SlideShare a Scribd company logo
1 of 46
Download to read offline
PostgreSQL on EXT3/4, XFS,
BTRFS and ZFS
pgconf.eu 2015, October 27-30, Vienna
Tomas Vondra
tomas.vondra@2ndquadrant.com
not a filesystem engineer
database engineer
Which file system should I use for
PostgreSQL in production?
According to results of our benchmarks
from 2003 the best file system ...
What does it mean that a file system is
“stable” and “production ready”?
I don't hate any of the filesystems!
SSD
File systems
● EXT3/4, XFS, … (and others)
– traditional design, generally from 90s
– same goals, different features and tuning options
– incremental improvements, reasonably “modern”
– mature, reliable, battle-tested
● BTRFS, ZFS
– next-gen CoW file systems, new architecture / design
● others (not really discussed in the talk)
– log-organized, distributed, clustered, ...
a bit about history
EXT3, EXT4, XFS
● EXT3 (2001) / EXT4 (2008)
– evolution of original Linux file system (ext, ext2, ...)
– improvements, bugfixes ...
● XFS (2002)
– originally SGI Irix 5.3 (1994)
– 2000 - released under GPL
– 2002 – merged into 2.5.36
● both EXT4 and XFS are
– reliable file systems with a journal
– proven by time and many production deployments
EXT3, EXT4, XFS
● conceived in time of rotational devices
– mostly work on SSDs
– stop-gap for future storage systems (NVRAM, ...)
● mostly evolution, not revolution
– adding features (e.g. TRIM, write barriers, ...)
– scalability improvements (metadata, ...)
– fixing bugs
● be careful when dealing with
– obsolete benchmarks and anecdotal “evidence”
– misleading synthetic benchmarks
EXT3, EXT4, XFS
● traditional design + journal
● not designed for
– multiple devices
– volume management
– snapshots
– ...
● require additional components to do that
– hardware RAID
– software RAID (dm)
– LVM / LVM2
BTRFS, ZFS
BTRFS, ZFS
● fundamental ideas
– integrating layers (LVM + dm + ...)
– aimed at consumer level hardware (failures are common)
– designed for larger data volumes
● which hopefully gives us …
more flexible management
– built-in snapshots
– compression, deduplication
– checksums
BTRFS, ZFS
● BTRFS
– merged in 2009, still “experimental”
– on-disk format marked as “stable” (1.0)
– some say it's “stable” or even “production ready” ...
– default in some distributions
● ZFS
– originally Sun / Solaris, but “got Oracled” :-(
– today slightly fragmented development (Illumos, Oracle, ...)
– available on other BSD systems (FreeBSD)
– “ZFS on Linux” project (but CDDL vs. GPL and such)
Generic tuning options
Generic tuning options
● TRIM (discard)
– enable / disable sending TRIM commands to SSDs
– influences internal cleanup processes / wear leveling
– not necessary, may help the SSD with “garbage collection”
● write barriers
– prevent the drive from reordering writes (journal x data)
– does not protect against data loss (but consistency)
– write cache + battery => write barriers may be turned off
● SSD alignment
Specific tuning options
BTRFS
● nodatacow
– disables “copy on write” (CoW), but still done for snapshots
– also disables checksums (requires “full” CoW)
– also probably end of “torn-page resiliency” (have to do FPW)
● ssd
– enables various SSD optimizations (unclear which ones)
● compress=lzo/zlib
– compression (speculative)
ZFS
● recordsize=8kB
– standard page 128kB (much larger than 8kB pages in PostgreSQL)
– problems when caching in ARC (smaller number of “slots”)
● logbias=throughput [latency]
