SlideShare a Scribd company logo
MODELLING OF THERMOPHORESIS IN
MULTIPHASE FLOWS
Master's Thesis
Student: Andrés Gude Lustres
Study Program: Master of Industrial Engineering
Mentor: assoc. Prof. Dr. Jure Ravnik
Maribor 07.07.2016
CONTENTS
INTRODUCTION
MODELS
NUMERICAL SIMULATIONS
RESULTS
CONCLUSIONS
OVERVIEW OF THE PROBLEM
• Researches into micro and nanoparticles.
• Significant progress in all branches of science.
• Thermophoresis one of most studied phenomena.
• Concern about climate change and pollution.
• Importance in numerous industrial processes.
• Examples: air cleaning, coal combustion, chemical
vapor deposition and microcontamination.
GOALS AND AIMS
• Analyze the behavior of thermophoresis on
microparticles and nanoparticles.
• Analyze multiphase fluids with the presence of
Brownian motion and thermophoresis.
• Analyze multiphase fluids only with the
presence of thermophoresis.
• Understand the relationship between the two
phenomena.
BROWNIAN MOTION
• Brownian motion is the random motion of
particles suspended in a fluid (liquid or gas)
resulting from their collision with the quick
atoms or molecules in the gas or liquid.
• Statistically independent successive
displacements.
• May be described by a force with random
components
Why the motion is caused?
• Small particles disperse faster in hotter
regions and slower in colder regions.
• The particle velocity in the hotter regions is
higher than in the colder regions.
• Particles collide and move toward the colder
region.
• The force that push them is the
thermophoretic force.
THERMOPHORESIS
• Consequence of the Brownian movement of
particles in fluids with an externally sustained and
constant temperature gradient.
• Is the migration of a particle away from the
higher-temperature region and toward the lower-
temperature region in large particles.
• Is the migration of a particle away from the
lower-temperature region and toward the higher-
temperature region in small particles.
• Is the average motion of the particles.
THERMOPHORESIS MODELS
• MODEL 1: Kn<2.
• MODEL 2: transition regime (0.2 < Kn < 10).
• MODEL 3: Kn>>1. For monoatomic gases.
• MODEL 4: entire range of small and larger Kn.
• MODEL 5: entire range of small and larger Kn.
• MODEL 6: entire range of small and larger Kn.
• MODEL 1,4,5: Dioctyl phthalate (DOP) droplets in
air, silicone oil in argon, tricresylphosphate in air.
• MODELS 2,3,6: for monatomic gases.
CHOSEN MODEL
• The mean free path of water is 2.5 angstrom.
• The characteristic length scale is 1 cm.
• Kn << 1.
• Continuum regime.
• Particles massless (as they are very small and
their Stokes number are very small, thus they
follow the fluid.)
• Drag, lift and gravity forces are neglected
• Particles have the same velocity as the fluid plus
Browninan and thermophoretic velocities.
BROWNIAN MOTION EQUATIONS
• STOKES-EINSTEN EQUATION
• DISPLAZAMENT
N : is the random vector. (-1,1)
THERMOPHORESIS EQUATIONS
• PARTICLE VELOCITY
• THERMOPHORETIC VELOCITY
THERMOPHORESIS EQUATIONS
• VELOCITY-VORTICITY. NAVIER -STOKES.
• VORTICITY TRANSPORT
• ENERGY TRANSPORT
DESCRIPTION OF THE MODEL
• A cubic cavity is filled with fluid and subjected to a
temperature difference on two opposite vertical sides.
• Constant temperature on two vertical walls.
• Zero heat flux on other four wall (adiabatic).
• Zero velocity on all walls (no-slip boundary condition).
DESCRIPTION OF THE MODEL
