SlideShare a Scribd company logo
1 of 55
Download to read offline
TAYLOR’S UNIVERSITY
BUILDING SCIENCE II
PROJECT 1
__________________________________________________________________________________
Building Science 2
ARC 3413 / BLD 61303
Case study on Acoustic Design of Putrajaya International
Convention Centre (PICC)
Tutor: Mr. Azim Sulaiman
Submission date : 2nd of May 2017
Student name and ID:
Lee Pui San 0319089
Beh NianZi 0319445
Eng Shi Yi 0317849
Fong Tze Ying 0324073
Gary Yeow Jinn Sheng 0318797
Lynette Law Yong Yi 0317761
Liu Jyue Yow 1007P74080
Fatemehalsadat Fattahhosseini 0318452
Table of content
Topic Page
1.0 Abstract 1
2.0 Acknowledgement 2
3.0 Introduction
-3.1 Historical Background
-3.2 Programmes
-3.3 Architectural Design
-3.4 PICC Master Plans
3
4
4-5
5-6
7-9
4.0 Sound Source
-4.1 Speech Intelligibility
-4.2 Sound Reinforcement System (Sound Amplifier)
10
11-12
13-14
5.0 Sound Path
-5.1 Echoes
-5.2 Focusing
-5.2 Room Shape
15
15-16
17
18-19
6.0 Material used in sound acoustic system
-6.1 Wall
-6.1.1 Perforated Acoustic Panel
-6.1.2 Acoustical Fabric
-6.1.3 Timber Frame
-6.1.4 Wall Acoustic Panel
-6.1.5 Translator Room
-6.2 Ceiling
-6.3 Floor
-6.4 Seating
-6.5 Door
20
21
22-24
25
26-27
28-29
30-32
33-34
35-36
37-39
40-42
7.0 Conclusion 43
8.0 References 44-45
1
1.0 Abstract
In this assignment, we , a group of 8 students are required to conduct a case study on a local
auditorium. They have to carry out a site visit to their respective chosen building to observe and
record their findings into a report.
Throughout the assignment, we are able to understand the importance of sound acoustic
system as a significant role in an auditorium. Meanwhile, we can illustrate our ideas and
understanding after on-site findings as well as references on books and online resources.
2
2.0 Acknowledgement
First of all, we would like to address our appreciation to Mr Azim for his guidance throughout
the process of this project. We are able to improve our works with the time Mr Azim had spent
with us. We were given a precious chance to visit Malaysian Philharmonic Orchestra for
in-depth explanations from professionals.
Also, we would like to thank Ar Edwin had gave us lessons during lecture which helpful for our
study. From the given slides, we are able to realize the characteristic of sound
comprehensively.
Last but not least, we are truly grateful that Putrajaya International Conventional Centre office
gave us this opportunity to visit the Plenary Hall to observe and analyse the sound acoustic
system of the hall. The tour guide was generous to provide us as much informations as she
could for us.
3
3.0 Introduction
Figure 3.0.1 Front view of PICC
The Putrajaya International Convention Centre is the main convention centre in Putrajaya,
Malaysia. This building is located on the top of Taman Puncak Selatan in Precinct 5. PICC
receives a yearly average of more than 230,000 delegates and 15,000 visitors around the world
since 2006.
Architect : Hijjas Kasturi Associates / Amir Hamzah
Client : Jabatan Perdana Menteri
Built Area : 135,000 sqm
Commission Year : 2000
Design : 2001
Construction : 2001 - 2003
Occupancy : 2003
Total Floor Area : 135,000 sqm
4
3.1 Historical Background
Construction of the convention centre began in 2001 and finished in April 2003. The first
conference held in PICC was the 10th Islamic Summit organised by the Organisation of Islamic
Cooperation (OIC) in October of the same year. In October 2004, the Putrajaya Convention
Centre was officially renamed to the Putrajaya International Convention Centre or PICC. It is a
precinct landmark, and was designed by Malaysia’s fourth Prime Minister, Tun Dr. Mahathir Bin
Mohamad.
3.2 Programmes
Figure 3.2.1 Facilities and services in PICC
A low-slung bridge through tropical gardens connects to the Plenary Hall, one of the most
impressive of the 5 building modules. It can conveniently accommodate 3,500 people in a
theatre set up for convention meetings or special events. It is also equipped with a permanent
stage, dressing rooms and a VIP lounge.The convention centre is a focal point of Malaysia’s
new administrative capital. Its seven levels provide a plenary hall for 3000 and two large
conference halls (capital 2000), as well as mini halls, meeting rooms, suites,galleries and
supporting services - yet its footprint occupies only three acres of its 51-acre site, leaving the
5
remainder for use as a public park. To achieve this, more than 60 per cent of the spaces are
submerged below ground. The glazed walls of the above ground structure are sloped and
louvered to prevent direct solar gain; the membrane roof is made of Sarnafil. The plenary hall is
renowned for hosting grand and historic events and concerts. Besides hosting the 10th Islamic
Summit, PICC is also a conference venue for high security risk events, hosted by the
government or the private sector. PICC has had many important guests including foreign head
of states and heads of government, important corporate personalities such as the world's
richest man, Bill Gates, as well as the current CEO of Microsoft, Steve Ballmer.
3.3 Architectural Design
Figure 3.3.1 Inspired from Pending Perak (left) to site plan of PICC
The design of the building is based on the shape of the eye of 'pending perak' (a silver Malay
royal belt buckle). However, the structure of the roof was designed similar to a folded origami to
alleviate the plain roundness of the structure. From the frontview, the building's eaves or wings
are lifted at the sides, creating broad overhangings over the raking wall. Most of the walls are
made of glass, so natural sunlight can easily illuminate the auditorium through the raked and
shaded windows.
6
Figure 3.3.2 Interior view of Plenary Hall from the stage
Figure 3.3.3 Interior view of Plenary Hall toward the stage
The roof structure, which is geometrically complex, covers the plenary hall and the column-free
banquet hall. The latter space can accommodate 3000 delegates, each with an uninterrupted
view of the stage with the conference and main auditorium floors above supported on a
sculptural system of radial arms.Surrounding these main spaces the ancillary accommodation
follows a conical geometry with the rings increasing in diameter up the building to provide the
larger area needed for the plenary hall itself.
The roof structure is unique with its complicated geometry and long span. The shape of the roof
resembles a ‘pending’ which is a buckle worn in Malay weddings.
7
3.4 PICC Master Plans
Figure 3.4.1 Site Plan of PICC
Figure 3.4.2 Front elevation of PICC (North)
8
Figure 3.4.3 North South sectional elevation of PICC
9
Figure 3.4.4 Floor Plan of Plenary Hall, PICC
10
4.0 Sound Source
Figure 4.0.1 Events that carried out in Plenary Hall, and most of them strongly related to
speech
The main activities that carried out in Plenary Hall are talks, convocations, conferences, award
ceremony etc. Most of the events are closely related to speech intelligibility, which are
supposed to giving verbal informations clear so the audience can perceive and understand it.
11
4.1 Speech Intelligibility
Speech is composed of phonemes, which are individual and distinctive sounds that, to an
extent, vary from language to language. Normal speech averages between 55 and 65 dBA
sound pressure level at 0.9m to 1.2m from the source.The higher the frequency, the greater a
sound’s directivity, and the less it diffraction. High frequency tones are most easily absorbed
and least diffracted. Speech intelligibility is heavily influenced by two factors, which are power
and clarity.
Power
is affected by:
Clarity
is affected by:
Distance from speaker Delayed reflections : echoes, near echoes, reverberation
Directional relationship to speaker Duplication of sound source by loudspeakers
Audience absorption of direct sound Ambient noise
Reinforcement by reflectors Intrusive noise
Reinforcement by loudspeakers
Sound shadows
10
log3.0)(
V
T optimumR 
Optimum reverberation time in seconds, for speech.
Whereas
V = Volume of the room (cubic meters) - 52173 cubic meters
)(optimumRT of Plenary hall (52173 cbm) = 1.12 seconds
12
A
V
TR
16.0