– impacts work with ZIP (latence vs. throughput optimizations)
● zfs_arc_max
– limitation of ARC cache size
– should be modified automatically, but external kernel module ...
● primarycache=metadata
– prevents double buffering (shared buffers vs. ARC)
ZFS
● recordsize=8kB
– standard page 128kB (much larger than 8kB pages in PostgreSQL)
– problems when caching in ARC (smaller number of “slots”)
● logbias=throughput [latency]
– impacts work with ZIP (latence vs. throughput optimizations)
● zfs_arc_max
– limitation of ARC cache size
– should be modified automatically, but external kernel module ...
● primarycache=metadata
– prevents double bufferingu (shared buffers vs. ARC)
Benchmark
System
● CPU: Intel i5-2500k
– 4 cores @ 3.3 GHz (3.7GHz)
– 6MB cache
– 2011-2013
● 8GB RAM (DDR3 1333)
● SSD Intel S3700 100GB (SATA3)
● Gentoo + kernel 4.0.4
● PostgreSQL 9.4
pgbench (TPC-B)
● transactional benchmark / stress-test
– small queries (access using PK, ...)
– mix different typs of I/O (reads/writes, random/sequential)
● variants
– read-write (SELECT + INSERT + UPDATE)
– read-only (SELECT)
● data set sizes
– small (~200MB)
– medium (~50% RAM)
– large (~200% RAM)
But it's not representative!
Results
● more than 40 combinations tested
● every test runs >4 days
https://bitbucket.org/tvondra/fsbench-i5
pgbench read-only
0 2 4 6 8 10 12 14 16 18
0
10000
20000
30000
40000
50000
60000
pgbench / small read-only
number of clients
transactionspersecond
0 2 4 6 8 10 12 14 16 18
0
5000
10000
15000
20000
25000
30000
35000
40000
pgbench / large read-only
ZFS ZFS (recordsize=8k) BTRFS
BTRFS (nodatacow) F2FS ReiserFS
EXT4 EXT3 XFS
number of clients
transactionspersecond
pgbench read-write
0 2 4 6 8 10 12 14 16 18
0
1000
2000
3000
4000
5000
6000
7000
8000
pgbench / small read-write
BTRFS (ssd, nobarrier) BTRFS (ssd, nobarrier, discard, nodatacow)
EXT3 EXT4 (nobarrier, discard)
F2FS (nobarrier, discard) ReiserFS (nobarrier)
XFS (nobarrier, discard) ZFS
ZFS (recordsize, logbias)
number of clients
transactionspersecond
0 2 4 6 8 10 12 14 16 18
0
1000
2000
3000
4000
5000
6000
7000
8000
pgbench / small read-write
BTRFS (ssd, nobarrier, discard, nodatacow) ZFS (recordsize, logbias)
F2FS (nobarrier, discard) EXT4 (nobarrier, discard)
ReiserFS (nobarrier) XFS (nobarrier, discard)
number of clients
numberofclients
0 2 4 6 8 10 12 14 16 18
0
1000
2000
3000
4000
5000
6000
pgbench / large read-write
ZFS BTRFS (ssd)
ZFS (recordsize) ZFS (recordsize, logbias)
F2FS (nobarrier, discard) BTRFS (ssd, nobarrier, discard, nodatacow)
EXT3 ReiserFS (nobarrier)
XFS (nobarrier, discard) EXT4 (nobarrier, discard)
number of clients
transactionspersecond
0 2 4 6 8 10 12 14 16 18
0
1000
2000
3000
4000
5000
6000
pgbench / large read-write
ZFS (recordsize, logbias) F2FS (nobarrier, discard)
BTRFS (ssd, nobarrier, discard, nodatacow) ReiserFS (nobarrier)
XFS (nobarrier, discard) EXT4 (nobarrier, discard)
number of clients
transactionspersecond
0 50 100 150 200 250 300
0
1000
2000
3000
4000
5000
6000
7000
Write barriers
ext4 and xfs (defaults, noatime)
ext4 (barrier) ext4 (nobarrier)
xfs (barrier) xfs (nobarrier)
time (seconds)
transactions
variability
0 50 100 150 200 250 300
0
1000
2000
3000
4000
5000
6000
7000
pgbench per second
btrfs (ssd, nobarrier, discard) btrfs (ssd, nobarrier, discard, nodatacow)
ext4 (nobarrier, discard) xfs (nobarrier, discard)
zfs (recordsize, logbias)
time (seconds)
transactionspersecond