• In-houde CFD code, which uses Euler-Lagnrange
method to simulate flow and movement of
particles.
• 100.000 particles.
• 100 time steps .
• Ra = 1000, Ra = 10000, Ra = 100000; Ra =
1000000.
• 1º case: with thermophoresis.
• 2º case: with thermophoresis and Brownian
motion.
MATERIAL PROPERTIES
MATERIAL PROPERTIES
FLUID TEMPERATURE
Ra = 1000 Ra = 10000
Ra = 100000 Ra = 1000000
FLUID VELOCITY
• Cut our cubic cavity into slices, by
perpendicular planes to the normal unitary
vectors.
FLUID VELOCITY
Ra = 1000 Ra = 100000
POSITION AND NUMBER OF PARTICLES
• For each Rayleigh number.
• The YZ plane is analyzed.
• X axis is analyzed.
• The X axis scale is from 0 [cm] to 1 [cm].
• The position 0 is the coldest side.
• The position 1 is the hottest side.
• Time steps intervals analyzed: 1st to the 10th, from
the 31st to the 40th, from the 61st to 70th, from the
91st to 100th.
POSITION AND NUMBER OF PARTICLES
• XZ plane and time step 50.
Ra = 1000 Ra = 10000
POSITION AND NUMBER OF PARTICLES
• XZ plane and time step 50.
Ra = 100000 Ra = 1000000
POSITION AND NUMBER OF PARTICLES
0
500
1000
1500
2000
2500
3000
0 0.05 0.1 0.15 0.2
N
X axis [cm]
t: 1-10 (Th)
t: 31-40 (Th)
t: 61-70 (Th)
t: 91-100 (Th)
0
500
1000
1500
2000
2500
3000
0.6 0.7 0.8 0.9 1
N
X axis [cm]
t: 1-10 (Th)
t: 31-40 (Th)
t: 61-70 (Th)
t: 91-100 (Th)
0
5
10
15
20
25
30
0 0.05 0.1 0.15 0.2
N
X axis [cm]
t: 1-10 (Th)
t: 31-40 (Th)
t: 61-70 (Th)
t: 91-100 (Th)
0
5000
10000
15000
20000
25000
30000
35000
40000
0.6 0.7 0.8 0.9 1
N
X axis [cm]
t: 1-10 (Th)
t: 31-40 (Th)
t: 61-70 (Th)
t: 91-100 (Th)
Ra=1.000Ra=1.000.000
POSITION AND NUMBER OF PARTICLES
0
500
1000
1500
2000
2500
3000
0 0.05 0.1 0.15 0.2
N
X axis [cm]
t: 1-10 (Th+Bw)
t: 31-40 (Th+Bw)
t: 61-70 (Th+Bw)
t: 91-100 (Th+Bw)
0
500
1000
1500
2000
2500
3000
0.6 0.7 0.8 0.9 1
N
X axis [cm]
t: 1-10 (Th+Bw)
t: 31-40 (Th+Bw)
t: 61-70 (Th+Bw)
t: 91-100 (Th+Bw)
0
1
2
3
4
5
0 0.05 0.1 0.15 0.2
N
X axis [cm]
t: 1-10 (Th+Bw)
t: 31-40 (Th+Bw)
t: 61-70 (Th+Bw)
t: 91-100 (Th+Bw)
0
5000
10000
15000
20000
25000
30000
35000
0.6 0.7 0.8 0.9 1
N
X axis [cm]
t: 1-10 (Th+Bw)
t: 31-40 (Th+Bw)
t: 61-70 (Th+Bw)
t: 91-100 (Th+Bw)
Ra=1.000Ra=1.000.000
HEAT FLUX
• Heat transfer though a vertical wall expressed
as Nusselt number versus time.
• For four different Rayleigh numbers.
• Thermophoresis (Th) case and
thermophoresis and Brownian motion
(Th+Bw) case are analyzed.
HEAT FLUX
1.345
1.34505
1.3451
1.34515
1.3452
1.34525
1.3453
1.34535
1.3454
1.34545
1.3455
50 100 150 200 250 300 350 400 450 500
Nusseltnumber[-]
time [-]
Ra = 10^3 (Th)
Ra = 10^3 (Th+Bw)
2.178
2.1785
2.179
2.1795
2.18
2.1805
2.181
2.1815
2.182
2.1825
50 100 150 200 250 300 350 400 450 500
Nusseltnumber[-]
time [-]
Ra = 10^4 (Th)
Ra = 10^4 (Th+Bw)
HEAT FLUX
4.9
4.902
4.904
4.906
4.908
4.91
4.912
50 100 150 200 250 300 350 400 450 500
Nusseltnumber[-]
time [-]
Ra = 10^5 (Th)
Ra = 10^5 (Th+Bw)
9.9
9.95
10
10.05
10.1
10.15
10.2
10.25
10.3
50 100 150 200 250 300 350 400 450 500
Nusseltnumber[-]
time [-]
Ra = 10^6 (Th)
Ra = 10^6 (Th+Bw)
CONCLUSIONS
• Fluid temperature is the same in both cases.
• Fluid velocity: the flow is stronger and this is
moved over the external faces of the XY plane
due to vorticity.
• Fluid velocity: the effect of Brownian motion is
irrelevant.
• Position and number of particles: the effect of
Brownian motion is irrelevant.
• Heat flux: the effect of Brownian motion is
irrelevant.