Sabine Formula to calculate reverberation time of PICC, in seconds
Whereas
RT = Reverberation time
V = Volume of the room (cubic meters)
A = total absorption of room area (sqm)
500 Hz
Surface Area Absorption coefficient Abs unit
Wall (fibreboard on
solid backing)
4387 sqm 0.15 658.05
Ceiling (metal 32.5%
perforated ceiling,
backed by 30mm
rockwool)
2637 sqm 0.87 2294.19
Floor (carpet) 2637 sqm 0.50 1318.5
Occupant 3000 0.46 1380
Total Absorption (A) 5650.74
74.5650
)52173(16.0
RT
RT = 1.48 seconds
Reverberation time for PICC is 1.48 seconds.
The reverberation time of PICC is took slight longer time than the optimum. It means that the
sound required slight longer time to decay after the sound has been switched off. An increase
of 20% in reverberation time would make the room excessively live and bloom, but it would
affects speech intelligibility.
13
4.2 Sound Reinforcement System (Sound Amplifier)
To amplify the sound, sound speakers were adapted in order to create higher volume and
power so that audience can listen to every single words clearly. Amplifiers must be rated to
deliver sufficient power to produce intensity level of 80dB for speech.
Listen with the understanding that when the venue fills with people, the reverberation will be
lessened. This natural absorption will help with intelligibility, but it will also absorb high
frequencies disproportionately to low frequencies, which can muddy the sound and affect
intelligibility. In order to obtain the consistency of acoustical experience from one section to
another section, supplement speakers are helpful when distributed in proper manner and
location.
Figure 4.2.1 6 central speakers located high above the stage.
14
Figure 4.2.2 Supplemental loudspeaker were installed around the wall of Plenary Hall.
Figure 4.2.3 Central speaker provides wide angle of sound, while 32 supplement speakers are
distributed along the blue axis wall-mounted in the auditorium.
15
5.0 Sound Path
Ideally, every listener in a theatre should hear the speaker or performer with the same degree
of loudness and clarity. Since this is obviously impossible by direct-path sound, the essential
design task is to devise methods for reinforcing desirable reflections and minimizing and
controlling undesirable ones. Normally only the reflection is considered in ray diagramming
since its strongest.
5.1 Echoes
Figure 5.1.1 Ray diagram of direct (D) and reflected (R1 and R2) sound path in Plenary Hall
(shaded area)
34.0
21 DRR
Tdelay


