This document discusses techniques for testing advanced driver assistance systems (ADAS) through physics-based simulation. It faces challenges due to the large, complex, and multidimensional test input space as well as the computational expense of simulation. The document proposes using a genetic algorithm guided by decision trees to more efficiently search for critical test cases. Classification trees are built to partition the input space into homogeneous regions in order to better guide the selection and generation of test inputs toward more critical areas.