More Related Content

What's hot

REYLEIGH’S METHOD,BUCKINGHAM π-THEOREM
REYLEIGH’S METHOD,BUCKINGHAM  π-THEOREMREYLEIGH’S METHOD,BUCKINGHAM  π-THEOREM
REYLEIGH’S METHOD,BUCKINGHAM π-THEOREM
Amiraj College Of Engineering And Technology
 
Reynolds transport theorem
Reynolds transport theoremReynolds transport theorem
Reynolds transport theorem
MOHIT MAYOOR
 
Properties of polymers
Properties of polymersProperties of polymers
Properties of polymers
Sai Sri Ram Chaganti
 
Eulers equation
Eulers equationEulers equation
Eulers equation
Ghulam Murtaza
 
NANOPARTICLE
NANOPARTICLENANOPARTICLE
NANOPARTICLE
MUSTAFIZUR RAHMAN
 
AFD - Incompressible Flow - Introduction
AFD - Incompressible Flow  - IntroductionAFD - Incompressible Flow  - Introduction
AFD - Incompressible Flow - Introduction
Chemical Engineering Guy
 
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATIONUNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
ATANUBARIK1
 
Draft Tube and Cavitation | Fluid Mechanics
Draft Tube and Cavitation | Fluid MechanicsDraft Tube and Cavitation | Fluid Mechanics
Draft Tube and Cavitation | Fluid Mechanics
Satish Taji
 
heat transfer through fins
heat transfer through finsheat transfer through fins
heat transfer through fins
prasantjangir
 
Introduction to transport phenomena bodh raj
Introduction to transport phenomena bodh rajIntroduction to transport phenomena bodh raj
Heat transfer in thermal engineering
Heat transfer in thermal engineeringHeat transfer in thermal engineering
Heat transfer in thermal engineering
Ashish Khudaiwala
 
Separation of boundary layer
Separation of boundary layerSeparation of boundary layer
Separation of boundary layer
Yash Patel
 
Solid State Pharmaceutics [Autosaved].pptx
Solid State Pharmaceutics [Autosaved].pptxSolid State Pharmaceutics [Autosaved].pptx
Solid State Pharmaceutics [Autosaved].pptx
Santosh Sarnaik
 
Dimensionless number
Dimensionless numberDimensionless number
Dimensionless number
anwesakar
 
FLOW OF FLUID
FLOW OF FLUIDFLOW OF FLUID
FLOW OF FLUID
TAUFIK MULLA
 
Zeta potential
Zeta potentialZeta potential
Zeta potential
dilip kumar tampula
 
heat transfer enhancement of Nano fluids
heat transfer enhancement of Nano fluidsheat transfer enhancement of Nano fluids
heat transfer enhancement of Nano fluids
Guru Sai Yadav
 
Membranes for Pervaporation
Membranes for PervaporationMembranes for Pervaporation
Membranes for Pervaporation
Jeffrey Funk
 
Boundary layer theory
Boundary layer theoryBoundary layer theory
Boundary layer theory
SanmitaVarma
 

What's hot (20)