EXT / XFS
● mostly the same behavior
– EXT4 – higher throughput but more jitter
– XFS – lower throughput, less jitter
● significant impact of “write barriers”
– reliable drives / RAID controller needed
● small impact of TRIM
– depends on SSD model (over-provisioning etc.)
– depends on how “full” the SSD is
BTRFS, ZFS
● significant price for CoW (but features)
– about 50% performance reduction in writes
● BTRFS
– all the problems I had while testing were with BTRFS
– good: no data corruption bugs
– bad: rather unstable and inconsistent behavior
● ZFS
– a bit alien in Linux world
– much more mature than BTRFS, nice behavior
– the ZFSonLinux still heavily developed
Questions?
0 2 4 6 8 10 12 14 16 18
0
1000
2000
3000
4000
5000
6000
pgbench / large read-write
ext4 (noatime, discard, nobarrier)
cfq noop deadline
number of clients
transactionspersecond
0 200 400 600 800 1000 1200
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
pgbench / large read-write (16 clients)
average latency
cfq noop deadline
time (second)
latency[ms]
0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16
18
20
pgbench / large read-write (16 clients)
latency standard deviation
cfq noop deadline
time (second)
ms
BTRFS, ZFS
Tasks: 215 total,   2 running, 213 sleeping,   0 stopped,   0 zombie
Cpu(s):  0.0%us, 12.6%sy,  0.0%ni, 87.4%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Mem:  16432096k total, 16154512k used,   277584k free,     9712k buffers
Swap:  2047996k total,    22228k used,  2025768k free, 15233824k cached
  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
24402 root      20   0     0    0    0 R 99.7  0.0   2:28.09 kworker/u16:2
24051 root      20   0     0    0    0 S  0.3  0.0   0:02.91 kworker/5:0
    1 root      20   0 19416  608  508 S  0.0  0.0   0:01.02 init
    2 root      20   0     0    0    0 S  0.0  0.0   0:09.10 kthreadd
    ...
Samples: 59K of event 'cpu­clock', Event count (approx.): 10269077465
Overhead  Shared Object        Symbol
  37.47%  [kernel]             [k] btrfs_bitmap_cluster
  30.59%  [kernel]             [k] find_next_zero_bit
  26.74%  [kernel]             [k] find_next_bit
   1.59%  [kernel]             [k] _raw_spin_unlock_irqrestore
   0.41%  [kernel]             [k] rb_next
   0.33%  [kernel]             [k] tick_nohz_idle_exit
   ...
BTRFS, ZFS
$ df /mnt/ssd­s3700/
Filesystem     1K­blocks     Used Available Use% Mounted on
/dev/sda1       97684992 71625072  23391064  76% /mnt/ssd­s3700
$ btrfs filesystem df /mnt/ssd­s3700
Data: total=88.13GB, used=65.82GB
System, DUP: total=8.00MB, used=16.00KB
System: total=4.00MB, used=0.00
Metadata, DUP: total=2.50GB, used=2.00GB    <= full (0.5GB for btrfs)
Metadata: total=8.00MB, used=0.00
: total=364.00MB, used=0.00
$ btrfs balance start ­dusage=10 /mnt/ssd­s3700
https://btrfs.wiki.kernel.org/index.php/Balance_Filters
EXT3/4, XFS
● Linux Filesystems: Where did they come from?
(Dave Chinner @ linux.conf.au 2014)
https://www.youtube.com/watch?v=SMcVdZk7wV8
● Ted Ts'o on the ext4 Filesystem
(Ted Ts'o, NYLUG, 2013)
https://www.youtube.com/watch?v=2mYDFr5T4tY
● XFS: There and Back … and There Again?
(Dave Chinner @ Vault 2015)
https://lwn.net/Articles/638546/
● XFS: Recent and Future Adventures in Filesystem Scalability
(Dave Chinner, linux.conf.au 2012)
https://www.youtube.com/watch?v=FegjLbCnoBw
● XFS: the filesystem of the future?
(Jonathan Corbet, Dave Chinner, LWN, 2012)
http://lwn.net/Articles/476263/