Formula of time delay, in milliseconds
Whereas
R1 and R2 - ceiling reflection distance,in meter (R1 = 25m, R2 = 25m)
D - direct distance from speaker to audience, in meter (D = 25m)
16
The time delay in PICC is 73.5 msec, is deemed as an echoes because it takes longer delayed
time for speech (maximum 40 msec).
Figure 5.1.2 Ray diagram of direct (D) and reflected (R1 and R2) sound path in Plenary Hall
floor plan. (Red as speaker, Blue as audience)
R1 (47m) + R2 (31m) - D (25m) = 53m
53m is more than 14m, which contributes to the occurrence of echoes in PICC.
When we were there, one of the group mates stood on the stage and clap her hand. We can
hear clearly the same clapping sound after the dying out of the original sound.
However, there are some solutions for echoes. Usually the surfaces that produced echoes are
back wall and ceiling. Ones can:
1. Add panel to lower the ceiling height in order to reflect the sound further back.
2. Add panel at the rear to reduce the back wall height to be exposed.
3. Add absorption to the back wall, to reduce the loudness of the reflected sound.
17
5.2 Focusing
Figure 5.2.1 Recessed concave ceiling with voids around to allow light ventilations.
Concave ceiling in PICC Plenary Hall reflected sound into certain areas of the auditorium, so
called sound concentration. This has several disadvantages. It will deprive some listeners of
useful sound reflections and cause hot spots at other audience positions.
Figure 5.2.1 Ray diagrams of how concave ceiling reflects the sound and concentrate into one
specific spot.
18
5.3 Room Shape
Figure 5.2.1 Roundness of Plenary Hall tends to encourage the sound to be centralized.
Plenary Hall with circular shape or round walls is undesirable for acoustic system because such
walls concentrate the reflected sound (like spherical mirrors) in particular areas that leads to a
non-uniform sound intensity in the audience area. The sound moves toward the constructive
centre thereby creating echoes. Plenary Hall is well known for form aesthetics but not really an
appropriate for acoustic.
In order to have an adequately low reverberation time, the room was equipped with good
absorption system, so that sound drops off fast rather than highly dispersed within the space.
19
Figure 5.2.2 (Before) Sound is played throughout a round room.
Figure 5.2.3 (After) Sounds stopped dispersing in round room with soft,smooth edges.
20
6.0 Material used in sound acoustic system
Generally, there are four types of materials used in acoustic system, which are:
1. Absorption materials
2. Diffuser materials
3. Reflection materials
4. Noise barrier
Figure 6.0.1 Different behaviour of sound when it contacts on various of materials
1. Sound absorber - absorb acoustical panels and soundproofing materials to eliminate sound
reflections to improve speech intelligibility, reduce standing waves and prevent comb filtering.
Usually the absorption materials are porous materials, like foam fibreglass etc.
2. Sound diffuser - reduce the intensity of sound by scattering it over an expanded area, rather
than eliminating the sound reflections as an absorber would. Temporal diffusers, such as binary
arrays and quadratics, scatter sound in a manner similar to diffraction of light, where the timing
of reflections from an uneven surface of varying depths causes interference which spreads the
sound. It divides the energy of the wave, sending it in many different directions which depletes
its energy faster.
3. Sound reflector - When the sound hits these surfaces it is sometimes reflected back into the
space. These reflections can travel back toward the source or to the receiver as an indirect
sound. Reflections can be used to help distribute and amplify the presentation to all of the
listeners. Of course, this requires specific characteristics and location of reflective surfaces.
21
6.1 Wall
Figure 6.1.1 Wall surface of Plenary Hall, PICC
Figure 6.1.2 Circular wall of Plenary Hall, PICC
Wall plays a significant role in sound acoustic system as it wraps the envelop of interior.
Therefore, the chosen materials and construction details should be paid attention.
22
6.1.1 Perforated Acoustic Panel
Figure 6.1.1.1 Front view of perforated acoustic panel with its dimension, in mm
Figure 6.1.1.2 Timber perforated acoustic panel is installed on the wall
This timber perforated acoustic panel, with octagon shape, is mainly functioning as sound
absorber and sound diffuser. The edge of the panel can helps to reduce the intensity of sound
by scattering it over an expanding space. The tiny dents on the panels are meant to be
transparent that the sound waves pass through it, without being diminished or reflected, to
encounter the acoustical treatment that lies behind. As a result, it can lower down the
reverberation time of the auditorium, so that low frequency reverberation time able to be
controlled.
23
Figure 6.1.1.3 Overall function of sound acoustic elements such as panel, timber plank, fabric
and wall
Advantage of timber perforated acoustic panel:
1. Absorbing and diffusing sound
2. Add privacy and intimacy to the space
3. Improve speech intelligibility, recording quality and listening clarity
4. Aesthetically comfort and locally symbolic in materiality
Figure 6.1.1.4 Construction detail of timber perforated acoustic panel
24
Figure 6.1.1.5 Perforated acoustic panel as the backdrop of the stage
Figure 6.1.1.6 Close-up view of the perforated acoustic panel
25
6.1.2 Acoustical Fabric
Figure 6.1.2.1 Acoustic fabric (red boxed) covers most of the surface of the wall
The wall of the PICC are fully covered with fabric wrapped acoustic panels for sound
absorption and noise control. The panels are features with fire retardant needs to resist burning
and withstand heat. There are few types of panels that absorb sound, for instance barrier and
absorber panels with a mass vinyl sound barrier septum, high impact panels and tackable
panels. A fabric wrapped acoustic panels can even have custom artwork on the it, which is
normally called artwork acoustic panels.
Figure 6.1.2.2 Permeability of the fabric allows the sound energy to travel through
A fabric's job on an acoustic panel is to not absorb sound itself, but to allow sound-absorbing
products behind the fabric to do their best work. The fabric should never reflect the sound
before it can travel to the absorbing product. All surfaces, fabrics included, reflect sound waves
to some extent.
26
6.1.3 Timber Frame
Figure 6.1.3.1 Timber frames that draws across the wall surface
These timber acoustic planks preserve the liveliness of the space because they don’t absorb
much sound energy, instead they disperse it, spreading energy around the room. Usually it is
made out of hardwood due to its high density. The ideal acoustic diffuser with its surface that
causes an incident sound wave from any direction to be evenly scattered in all directions, by its
surface profiles. Such profiles able to break up the sound wave so it travels along many much
smaller paths. The timber acoustical planks can be decorative element as well. In this case, it
mimics the design motifs of Mengkuang weaving patterns.