REYLEIGH’S METHOD,BUCKINGHAM π-THEOREM
REYLEIGH’S METHOD,BUCKINGHAM  π-THEOREMREYLEIGH’S METHOD,BUCKINGHAM  π-THEOREM
REYLEIGH’S METHOD,BUCKINGHAM π-THEOREM
 
Reynolds transport theorem
Reynolds transport theoremReynolds transport theorem
Reynolds transport theorem
 
Properties of polymers
Properties of polymersProperties of polymers
Properties of polymers
 
Eulers equation
Eulers equationEulers equation
Eulers equation
 
NANOPARTICLE
NANOPARTICLENANOPARTICLE
NANOPARTICLE
 
AFD - Incompressible Flow - Introduction
AFD - Incompressible Flow  - IntroductionAFD - Incompressible Flow  - Introduction
AFD - Incompressible Flow - Introduction
 
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATIONUNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
UNIT OPERATIONS : PHARMACEUTICAL ENGINEERING ON BASICS AND APPLICATION
 
Draft Tube and Cavitation | Fluid Mechanics
Draft Tube and Cavitation | Fluid MechanicsDraft Tube and Cavitation | Fluid Mechanics
Draft Tube and Cavitation | Fluid Mechanics
 
heat transfer through fins
heat transfer through finsheat transfer through fins
heat transfer through fins
 
Introduction to transport phenomena bodh raj
Introduction to transport phenomena bodh rajIntroduction to transport phenomena bodh raj
Introduction to transport phenomena bodh raj
 
Heat transfer in thermal engineering
Heat transfer in thermal engineeringHeat transfer in thermal engineering
Heat transfer in thermal engineering
 
Separation of boundary layer
Separation of boundary layerSeparation of boundary layer
Separation of boundary layer
 
Solid State Pharmaceutics [Autosaved].pptx
Solid State Pharmaceutics [Autosaved].pptxSolid State Pharmaceutics [Autosaved].pptx
Solid State Pharmaceutics [Autosaved].pptx
 
Dimensionless number
Dimensionless numberDimensionless number
Dimensionless number
 
Analogies
AnalogiesAnalogies
Analogies
 
FLOW OF FLUID
FLOW OF FLUIDFLOW OF FLUID
FLOW OF FLUID
 
Zeta potential
Zeta potentialZeta potential
Zeta potential
 
heat transfer enhancement of Nano fluids
heat transfer enhancement of Nano fluidsheat transfer enhancement of Nano fluids
heat transfer enhancement of Nano fluids
 
Membranes for Pervaporation
Membranes for PervaporationMembranes for Pervaporation
Membranes for Pervaporation
 
Boundary layer theory
Boundary layer theoryBoundary layer theory
Boundary layer theory
 

Viewers also liked

աթաբեկ խնկոյանNnn
աթաբեկ խնկոյանNnnաթաբեկ խնկոյանNnn
աթաբեկ խնկոյանNnn
Sergey Julhakyan
 
العين فشخت الحجر
العين فشخت الحجرالعين فشخت الحجر
العين فشخت الحجر
salama2018
 
Dania jimenez 11vo
Dania jimenez 11voDania jimenez 11vo
Dania jimenez 11vo
Dania Jiménez
 
L'Atles de la Memòria Viva
L'Atles de la Memòria VivaL'Atles de la Memòria Viva
L'Atles de la Memòria Viva
nvives
 
Btm8107 8 week7 activity apply non-parametric tests a+ work
Btm8107 8 week7 activity apply non-parametric tests a+ workBtm8107 8 week7 activity apply non-parametric tests a+ work
Btm8107 8 week7 activity apply non-parametric tests a+ work
coursesexams1
 
Caldeira industrial
Caldeira industrialCaldeira industrial
Caldeira industrial
Fernando Dias
 
Herramientas que hemos aprendido a usar
Herramientas que hemos aprendido a usarHerramientas que hemos aprendido a usar
Herramientas que hemos aprendido a usartamydelamalva
 