More Related Content

What's hot

Kvm performance optimization for ubuntu
Kvm performance optimization for ubuntuKvm performance optimization for ubuntu
Kvm performance optimization for ubuntuSim Janghoon
 
Transparent Data Encryption in PostgreSQL and Integration with Key Management...
Transparent Data Encryption in PostgreSQL and Integration with Key Management...Transparent Data Encryption in PostgreSQL and Integration with Key Management...
Transparent Data Encryption in PostgreSQL and Integration with Key Management...Masahiko Sawada
 
Postgresql 12 streaming replication hol
Postgresql 12 streaming replication holPostgresql 12 streaming replication hol
Postgresql 12 streaming replication holVijay Kumar N
 
MySQL Group Replication - Ready For Production? (2018-04)
MySQL Group Replication - Ready For Production? (2018-04)MySQL Group Replication - Ready For Production? (2018-04)
MySQL Group Replication - Ready For Production? (2018-04)Kenny Gryp
 
PostgreSQL Table Partitioning / Sharding
PostgreSQL Table Partitioning / ShardingPostgreSQL Table Partitioning / Sharding
PostgreSQL Table Partitioning / ShardingAmir Reza Hashemi
 
High Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando PatroniHigh Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando PatroniZalando Technology
 
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
Patroni: Kubernetes-native PostgreSQL companion
Patroni: Kubernetes-native PostgreSQL companionPatroni: Kubernetes-native PostgreSQL companion
Patroni: Kubernetes-native PostgreSQL companionAlexander Kukushkin
 
今秋リリース予定のPostgreSQL11を徹底解説
今秋リリース予定のPostgreSQL11を徹底解説今秋リリース予定のPostgreSQL11を徹底解説
今秋リリース予定のPostgreSQL11を徹底解説Masahiko Sawada
 
Vacuum in PostgreSQL
Vacuum in PostgreSQLVacuum in PostgreSQL
Vacuum in PostgreSQLRafia Sabih
 
MySQL Server Settings Tuning
MySQL Server Settings TuningMySQL Server Settings Tuning
MySQL Server Settings Tuningguest5ca94b
 
Tuning Autovacuum in Postgresql
Tuning Autovacuum in PostgresqlTuning Autovacuum in Postgresql
Tuning Autovacuum in PostgresqlMydbops
 
InnoDB Performance Optimisation
InnoDB Performance OptimisationInnoDB Performance Optimisation
InnoDB Performance OptimisationMydbops
 
ClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei MilovidovClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei MilovidovAltinity Ltd
 
EDB Postgres DBA Best Practices
EDB Postgres DBA Best PracticesEDB Postgres DBA Best Practices
EDB Postgres DBA Best PracticesEDB
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Alexey Lesovsky
 
Storage tiering and erasure coding in Ceph (SCaLE13x)
Storage tiering and erasure coding in Ceph (SCaLE13x)Storage tiering and erasure coding in Ceph (SCaLE13x)
Storage tiering and erasure coding in Ceph (SCaLE13x)Sage Weil
 
PostgreSQL共有バッファと関連ツール
PostgreSQL共有バッファと関連ツールPostgreSQL共有バッファと関連ツール
PostgreSQL共有バッファと関連ツールMasahiko Sawada
 
Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報NVIDIA Japan
 

What's hot (20)

Linux Kernel Overview
Linux Kernel OverviewLinux Kernel Overview
Linux Kernel Overview
 
Kvm performance optimization for ubuntu
Kvm performance optimization for ubuntuKvm performance optimization for ubuntu
Kvm performance optimization for ubuntu
 
Transparent Data Encryption in PostgreSQL and Integration with Key Management...
Transparent Data Encryption in PostgreSQL and Integration with Key Management...Transparent Data Encryption in PostgreSQL and Integration with Key Management...
Transparent Data Encryption in PostgreSQL and Integration with Key Management...
 