Figure 6.1.3.2 Stepped profile of acoustic planks, disperse the sound with its irregular or
uneven surface
27
Figure 6.1.3.3 Uneven profile on seating divider wall for sound diffusion purpose.
Figure 6.1.3.4 Grooved acoustic planks on translator and VIP room.
28
6.1.4 Wall Acoustic Panel
Figure 6.1.4.1 The placement of sound diffuser panels(red boxed) on right wall of Plenary Hall.
There are 2 panels facing to the stage in the hall.
Figure 6.1.4.2 Geometric sound diffuser panels arranged in such stepping configuration to
disperse the sound waves into different directions
Sound diffusers are designed to disperse and scatter sound waves, thereby to reduce standing
waves and echoes to improve sound clarity. A diffuser are normally used in critical listening
environments, for instance recording studios, control rooms, auditorium and music production
29
rooms. Sound diffusers doesn’t not trap or eliminate the sound like sound absorbers, it
maintains the ‘live’ ambience by reducing standing waves and slap echo.
Diffusers are manufactured from molded plastic or E-Glass and wrapped or covered in various
fabrics. Sound diffusers are typically used in combination with other materials like sound
absorbers, bass traps, ceiling clouds or other provisions to achieve the desired results for the
applications.
At the same time, it acts as a reflector so that the direct sound can be reflected or disperse to
wider range of audience.
Figure 6.1.4.3 The acoustical panel (red colored) reflects the direct sound from the speaker
(red dotted), to other regions of audience.
30
6.1.5 Translator and VIP Room
Figure 6.1.5.1 Translator room(top) and operator room (bottom) cantilevered against the wall
There are 2 rooms built on the both walls of Plenary Hall, PICC, which accommodates
translator and VIP room. From the picture attached above, the room on the upper flor is for VIP
therefore the glass is not treated for sound acoustic for the visual quality. Whereas the lower
floor room is for translator, where they should not be affected by the sound outside the room in
the hall. Factors that affect the acoustical performance of the glass against the sound are:
1. Thickness of glass
Figure 6.1.5.2 Graph of relation between sound frequency and glass thickness
31
Thicker glass tends to provide greater sound reduction even though it may actually transmit
more sound at specific frequencies. Every glass pane thickness has a weak frequency value;
that is, a frequency for which that glass is less 'noise absorbent' than for the others. That value
is known as critical frequency. At low frequencies, sound attenuation is directly proportional to
mass.
2. Lamination (treatment of glass)
Figure 6.1.5.3 Graph of relation between sound frequency and laminated / unlaminated glass
A laminated glass will attenuate sound transmission more than a monolithic glass of the same
mass. the critical frequency effect disappears due to the sound damping provided by polyvinyl
butyral (the soft interlayer used to permanently bond the glass panes together dissipates
energy by vibration).
32
3. Air cavity effect
Figure 6.1.5.4 Graph of relation between sound frequency and air cavity between glass
a standard double glazed unit does not reduce sound transmission much more than a
monolithic glass. What matters is the thickness of the air space between glass panes, but only
for really wide cavities.What really matters is the width of the air space, not the small one found
at double glazing but the one of a double skin. The ideal cavity width to boost sound
attenuation is 200 mm.
Figure 6.1.5.5 Operator room glass wall was installed with acoustical film (darker)
33
6.2 Ceiling
Figure 6.2.1 Concave ceiling that visible from the interior is actually the bottom part of the roof.
By definition perforated panel have perforations on the front panel, that allow for air movement
through them into the cabinet insides. A diaphragmatic absorber has a face panel that does not
have any perforations and is solid. Even if the cabinet fill material is the same, the
diaphragmatic absorber will always go lower than a perforated absorber.
Figure 6.2.2 Construction details of a perforated ceiling panel, composed of :
1. Steel panel with 32.5% perforated
2. 2. 30mm thk rockwool
3. 3. 10mm gypsum board
34
Composed of compressed mineral wool or foam, sound absorbing acoustic panels absorb
sound waves to reduce general noise, clarify speech and limit reverberation within enclosed
areas. Using acoustic panels essentially “cleans” an area of unnecessary sound debris that
makes it impossible to hear a person who talking, enjoy beautiful music or record something as
crisply as possible.
When sound waves travel through the air and strike wall- or ceiling-mounted noise reducing
panels, fibreglass fibres or foam pores vibrate, increasing friction among the pores or fibres.
These vibrations quickly reach a point where enough friction is created for the conversion of
sound energy to kinetic (heat) energy, which is simply the energy of an object in motion. Since
kinetic energy can’t be contained, it dissipates quickly, leaving no sound waves and, naturally,
no sound.
35
6.3 Floor
Figure 6.3.1 Carpet covers over the floorin Plenary Hall, PICC
While carpets reduce noise transmission through the floor in muiti-storied buildings, the degree
of actual noise reduction, as well as people’s perception of it, are dependent on the frequency
distribution of the sound.Wool carpet because of the fibre’s natural ability to absorb a wider
range of frequencies, also provides superior sound insulation for those below.
Figure 6.3.2 Carpet absorbs the impact or retard the energy of the sound
36
Carpet can improve the impact insulation class of common flooring ceiling systems by
approximately 30dB. The porosity of the surface of carpets means that sound waves can
penetrate into the pile, rather than being reflected back into the room as they would from a
smooth surface.
Figure 6.3.3 Absorption of carpet in relation to time and impact
Carpets are extremely effective sound absorbers because the individual fibres, pile tufts and
underlay have different resonant frequencies at which they absorb sound. Wool carpets are
particularly effective, as the millions of wool fibers in an area of carpet have a range of lengths,
diameters, crimps and spirallity, which enables them to absorb sounds over a wide range of
frequencies.
Figure 6.3.4 Construction details of acoustical floor carpet
37
6.4 Seating
Figure 6.4.1 3000 seatings provided in Pleanary Hall, PICC
A reflective front stage area provides strong early reflections that are integrated with the direct
sound and enhances it, On the contrary, strong late reflection and reverberations, such as from
rear walls, would not be integrated and may produce echoes.
To accommodate this, the stage area and front of the hall are made reflective and absorption is
placed in the rear of the hall; as well as in the seating area.
Figure 6.4.2 Close-up view of an individual chair
38
Figure 6.4.3 10mm holes on the base of the chair
Figure 6.4.4 Fabric with small dents for permeability
Like the remaining of the structure interior, local material and locally manufactured finishes