Actividades refrigeracion gustavo suarez
Actividades refrigeracion gustavo suarez Actividades refrigeracion gustavo suarez
Actividades refrigeracion gustavo suarez
Gustavo Suárez
 
El poder y la economia
El poder y la economiaEl poder y la economia
El poder y la economia
Miguel Abeth
 
портфолио группа тд 15
портфолио группа тд 15портфолио группа тд 15
портфолио группа тд 15
Galina02
 
цикловая комиссия преподавателей профессиональной подготовки механических спе...
цикловая комиссия преподавателей профессиональной подготовки механических спе...цикловая комиссия преподавателей профессиональной подготовки механических спе...
цикловая комиссия преподавателей профессиональной подготовки механических спе...
Galina02
 
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
Colegio
 
Monal gupta
Monal guptaMonal gupta
Monal gupta
Monal Gupta
 
Caldeira a vapor
Caldeira a vaporCaldeira a vapor
Caldeira a vapor
Fernando Dias
 

Viewers also liked (14)

աթաբեկ խնկոյանNnn
աթաբեկ խնկոյանNnnաթաբեկ խնկոյանNnn
աթաբեկ խնկոյանNnn
 
العين فشخت الحجر
العين فشخت الحجرالعين فشخت الحجر
العين فشخت الحجر
 
Dania jimenez 11vo
Dania jimenez 11voDania jimenez 11vo
Dania jimenez 11vo
 
L'Atles de la Memòria Viva
L'Atles de la Memòria VivaL'Atles de la Memòria Viva
L'Atles de la Memòria Viva
 
Btm8107 8 week7 activity apply non-parametric tests a+ work
Btm8107 8 week7 activity apply non-parametric tests a+ workBtm8107 8 week7 activity apply non-parametric tests a+ work
Btm8107 8 week7 activity apply non-parametric tests a+ work
 
Caldeira industrial
Caldeira industrialCaldeira industrial
Caldeira industrial
 
Herramientas que hemos aprendido a usar
Herramientas que hemos aprendido a usarHerramientas que hemos aprendido a usar
Herramientas que hemos aprendido a usar
 
Actividades refrigeracion gustavo suarez
Actividades refrigeracion gustavo suarez Actividades refrigeracion gustavo suarez
Actividades refrigeracion gustavo suarez
 
El poder y la economia
El poder y la economiaEl poder y la economia
El poder y la economia
 
портфолио группа тд 15
портфолио группа тд 15портфолио группа тд 15
портфолио группа тд 15
 
цикловая комиссия преподавателей профессиональной подготовки механических спе...
цикловая комиссия преподавателей профессиональной подготовки механических спе...цикловая комиссия преподавателей профессиональной подготовки механических спе...
цикловая комиссия преподавателей профессиональной подготовки механических спе...
 
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
Relacion docente de cuadro de merito de la ugel 16 de barranca 2016
 
Monal gupta
Monal guptaMonal gupta
Monal gupta
 
Caldeira a vapor
Caldeira a vaporCaldeira a vapor
Caldeira a vapor
 

Similar to Presentation

Chromatography
ChromatographyChromatography
Chromatography
Kamruzzaman Khan
 
Units and variables
Units and variablesUnits and variables
Units and variables
Kati Jordan
 
Infrared Spectroscopy
Infrared SpectroscopyInfrared Spectroscopy
Infrared Spectroscopy
JACOB THON BIOR
 
F10 lec01 overview
F10 lec01 overviewF10 lec01 overview
F10 lec01 overviewfredhvcc
 
Cyclone Seperator
Cyclone SeperatorCyclone Seperator
Cyclone Seperator
Rajat Verma
 
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERSME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
BIBIN CHIDAMBARANATHAN
 
lecture3.pptx
lecture3.pptxlecture3.pptx
lecture3.pptx
Gurumurthy B R
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
Bioline Education
 
Dimensional Effect on Engineering Systems & Clean Room & Classification
Dimensional Effect on Engineering Systems & Clean Room & ClassificationDimensional Effect on Engineering Systems & Clean Room & Classification
Dimensional Effect on Engineering Systems & Clean Room & Classification
Samiran Tripathi
 