Postgresql 12 streaming replication hol
Postgresql 12 streaming replication holPostgresql 12 streaming replication hol
Postgresql 12 streaming replication hol
 
MySQL Group Replication - Ready For Production? (2018-04)
MySQL Group Replication - Ready For Production? (2018-04)MySQL Group Replication - Ready For Production? (2018-04)
MySQL Group Replication - Ready For Production? (2018-04)
 
PostgreSQL Table Partitioning / Sharding
PostgreSQL Table Partitioning / ShardingPostgreSQL Table Partitioning / Sharding
PostgreSQL Table Partitioning / Sharding
 
High Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando PatroniHigh Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando Patroni
 
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
Patroni: Kubernetes-native PostgreSQL companion
Patroni: Kubernetes-native PostgreSQL companionPatroni: Kubernetes-native PostgreSQL companion
Patroni: Kubernetes-native PostgreSQL companion
 
今秋リリース予定のPostgreSQL11を徹底解説
今秋リリース予定のPostgreSQL11を徹底解説今秋リリース予定のPostgreSQL11を徹底解説
今秋リリース予定のPostgreSQL11を徹底解説
 
Vacuum in PostgreSQL
Vacuum in PostgreSQLVacuum in PostgreSQL
Vacuum in PostgreSQL
 
MySQL Server Settings Tuning
MySQL Server Settings TuningMySQL Server Settings Tuning
MySQL Server Settings Tuning
 
Tuning Autovacuum in Postgresql
Tuning Autovacuum in PostgresqlTuning Autovacuum in Postgresql
Tuning Autovacuum in Postgresql
 
InnoDB Performance Optimisation
InnoDB Performance OptimisationInnoDB Performance Optimisation
InnoDB Performance Optimisation
 
ClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei MilovidovClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei Milovidov
 
EDB Postgres DBA Best Practices
EDB Postgres DBA Best PracticesEDB Postgres DBA Best Practices
EDB Postgres DBA Best Practices
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.
 
Storage tiering and erasure coding in Ceph (SCaLE13x)
Storage tiering and erasure coding in Ceph (SCaLE13x)Storage tiering and erasure coding in Ceph (SCaLE13x)
Storage tiering and erasure coding in Ceph (SCaLE13x)
 
PostgreSQL共有バッファと関連ツール
PostgreSQL共有バッファと関連ツールPostgreSQL共有バッファと関連ツール
PostgreSQL共有バッファと関連ツール
 
Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報Magnum IO GPUDirect Storage 最新情報
Magnum IO GPUDirect Storage 最新情報
 

Viewers also liked

PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016
PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016
PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016Tomas Vondra
 
PostgreSQL performance improvements in 9.5 and 9.6
PostgreSQL performance improvements in 9.5 and 9.6PostgreSQL performance improvements in 9.5 and 9.6
PostgreSQL performance improvements in 9.5 and 9.6Tomas Vondra
 
Linux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performanceLinux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performancePostgreSQL-Consulting
 
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~Kohei KaiGai
 
Let's turn your PostgreSQL into columnar store with cstore_fdw
Let's turn your PostgreSQL into columnar store with cstore_fdwLet's turn your PostgreSQL into columnar store with cstore_fdw
Let's turn your PostgreSQL into columnar store with cstore_fdwJan Holčapek
 
Percona live linux filesystems and my sql
Percona live   linux filesystems and my sqlPercona live   linux filesystems and my sql
Percona live linux filesystems and my sqlMichael Zhang
 
Novinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONBNovinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONBTomas Vondra
 
What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6EDB
 
PostgreSQL + ZFS best practices
PostgreSQL + ZFS best practicesPostgreSQL + ZFS best practices
PostgreSQL + ZFS best practicesSean Chittenden
 
雑なMySQLパフォーマンスチューニング
雑なMySQLパフォーマンスチューニング雑なMySQLパフォーマンスチューニング
雑なMySQLパフォーマンスチューニングyoku0825
 

Viewers also liked (10)

PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016
PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016
PostgreSQL na EXT4, XFS, BTRFS a ZFS / FOSDEM PgDay 2016
 
PostgreSQL performance improvements in 9.5 and 9.6
PostgreSQL performance improvements in 9.5 and 9.6PostgreSQL performance improvements in 9.5 and 9.6
PostgreSQL performance improvements in 9.5 and 9.6
 
Linux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performanceLinux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performance
 
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~
GPGPU Accelerates PostgreSQL ~Unlock the power of multi-thousand cores~
 
Let's turn your PostgreSQL into columnar store with cstore_fdw
Let's turn your PostgreSQL into columnar store with cstore_fdwLet's turn your PostgreSQL into columnar store with cstore_fdw
Let's turn your PostgreSQL into columnar store with cstore_fdw
 