custom designed for PICC was used for the construction of the seats. Local timber resulted in
the wooden perforated panels along the bottom of all 3000 seats. Having a wide sound
absorption spectrum, allows it to aid the locally weaved carpets below in absorbing and
diffusing sounds. On top of the wooden perforated panels, the seats in PICC consists of fabric
finishes, and moulded timber panel to the back as well as the arms.
Polyurethane foam, a high density foam with a long lasting nature, with its ability to absorb
sound and prevent echo is utilised in the seats.
39
In order to improve sight lines and fidelity in the seating area, seats in PICC were arranged on
a sloping floor; allowing the listener to receive more direct sound that would be available on a
flat floor. A sloping (raked) floor is desirable in halls where audience sound absorption must
be minimised.
Figure 6.4.5 Chart shows the effect of both occupied and unoccupied seats in chairs of low
absorption (above) and high absorption (bottom). Source: Choi Y.J.
40
6.5 Door
Figure 6.5.1 Exit door
Figure 6.5.2 Entrance door at the lobby
Average transmission loss values for doors, that is the arithmetic average of the octave band
transmission losses in the range of 150Hz to 3000Hz , are not useful for two reasons :
1. The very important low-frequency attenuation data are absent.
2. Sharp peaks and valleys in the curves are unrecognized. As a result, a particularly
troublesome frequency may not be sufficiently attenuated. In the absence of a
completely frequency analysis, the STC rating of a door is a better indication than an
average transmission loss figure.
Louvered doors ( and doors undercut to permit air movement ) are useless as sound barriers.
The most important step in soundproofing doors is complete sealing around the opening. A
41
door in the closed position. A door in the closed position should exert pressure on gaskets,
making the joints alright.
When a single door does not provide sufficient attenuation and specially constructed
high-attenuation commercial acoustic doors are not practical, a simple and very effective
technique is the construction of a sound lock consisting of two doors, preferably with sufficient
space between them to permit full door swing. All surfaces in the sound lock should be covered
completely by absorbent material and the floor carpeted. Such an arrangement will increase
attenuation across the board by at least 10dB and by as much as 20dB at some frequencies,
depending upon the shape of the sound lock and the type, amount, and mounting of absorptive
material in the sound lock. The two doors of the sound lock must be gasketed.
Figure 6.5.3 Gasket installation on the door frame so it can seals better as a sound proof door
42
Figure 6.5.4 Transom seal at the door bottom, in contact with the carpeted floor, in Plenary Hall,
PICC
Another important consideration with respect to sound intrusion via doors is the location fo a
door relative to sources of unwanted sound. This is particularly important in multiple-resident
buildings of all types, including private homes, apartment houses, hotels, and rooming houses.
The same principle applies to commercial spaces where numerous private spaces such as
offices open onto a common lobby or foyer.
43
7.0 Conclusion
Through this assignment, we are able to to identify the sound source and main activities carried
out in PICC which mainly consists of ceremonies and conferences. These leads to in depth
research on the speech intelligibility that shows how the sound from the speaker is delivered
throughout the interior space. Other than that, we are able to deliver the sound paths, echoes
and focusing ( sound concentration ) by using ray diagrams. We are also able to identify the
main materials used in the sound acoustic system for the PICC which consists of the
components – walls, ceiling, floor, and door.
44
8.0 References
Book
1. Grondzik W.T., Kwok A.G., Stein B., Reynolds J.S. (2010). Mechanical and Electrical
Equipment For Buildings. John Wiley & Sons.
2. McMullan, R. (2012). Environmental Science in Buildings. McMillan.
Online Resources
1. SoundProofingCo. (n.a). Door Sweep Soundprrofing. Retrieved 30th April 2017 from
http://www.soundproofing.org/infopages/soundproofing_doors.htm.
2. Decustik. (n.a.) Perforated Acoustic Panels. Retrieved 30th April 2017 from
http://www.decustik.com/en/perforated-acoustic-panels.
3. PhysicalClassroom. (n.a.) Reflection, Refraction, and Diffraction. Retrieved 30th April 2017
from
http://www.physicsclassroom.com/class/sound/Lesson-3/Reflection,-Refraction,-and-Diffraction
.
4. Akustik. (n.a.) Absorption Coefficients. Retrieved 30th April 2017 from
http://www.acoustic.ua/st/web_absorption_data_eng.pdf
5. SilAcoustics. (n.a.) Perforated Acoustic Panels. Retrieved 30th April 2017 from
http://www.stil-acoustics.co.uk/Timber-Acoustic/Perforated.html
6. Acoustical. (n.a.) Sound Diffusers. Retrieved 30th April 2017 from
https://acousticalsolutions.com/product-category/sound-diffusers/
7. Norsonic. (n.a.) Reverberation Time Measurement. Retrieved 30th April 2017 from
http://www.norsonic.com/no/applikasjoner/bygningsakustikk/reverberation_time_measurement/
8. SoundFighter. (n.a.) Absorptive vs Reflective. Retrieved 30th April 2017 from
https://www.soundfighter.com/our-technology/absorptive-vs-reflective/
9. kineticsNosie. (n.a.) Ovation Acoustic Panel. Retrieved 30th April 2017 from
http://www.kineticsnoise.com/interiors/ovation.html
10. Decoustics. (n.a.) Reflective Wall Panels. Retrieved 30th April 2017 from
http://www.decoustics.com/products/Fabric/Reflective
45
11. Choi Y.J. (n.a.) The Effects of Occupancy on Theatre Chair Absorption Characteristics.
Retrived 1st May 2017 from
http://www.caa-aca.ca/conferences/isra2013/proceedings/Papers/P048.pdf
12. ForumSeating (n.a.) Acoustic As Important As Ergonomics. Retrieved 1st May 2017 from
http://www.forumseating.com/news/a2015/art,164,acoustics-as-important-as-ergonomics.html
13. Tucker B. (2016). Acoustic Physics in Theatre. Retrieved 1st May 2017 from
https://www.octaneseating.com/acoustic-physics-in-the-theater
14. IndoSonic. (n.a.). Acoustic Floor Carpet. Retrieved 1st May 2017 from
http://indosonic.com/isonic-acoustic-floor-carpet-rolls.html
15. Sontext (n.a.). Panels in an Auditorium. Retrieved 1st May 2017 from
http://www.sontext.com.au/acoustic-panels-in-an-auditorium/
16. BusinessWire (n.a.) Acoustic Panels. Retrieved 1st May 2017 from
http://www.businesswire.com/news/home/20140910006590/en/Snowsound%C2%AE-USA-Intr
oduces-Acoustic-Panels
17. AcousticFirst. (n.a.). Fabric Wrapped Acoustic Wall Panels. Retrieved 1st May 2017 from
http://www.acousticsfirst.com/sonora-wall-panels.htm
18. Voss S. (2015). A Beginner’s Guide to Acoustic Panel and Acoustic Fabric. Retrieved 1st
May 2017 from
http://blog.guilfordofmaine.com/a-beginners-guide-to-acoustic-panels-and-acoustic-fabric
19. ProAcosutics. (n.a.). Auditorium Sound System. Retrieved 1st May 2017 from
http://www.proacousticsusa.com/complete-sound-systems/school-sound-systems/auditorium-s
ound-systems.html
46
47
48
49
50
51
52
53