Thermo_Lecture_1.ppt
Thermo_Lecture_1.pptThermo_Lecture_1.ppt
Thermo_Lecture_1.ppt
lnhipulan
 
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115Ronald Vane
 
dokumen.tips_compressible-flow9-april.pptx
dokumen.tips_compressible-flow9-april.pptxdokumen.tips_compressible-flow9-april.pptx
dokumen.tips_compressible-flow9-april.pptx
GokhanDurmus
 
Units and variables
Units and variables Units and variables
Gas Chromatography
Gas ChromatographyGas Chromatography
Gas Chromatography
Majid Farooq
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids
Ehsan B. Haghighi
 
Chromatography
ChromatographyChromatography
Chromatography
Afrina Jasy
 
chromatogr1.ppt
chromatogr1.pptchromatogr1.ppt
chromatogr1.ppt
UjjwalDixit8
 
Chromatography part 1
Chromatography part 1Chromatography part 1
Chromatography part 1
Zainab&Sons
 
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Salman Sadeg Deumah
 
Week # 04_Lecture # 07_Packed Column.pdf
Week # 04_Lecture # 07_Packed Column.pdfWeek # 04_Lecture # 07_Packed Column.pdf
Week # 04_Lecture # 07_Packed Column.pdf
SufyanKhan752880
 

Similar to Presentation (20)

Chromatography
ChromatographyChromatography
Chromatography
 
Units and variables
Units and variablesUnits and variables
Units and variables
 
Infrared Spectroscopy
Infrared SpectroscopyInfrared Spectroscopy
Infrared Spectroscopy
 
F10 lec01 overview
F10 lec01 overviewF10 lec01 overview
F10 lec01 overview
 
Cyclone Seperator
Cyclone SeperatorCyclone Seperator
Cyclone Seperator
 
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERSME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
ME6604 GAS DYNAMICS AND JET PROPULSION SHORT QUESTION AND ANSWERS
 
lecture3.pptx
lecture3.pptxlecture3.pptx
lecture3.pptx
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
 
Dimensional Effect on Engineering Systems & Clean Room & Classification
Dimensional Effect on Engineering Systems & Clean Room & ClassificationDimensional Effect on Engineering Systems & Clean Room & Classification
Dimensional Effect on Engineering Systems & Clean Room & Classification
 
Thermo_Lecture_1.ppt
Thermo_Lecture_1.pptThermo_Lecture_1.ppt
Thermo_Lecture_1.ppt
 
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115
Plasma Cleaning of SEMs and Large Vacuum Systems_EK Review_101115
 
dokumen.tips_compressible-flow9-april.pptx
dokumen.tips_compressible-flow9-april.pptxdokumen.tips_compressible-flow9-april.pptx
dokumen.tips_compressible-flow9-april.pptx
 
Units and variables
Units and variables Units and variables
Units and variables
 
Gas Chromatography
Gas ChromatographyGas Chromatography
Gas Chromatography
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids
 
Chromatography
ChromatographyChromatography
Chromatography
 
chromatogr1.ppt
chromatogr1.pptchromatogr1.ppt
chromatogr1.ppt
 
Chromatography part 1
Chromatography part 1Chromatography part 1
Chromatography part 1
 
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
 
Week # 04_Lecture # 07_Packed Column.pdf
Week # 04_Lecture # 07_Packed Column.pdfWeek # 04_Lecture # 07_Packed Column.pdf
Week # 04_Lecture # 07_Packed Column.pdf
 