Percona live linux filesystems and my sql
Percona live   linux filesystems and my sqlPercona live   linux filesystems and my sql
Percona live linux filesystems and my sql
 
Novinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONBNovinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONB
 
What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6
 
PostgreSQL + ZFS best practices
PostgreSQL + ZFS best practicesPostgreSQL + ZFS best practices
PostgreSQL + ZFS best practices
 
雑なMySQLパフォーマンスチューニング
雑なMySQLパフォーマンスチューニング雑なMySQLパフォーマンスチューニング
雑なMySQLパフォーマンスチューニング
 

Similar to PostgreSQL on EXT4, XFS, BTRFS and ZFS

LAS16-400: Mini Conference 3 AOSP (Session 1)
LAS16-400: Mini Conference 3 AOSP (Session 1)LAS16-400: Mini Conference 3 AOSP (Session 1)
LAS16-400: Mini Conference 3 AOSP (Session 1)Linaro
 
Case study of BtrFS: A fault tolerant File system
Case study of BtrFS: A fault tolerant File systemCase study of BtrFS: A fault tolerant File system
Case study of BtrFS: A fault tolerant File systemKumar Amit Mehta
 
Open Source Data Deduplication
Open Source Data DeduplicationOpen Source Data Deduplication
Open Source Data DeduplicationRedWireServices
 
Exploiting Your File System to Build Robust & Efficient Workflows
Exploiting Your File System to Build Robust & Efficient WorkflowsExploiting Your File System to Build Robust & Efficient Workflows
Exploiting Your File System to Build Robust & Efficient Workflowsjasonajohnson
 
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...NETWAYS
 
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...Gábor Nyers
 
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]Kyle Hailey
 
JetStor NAS 724uxd 724uxd 10g - technical presentation
JetStor NAS 724uxd 724uxd 10g - technical presentationJetStor NAS 724uxd 724uxd 10g - technical presentation
JetStor NAS 724uxd 724uxd 10g - technical presentationGene Leyzarovich
 
JetStor NAS 724UXD Dual Controller Active-Active ZFS Based
JetStor NAS 724UXD Dual Controller Active-Active ZFS BasedJetStor NAS 724UXD Dual Controller Active-Active ZFS Based
JetStor NAS 724UXD Dual Controller Active-Active ZFS BasedGene Leyzarovich
 
SSD based storage tuning for databases
SSD based storage tuning for databasesSSD based storage tuning for databases
SSD based storage tuning for databasesAngelo Rajadurai
 
Introduction to TrioNAS LX U300
Introduction to TrioNAS LX U300Introduction to TrioNAS LX U300
Introduction to TrioNAS LX U300qsantechnology
 
Database performance tuning for SSD based storage
Database  performance tuning for SSD based storageDatabase  performance tuning for SSD based storage
Database performance tuning for SSD based storageAngelo Rajadurai
 
Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)MongoDB
 
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...Lucidworks
 
Filesystem Showdown: What a Difference a Decade Makes
Filesystem Showdown: What a Difference a Decade MakesFilesystem Showdown: What a Difference a Decade Makes
Filesystem Showdown: What a Difference a Decade MakesPerforce
 

Similar to PostgreSQL on EXT4, XFS, BTRFS and ZFS (20)

LAS16-400: Mini Conference 3 AOSP (Session 1)
LAS16-400: Mini Conference 3 AOSP (Session 1)LAS16-400: Mini Conference 3 AOSP (Session 1)
LAS16-400: Mini Conference 3 AOSP (Session 1)
 
Case study of BtrFS: A fault tolerant File system
Case study of BtrFS: A fault tolerant File systemCase study of BtrFS: A fault tolerant File system
Case study of BtrFS: A fault tolerant File system
 
Open Source Data Deduplication
Open Source Data DeduplicationOpen Source Data Deduplication
Open Source Data Deduplication
 
Exploiting Your File System to Build Robust & Efficient Workflows
Exploiting Your File System to Build Robust & Efficient WorkflowsExploiting Your File System to Build Robust & Efficient Workflows
Exploiting Your File System to Build Robust & Efficient Workflows
 
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...
OSDC 2016 - Interesting things you can do with ZFS by Allan Jude&Benedict Reu...
 