More Related Content

What's hot

Building science 2 report "Case study" on Acoustic Design.
Building science 2 report "Case study" on Acoustic Design.Building science 2 report "Case study" on Acoustic Design.
Building science 2 report "Case study" on Acoustic Design.Digital Space Consultancy Ltd
 
Building Science 2 : A Case Study on Acoustic Design
Building Science 2 : A Case Study on Acoustic DesignBuilding Science 2 : A Case Study on Acoustic Design
Building Science 2 : A Case Study on Acoustic DesignNicole Foo
 
Mlr convention center
Mlr convention centerMlr convention center
Mlr convention centerPukar Bhandari
 
Acoustic Analysis on Permata Pintar Auditorium (presentation)
Acoustic Analysis on Permata Pintar Auditorium (presentation)Acoustic Analysis on Permata Pintar Auditorium (presentation)
Acoustic Analysis on Permata Pintar Auditorium (presentation)Carmen Chan
 
Kuala lumpur convention center
Kuala lumpur convention centerKuala lumpur convention center
Kuala lumpur convention centerPukar Bhandari
 
Project 2
Project 2Project 2
Project 2wzhen77
 
Kuala Lumpur Convention Centre
Kuala Lumpur Convention CentreKuala Lumpur Convention Centre
Kuala Lumpur Convention CentreBarsha
 
Building Science Report Project 1
Building Science Report Project 1Building Science Report Project 1
Building Science Report Project 1Ong Shi Hui
 
Bsc acoustic
Bsc acoustic Bsc acoustic
Bsc acoustic WC Yan
 
Building Science ll Project 1 Report
Building Science ll Project 1 ReportBuilding Science ll Project 1 Report
Building Science ll Project 1 ReportNatalie Yunxian
 
Auroville visitors centre
Auroville visitors centreAuroville visitors centre
Auroville visitors centreAthira Suresh
 
Library study sanitary requirements of different buildings
Library study   sanitary requirements of different buildingsLibrary study   sanitary requirements of different buildings
Library study sanitary requirements of different buildingsArchistudent Portal
 
Building science ii report
Building science ii reportBuilding science ii report
Building science ii reportWeng Chuan
 
Measured Drawing Full Report
Measured Drawing Full ReportMeasured Drawing Full Report
Measured Drawing Full ReportEuxuan Ong
 
Pompidou centre,metz
Pompidou centre,metzPompidou centre,metz
Pompidou centre,metzbansaldhruv
 
Proscenium theatre
Proscenium theatreProscenium theatre
Proscenium theatreMohd Waqar
 
TADAO ANDO - ARCHITECT OF LIGHT
TADAO ANDO - ARCHITECT OF LIGHTTADAO ANDO - ARCHITECT OF LIGHT
TADAO ANDO - ARCHITECT OF LIGHTNidhi Thigale
 
a case study of acoustic design presentation
a case study of acoustic design presentationa case study of acoustic design presentation
a case study of acoustic design presentationYen Min Khor
 
Building Service Project 2 Case Study Report
Building Service Project 2 Case Study ReportBuilding Service Project 2 Case Study Report
Building Service Project 2 Case Study ReportJoyeeLee0131
 

What's hot (20)

Building science 2 report "Case study" on Acoustic Design.
Building science 2 report "Case study" on Acoustic Design.Building science 2 report "Case study" on Acoustic Design.
Building science 2 report "Case study" on Acoustic Design.
 