Presentation

  • 1. MODELLING OF THERMOPHORESIS IN MULTIPHASE FLOWS Master's Thesis Student: Andrés Gude Lustres Study Program: Master of Industrial Engineering Mentor: assoc. Prof. Dr. Jure Ravnik Maribor 07.07.2016
  • 3. OVERVIEW OF THE PROBLEM • Researches into micro and nanoparticles. • Significant progress in all branches of science. • Thermophoresis one of most studied phenomena. • Concern about climate change and pollution. • Importance in numerous industrial processes. • Examples: air cleaning, coal combustion, chemical vapor deposition and microcontamination.
  • 4. GOALS AND AIMS • Analyze the behavior of thermophoresis on microparticles and nanoparticles. • Analyze multiphase fluids with the presence of Brownian motion and thermophoresis. • Analyze multiphase fluids only with the presence of thermophoresis. • Understand the relationship between the two phenomena.
  • 5. BROWNIAN MOTION • Brownian motion is the random motion of particles suspended in a fluid (liquid or gas) resulting from their collision with the quick atoms or molecules in the gas or liquid. • Statistically independent successive displacements. • May be described by a force with random components
  • 6. Why the motion is caused? • Small particles disperse faster in hotter regions and slower in colder regions. • The particle velocity in the hotter regions is higher than in the colder regions. • Particles collide and move toward the colder region. • The force that push them is the thermophoretic force.
  • 7. THERMOPHORESIS • Consequence of the Brownian movement of particles in fluids with an externally sustained and constant temperature gradient. • Is the migration of a particle away from the higher-temperature region and toward the lower- temperature region in large particles. • Is the migration of a particle away from the lower-temperature region and toward the higher- temperature region in small particles. • Is the average motion of the particles.
  • 8. THERMOPHORESIS MODELS • MODEL 1: Kn<2. • MODEL 2: transition regime (0.2 < Kn < 10). • MODEL 3: Kn>>1. For monoatomic gases. • MODEL 4: entire range of small and larger Kn. • MODEL 5: entire range of small and larger Kn. • MODEL 6: entire range of small and larger Kn. • MODEL 1,4,5: Dioctyl phthalate (DOP) droplets in air, silicone oil in argon, tricresylphosphate in air. • MODELS 2,3,6: for monatomic gases.
  • 9. CHOSEN MODEL • The mean free path of water is 2.5 angstrom. • The characteristic length scale is 1 cm. • Kn << 1. • Continuum regime. • Particles massless (as they are very small and their Stokes number are very small, thus they follow the fluid.) • Drag, lift and gravity forces are neglected • Particles have the same velocity as the fluid plus Browninan and thermophoretic velocities.
  • 10. BROWNIAN MOTION EQUATIONS • STOKES-EINSTEN EQUATION • DISPLAZAMENT N : is the random vector. (-1,1)
  • 11. THERMOPHORESIS EQUATIONS • PARTICLE VELOCITY • THERMOPHORETIC VELOCITY
  • 12. THERMOPHORESIS EQUATIONS • VELOCITY-VORTICITY. NAVIER -STOKES. • VORTICITY TRANSPORT • ENERGY TRANSPORT
  • 13. DESCRIPTION OF THE MODEL • A cubic cavity is filled with fluid and subjected to a temperature difference on two opposite vertical sides. • Constant temperature on two vertical walls. • Zero heat flux on other four wall (adiabatic). • Zero velocity on all walls (no-slip boundary condition).
