, We know that we can combine the parallel resistors, and it appears that we can combine the current sources as well. IS1 + IS2 − vS R1 − vS R2 = 0 → IS12 − vS R12 = 0 IS12 = IS1 + IS2 R12 = ( 1 R1 + 1 R2 ) −1
  • 28. EE 201 series/parallel combinations – 28 Current sources in parallel. The little exercise on the previous slide show us to important ideas about parallel connections. 1. The ordering of components in the parallel arrangement is irrelevant — we can re-order the current sources and resistors to suit our needs. 2. We can combine current sources in parallel and treat them as a single source. When combining parallel current sources, there is often some uncertainty about whether to add or subtract the values. The ambiguity can always removed by writing a proper KCL equation at the node where they are connected. Kirchoff will make it clear whether to add to or subtract.
  • 29. EE 201 series/parallel combinations – 29 Example 4 Below is a conglomeration of sources and resistors. Simplify the circuit by combining the series and parallel components. 22 Ω 10 Ω 33 Ω 47 Ω 15 Ω 68 Ω 12 V 6 V 1.5 V 0.5 A 0.25 A 0.75 A Three resistors in series on the left: RL = R1 + R2 + R3 = 65 Ω Three sources in series on the left: VL = VS3 + VS1 – VS2 = 14.5 V Three resistors in parallel on the right: Three sources in parallel on the right: IR = IS1 – IS2 + IS3 = 1 A. RR = (R−1 4 + R−1 5 + R−1 6 ) −1 = 9.74 Ω + – VL RL RR IR + – VS1 + – R1 + – IS1 IS2 IS3 R4 R5 R6 R2 VS2 VS3 R3 14.5 V 65 Ω 9.7 Ω 1 A
  • 30. EE 201 series/parallel combinations – 30 Voltage sources in parallel, current sources in series From a theoretical point of view, these combinations are not allowable. They lead to untenable conundrums with Kirchoff’s Laws. + – VS1 + – VS2 12 V 6 V KVL: VS1 – VS2 = 6 V ≠ 0!! Yikes! IS1 IS2 2 A 1 A KCL: IS1 ≠ IS2 : In ≠ Out. Yikes! So in 201 circuits, we avoid these. However, everyone knows that sometimes voltage sources are connected to parallel — charging a battery is essentially requires connecting one source to another. If there were no other considerations, then the resistance of the wire (which we generally ignore in 201) comes into play. + – VS1 + – VS2 Rw = small! i = VS1 − VS2 Rw = BIG! If we connect two random batteries together (or short out a battery — VS2 = 0), bad things may happen. A practical battery charger will have some means to limit current. In fact, it may actually be current source.