Building Science 2 : A Case Study on Acoustic Design
Building Science 2 : A Case Study on Acoustic DesignBuilding Science 2 : A Case Study on Acoustic Design
Building Science 2 : A Case Study on Acoustic Design
 
Mlr convention center
Mlr convention centerMlr convention center
Mlr convention center
 
Acoustic Analysis on Permata Pintar Auditorium (presentation)
Acoustic Analysis on Permata Pintar Auditorium (presentation)Acoustic Analysis on Permata Pintar Auditorium (presentation)
Acoustic Analysis on Permata Pintar Auditorium (presentation)
 
Kuala lumpur convention center
Kuala lumpur convention centerKuala lumpur convention center
Kuala lumpur convention center
 
Architect Tadao Antdo (2017)
Architect Tadao Antdo (2017)Architect Tadao Antdo (2017)
Architect Tadao Antdo (2017)
 
Project 2
Project 2Project 2
Project 2
 
Kuala Lumpur Convention Centre
Kuala Lumpur Convention CentreKuala Lumpur Convention Centre
Kuala Lumpur Convention Centre
 
Building Science Report Project 1
Building Science Report Project 1Building Science Report Project 1
Building Science Report Project 1
 
Bsc acoustic
Bsc acoustic Bsc acoustic
Bsc acoustic
 
Building Science ll Project 1 Report
Building Science ll Project 1 ReportBuilding Science ll Project 1 Report
Building Science ll Project 1 Report
 
Auroville visitors centre
Auroville visitors centreAuroville visitors centre
Auroville visitors centre
 
Library study sanitary requirements of different buildings
Library study   sanitary requirements of different buildingsLibrary study   sanitary requirements of different buildings
Library study sanitary requirements of different buildings
 
Building science ii report
Building science ii reportBuilding science ii report
Building science ii report
 
Measured Drawing Full Report
Measured Drawing Full ReportMeasured Drawing Full Report
Measured Drawing Full Report
 
Pompidou centre,metz
Pompidou centre,metzPompidou centre,metz
Pompidou centre,metz
 
Proscenium theatre
Proscenium theatreProscenium theatre
Proscenium theatre
 
TADAO ANDO - ARCHITECT OF LIGHT
TADAO ANDO - ARCHITECT OF LIGHTTADAO ANDO - ARCHITECT OF LIGHT
TADAO ANDO - ARCHITECT OF LIGHT
 
a case study of acoustic design presentation
a case study of acoustic design presentationa case study of acoustic design presentation
a case study of acoustic design presentation
 
Building Service Project 2 Case Study Report
Building Service Project 2 Case Study ReportBuilding Service Project 2 Case Study Report
Building Service Project 2 Case Study Report
 

Viewers also liked

Daylighting slideshare
Daylighting slideshareDaylighting slideshare
Daylighting slideshareParween Karim
 
Building Material Assignment 2
Building Material Assignment 2Building Material Assignment 2
Building Material Assignment 2Haziq1511
 
Building materials
Building materialsBuilding materials
Building materialslol
 
Building materials assignment 2 - Skk paint
Building materials assignment 2 - Skk paintBuilding materials assignment 2 - Skk paint
Building materials assignment 2 - Skk paintSyafiq Zariful
 
Building Materials - Final assignment 2 brief
Building Materials - Final assignment 2 briefBuilding Materials - Final assignment 2 brief
Building Materials - Final assignment 2 briefSyafiq Zariful
 
Lighting Analysis Project 1
Lighting Analysis Project 1Lighting Analysis Project 1
Lighting Analysis Project 1J-Sern Phua
 
Ct assignment
Ct assignmentCt assignment
Ct assignmentDarren Loong
 
Let There Be Light! A case study about illumination
Let There Be Light!  A case study about illuminationLet There Be Light!  A case study about illumination
Let There Be Light! A case study about illuminationStephen Studnicka, PMP
 
Construction Technology 1 Assignment 1
Construction Technology 1 Assignment 1Construction Technology 1 Assignment 1
Construction Technology 1 Assignment 1Pang Shuen
 
Final report
Final report Final report
Final report Gary Yeow
 
site report
site reportsite report
site reportdhirazain
 
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDY
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDYDEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDY
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDYjolynnTJL
 
btech2
btech2 btech2
btech2 Gary Yeow
 
btech ibs
btech ibsbtech ibs
btech ibsGary Yeow
 
Csi journal
Csi journalCsi journal
Csi journalGary Yeow
 
Building Materials assignment 1 (Concrete)
Building Materials assignment 1 (Concrete)Building Materials assignment 1 (Concrete)
Building Materials assignment 1 (Concrete)Syafiq Zariful
 
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdf
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdfFINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdf
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdfOctonio Octonio
 

Viewers also liked (20)

Daylighting slideshare
Daylighting slideshareDaylighting slideshare
Daylighting slideshare
 
Assignment 2 edited
Assignment 2 editedAssignment 2 edited
Assignment 2 edited
 
Building Material Assignment 2
Building Material Assignment 2Building Material Assignment 2
Building Material Assignment 2
 