JetStor NAS series 2016
JetStor NAS series 2016JetStor NAS series 2016
JetStor NAS series 2016
 
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...
Btrfs and Snapper - The Next Steps from Pure Filesystem Features to Integrati...
 
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]
Oracle Open World 2014: Lies, Damned Lies, and I/O Statistics [ CON3671]
 
Posscon2013
Posscon2013Posscon2013
Posscon2013
 
JetStor NAS 724uxd 724uxd 10g - technical presentation
JetStor NAS 724uxd 724uxd 10g - technical presentationJetStor NAS 724uxd 724uxd 10g - technical presentation
JetStor NAS 724uxd 724uxd 10g - technical presentation
 
JetStor NAS 724UXD Dual Controller Active-Active ZFS Based
JetStor NAS 724UXD Dual Controller Active-Active ZFS BasedJetStor NAS 724UXD Dual Controller Active-Active ZFS Based
JetStor NAS 724UXD Dual Controller Active-Active ZFS Based
 
SSD based storage tuning for databases
SSD based storage tuning for databasesSSD based storage tuning for databases
SSD based storage tuning for databases
 
Introduction to TrioNAS LX U300
Introduction to TrioNAS LX U300Introduction to TrioNAS LX U300
Introduction to TrioNAS LX U300
 
FreeBSD Portscamp, Kuala Lumpur 2016
FreeBSD Portscamp, Kuala Lumpur 2016FreeBSD Portscamp, Kuala Lumpur 2016
FreeBSD Portscamp, Kuala Lumpur 2016
 
Database performance tuning for SSD based storage
Database  performance tuning for SSD based storageDatabase  performance tuning for SSD based storage
Database performance tuning for SSD based storage
 
IO Dubi Lebel
IO Dubi LebelIO Dubi Lebel
IO Dubi Lebel
 
Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)
 
Tuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for LogsTuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for Logs
 
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...
Tuning Solr and its Pipeline for Logs: Presented by Rafał Kuć & Radu Gheorghe...
 
Filesystem Showdown: What a Difference a Decade Makes
Filesystem Showdown: What a Difference a Decade MakesFilesystem Showdown: What a Difference a Decade Makes
Filesystem Showdown: What a Difference a Decade Makes
 

More from Tomas Vondra

CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)Tomas Vondra
 
CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?Tomas Vondra
 
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAltPostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAltTomas Vondra
 
Performance improvements in PostgreSQL 9.5 and beyond
Performance improvements in PostgreSQL 9.5 and beyondPerformance improvements in PostgreSQL 9.5 and beyond
Performance improvements in PostgreSQL 9.5 and beyondTomas Vondra
 
Postgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFSPostgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFSTomas Vondra
 
PostgreSQL performance archaeology
PostgreSQL performance archaeologyPostgreSQL performance archaeology
PostgreSQL performance archaeologyTomas Vondra
 
Výkonnostní archeologie
Výkonnostní archeologieVýkonnostní archeologie
Výkonnostní archeologieTomas Vondra
 
Český fulltext a sdílené slovníky
Český fulltext a sdílené slovníkyČeský fulltext a sdílené slovníky
Český fulltext a sdílené slovníkyTomas Vondra
 
SSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsyncSSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsyncTomas Vondra
 
Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)Tomas Vondra
 
Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)Tomas Vondra
 
Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)Tomas Vondra
 
PostgreSQL / Performance monitoring
PostgreSQL / Performance monitoringPostgreSQL / Performance monitoring
PostgreSQL / Performance monitoringTomas Vondra
 

More from Tomas Vondra (15)

CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)
 
Data corruption
Data corruptionData corruption
Data corruption
 
CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?
 