  • 14. DESCRIPTION OF THE MODEL • In-houde CFD code, which uses Euler-Lagnrange method to simulate flow and movement of particles. • 100.000 particles. • 100 time steps . • Ra = 1000, Ra = 10000, Ra = 100000; Ra = 1000000. • 1º case: with thermophoresis. • 2º case: with thermophoresis and Brownian motion.
  • 17. FLUID TEMPERATURE Ra = 1000 Ra = 10000 Ra = 100000 Ra = 1000000
  • 18. FLUID VELOCITY • Cut our cubic cavity into slices, by perpendicular planes to the normal unitary vectors.
  • 19. FLUID VELOCITY Ra = 1000 Ra = 100000
  • 20. POSITION AND NUMBER OF PARTICLES • For each Rayleigh number. • The YZ plane is analyzed. • X axis is analyzed. • The X axis scale is from 0 [cm] to 1 [cm]. • The position 0 is the coldest side. • The position 1 is the hottest side. • Time steps intervals analyzed: 1st to the 10th, from the 31st to the 40th, from the 61st to 70th, from the 91st to 100th.
  • 21. POSITION AND NUMBER OF PARTICLES • XZ plane and time step 50. Ra = 1000 Ra = 10000
  • 22. POSITION AND NUMBER OF PARTICLES • XZ plane and time step 50. Ra = 100000 Ra = 1000000
  • 23. POSITION AND NUMBER OF PARTICLES 0 500 1000 1500 2000 2500 3000 0 0.05 0.1 0.15 0.2 N X axis [cm] t: 1-10 (Th) t: 31-40 (Th) t: 61-70 (Th) t: 91-100 (Th) 0 500 1000 1500 2000 2500 3000 0.6 0.7 0.8 0.9 1 N X axis [cm] t: 1-10 (Th) t: 31-40 (Th) t: 61-70 (Th) t: 91-100 (Th) 0 5 10 15 20 25 30 0 0.05 0.1 0.15 0.2 N X axis [cm] t: 1-10 (Th) t: 31-40 (Th) t: 61-70 (Th) t: 91-100 (Th) 0 5000 10000 15000 20000 25000 30000 35000 40000 0.6 0.7 0.8 0.9 1 N X axis [cm] t: 1-10 (Th) t: 31-40 (Th) t: 61-70 (Th) t: 91-100 (Th) Ra=1.000Ra=1.000.000
  • 24. POSITION AND NUMBER OF PARTICLES 0 500 1000 1500 2000 2500 3000 0 0.05 0.1 0.15 0.2 N X axis [cm] t: 1-10 (Th+Bw) t: 31-40 (Th+Bw) t: 61-70 (Th+Bw) t: 91-100 (Th+Bw) 0 500 1000 1500 2000 2500 3000 0.6 0.7 0.8 0.9 1 N X axis [cm] t: 1-10 (Th+Bw) t: 31-40 (Th+Bw) t: 61-70 (Th+Bw) t: 91-100 (Th+Bw) 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 N X axis [cm] t: 1-10 (Th+Bw) t: 31-40 (Th+Bw) t: 61-70 (Th+Bw) t: 91-100 (Th+Bw) 0 5000 10000 15000 20000 25000 30000 35000 0.6 0.7 0.8 0.9 1 N X axis [cm] t: 1-10 (Th+Bw) t: 31-40 (Th+Bw) t: 61-70 (Th+Bw) t: 91-100 (Th+Bw) Ra=1.000Ra=1.000.000
  • 25. HEAT FLUX • Heat transfer though a vertical wall expressed as Nusselt number versus time. • For four different Rayleigh numbers. • Thermophoresis (Th) case and thermophoresis and Brownian motion (Th+Bw) case are analyzed.
  • 26. HEAT FLUX 1.345 1.34505 1.3451 1.34515 1.3452 1.34525 1.3453 1.34535 1.3454 1.34545 1.3455 50 100 150 200 250 300 350 400 450 500 Nusseltnumber[-] time [-] Ra = 10^3 (Th) Ra = 10^3 (Th+Bw) 2.178 2.1785 2.179 2.1795 2.18 2.1805 2.181 2.1815 2.182 2.1825 50 100 150 200 250 300 350 400 450 500 Nusseltnumber[-] time [-] Ra = 10^4 (Th) Ra = 10^4 (Th+Bw)
  • 27. HEAT FLUX 4.9 4.902 4.904 4.906 4.908 4.91 4.912 50 100 150 200 250 300 350 400 450 500 Nusseltnumber[-] time [-] Ra = 10^5 (Th) Ra = 10^5 (Th+Bw) 9.9 9.95 10 10.05 10.1 10.15 10.2 10.25 10.3 50 100 150 200 250 300 350 400 450 500 Nusseltnumber[-] time [-] Ra = 10^6 (Th) Ra = 10^6 (Th+Bw)
  • 28. CONCLUSIONS • Fluid temperature is the same in both cases. • Fluid velocity: the flow is stronger and this is moved over the external faces of the XY plane due to vorticity. • Fluid velocity: the effect of Brownian motion is irrelevant. • Position and number of particles: the effect of Brownian motion is irrelevant. • Heat flux: the effect of Brownian motion is irrelevant.