DB vs. encryption
DB vs. encryptionDB vs. encryption
DB vs. encryption
 
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAltPostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
 
Performance improvements in PostgreSQL 9.5 and beyond
Performance improvements in PostgreSQL 9.5 and beyondPerformance improvements in PostgreSQL 9.5 and beyond
Performance improvements in PostgreSQL 9.5 and beyond
 
Postgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFSPostgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFS
 
PostgreSQL performance archaeology
PostgreSQL performance archaeologyPostgreSQL performance archaeology
PostgreSQL performance archaeology
 
Výkonnostní archeologie
Výkonnostní archeologieVýkonnostní archeologie
Výkonnostní archeologie
 
Český fulltext a sdílené slovníky
Český fulltext a sdílené slovníkyČeský fulltext a sdílené slovníky
Český fulltext a sdílené slovníky
 
SSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsyncSSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsync
 
Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)
 
Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)
 
Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)
 
PostgreSQL / Performance monitoring
PostgreSQL / Performance monitoringPostgreSQL / Performance monitoring
PostgreSQL / Performance monitoring
 

Recently uploaded

Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Angel Borroy López
 
Introduction to Firebase Workshop Slides
Introduction to Firebase Workshop SlidesIntroduction to Firebase Workshop Slides
Introduction to Firebase Workshop Slidesvaideheekore1
 
Odoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 EnterpriseOdoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 Enterprisepreethippts
 
Precise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalPrecise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalLionel Briand
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLionel Briand
 
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdf
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdfEnhancing Supply Chain Visibility with Cargo Cloud Solutions.pdf
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdfRTS corp
 
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingOpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingShane Coughlan
 
SoftTeco - Software Development Company Profile
SoftTeco - Software Development Company ProfileSoftTeco - Software Development Company Profile
SoftTeco - Software Development Company Profileakrivarotava
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identityteam-WIBU
 
VictoriaMetrics Anomaly Detection Updates: Q1 2024
VictoriaMetrics Anomaly Detection Updates: Q1 2024VictoriaMetrics Anomaly Detection Updates: Q1 2024
VictoriaMetrics Anomaly Detection Updates: Q1 2024VictoriaMetrics
 
Patterns for automating API delivery. API conference
Patterns for automating API delivery. API conferencePatterns for automating API delivery. API conference
Patterns for automating API delivery. API conferencessuser9e7c64
 
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdf
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdfExploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdf
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdfkalichargn70th171
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonApplitools
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesVictoriaMetrics
 
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxThe Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxRTS corp
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Developmentvyaparkranti
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shardsChristopher Curtin
 
Effectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorEffectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorTier1 app
 
Keeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldKeeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldRoberto Pérez Alcolea
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics
 

Recently uploaded (20)

Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
 
Introduction to Firebase Workshop Slides
Introduction to Firebase Workshop SlidesIntroduction to Firebase Workshop Slides
Introduction to Firebase Workshop Slides
 
Odoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 EnterpriseOdoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 Enterprise
 
Precise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalPrecise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive Goal
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and Repair
 
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdf
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdfEnhancing Supply Chain Visibility with Cargo Cloud Solutions.pdf
Enhancing Supply Chain Visibility with Cargo Cloud Solutions.pdf
 
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingOpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
 
SoftTeco - Software Development Company Profile
SoftTeco - Software Development Company ProfileSoftTeco - Software Development Company Profile
SoftTeco - Software Development Company Profile
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identity
 
VictoriaMetrics Anomaly Detection Updates: Q1 2024
VictoriaMetrics Anomaly Detection Updates: Q1 2024VictoriaMetrics Anomaly Detection Updates: Q1 2024
VictoriaMetrics Anomaly Detection Updates: Q1 2024
 
Patterns for automating API delivery. API conference
Patterns for automating API delivery. API conferencePatterns for automating API delivery. API conference
Patterns for automating API delivery. API conference
 
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdf
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdfExploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdf
Exploring Selenium_Appium Frameworks for Seamless Integration with HeadSpin.pdf
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 Updates
 
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptxThe Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
The Role of IoT and Sensor Technology in Cargo Cloud Solutions.pptx
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Development
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards
 
Effectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryErrorEffectively Troubleshoot 9 Types of OutOfMemoryError
Effectively Troubleshoot 9 Types of OutOfMemoryError
 
Keeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository worldKeeping your build tool updated in a multi repository world
Keeping your build tool updated in a multi repository world
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
 

PostgreSQL on EXT4, XFS, BTRFS and ZFS