Building materials
Building materialsBuilding materials
Building materials
 
Building materials assignment 2 - Skk paint
Building materials assignment 2 - Skk paintBuilding materials assignment 2 - Skk paint
Building materials assignment 2 - Skk paint
 
Building Materials - Final assignment 2 brief
Building Materials - Final assignment 2 briefBuilding Materials - Final assignment 2 brief
Building Materials - Final assignment 2 brief
 
Lighting Analysis Project 1
Lighting Analysis Project 1Lighting Analysis Project 1
Lighting Analysis Project 1
 
Ct assignment
Ct assignmentCt assignment
Ct assignment
 
Let There Be Light! A case study about illumination
Let There Be Light!  A case study about illuminationLet There Be Light!  A case study about illumination
Let There Be Light! A case study about illumination
 
Construction Technology 1 Assignment 1
Construction Technology 1 Assignment 1Construction Technology 1 Assignment 1
Construction Technology 1 Assignment 1
 
dBwave.i acoustic engineering presentation
dBwave.i acoustic engineering presentationdBwave.i acoustic engineering presentation
dBwave.i acoustic engineering presentation
 
Final report
Final report Final report
Final report
 
site report
site reportsite report
site report
 
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDY
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDYDEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDY
DEGREE SEM 5 BUILDING SCIENCE PROJECT 01 ACOUSTIC CASE STUDY
 
Acoustics(atjd)
Acoustics(atjd)Acoustics(atjd)
Acoustics(atjd)
 
btech2
btech2 btech2
btech2
 
btech ibs
btech ibsbtech ibs
btech ibs
 
Csi journal
Csi journalCsi journal
Csi journal
 
Building Materials assignment 1 (Concrete)
Building Materials assignment 1 (Concrete)Building Materials assignment 1 (Concrete)
Building Materials assignment 1 (Concrete)
 
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdf
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdfFINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdf
FINAL REPORT PROJECT 1 LIGHTING AND ACOUSTIC PERFORMANCE.pdf
 

Similar to PICC acoustic system

Building Science II Report
Building Science II ReportBuilding Science II Report
Building Science II ReportVansC
 
Building science 2 report
Building science 2 reportBuilding science 2 report
Building science 2 reportHarwinder Girn
 
Building science 2 PJT 1 report
Building science 2 PJT 1 reportBuilding science 2 PJT 1 report
Building science 2 PJT 1 reportForestedTiger
 
Building science 2 report
Building science 2 reportBuilding science 2 report
Building science 2 reportChong Yi Hui
 
Building science 2 report (1)
Building science 2 report (1)Building science 2 report (1)
Building science 2 report (1)Taylor's University
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Reportjisunfoo
 
A Case Study On Room Acoustic
A Case Study On Room AcousticA Case Study On Room Acoustic
A Case Study On Room AcousticKalvin Bong
 
Building science: acoustics
Building science: acousticsBuilding science: acoustics
Building science: acousticskennett2203
 
BSCIENCE ACOUSTIC
BSCIENCE ACOUSTIC BSCIENCE ACOUSTIC
BSCIENCE ACOUSTIC Pei Di
 
Bsc acoustic
Bsc acoustic Bsc acoustic
Bsc acoustic Hong Wei Teo
 
Bsc acoustic
Bsc acousticBsc acoustic
Bsc acousticLee Yih
 
Bscience project 1 (report)
Bscience project 1 (report)Bscience project 1 (report)
Bscience project 1 (report)Afiq Knick
 
Building Science Project 1
Building Science Project 1Building Science Project 1
Building Science Project 1zerospaces_
 
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2Darshiini Vig
 
Ccc case study report taylor's university
Ccc case study report taylor's universityCcc case study report taylor's university
Ccc case study report taylor's universityKohSungJie
 
Ccc case study report taylor's university
Ccc case study report taylor's universityCcc case study report taylor's university
Ccc case study report taylor's universityChengWei Chia
 
Building Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignBuilding Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignNik Ahmad Munawwar Nik Din
 
Building Science II: Acoustic Report
Building Science II: Acoustic ReportBuilding Science II: Acoustic Report
Building Science II: Acoustic ReportEe Dong Chen
 

Similar to PICC acoustic system (20)

B.science 2 project 1
B.science 2   project 1B.science 2   project 1
B.science 2 project 1
 
Building Science II Report
Building Science II ReportBuilding Science II Report
Building Science II Report
 
Building science 2 report
Building science 2 reportBuilding science 2 report
Building science 2 report
 
Building science 2 PJT 1 report
Building science 2 PJT 1 reportBuilding science 2 PJT 1 report
Building science 2 PJT 1 report
 
Building science 2 report
Building science 2 reportBuilding science 2 report
Building science 2 report
 
Building science 2 report (1)
Building science 2 report (1)Building science 2 report (1)
Building science 2 report (1)
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Report
 
A Case Study On Room Acoustic
A Case Study On Room AcousticA Case Study On Room Acoustic
A Case Study On Room Acoustic
 
Building science: acoustics
Building science: acousticsBuilding science: acoustics
Building science: acoustics
 
BSCIENCE ACOUSTIC
BSCIENCE ACOUSTIC BSCIENCE ACOUSTIC
BSCIENCE ACOUSTIC
 
Bsc acoustic
Bsc acoustic Bsc acoustic
Bsc acoustic
 
Bsc acoustic
Bsc acousticBsc acoustic
Bsc acoustic
 
Bscience project 1 (report)
Bscience project 1 (report)Bscience project 1 (report)
Bscience project 1 (report)
 
Building Science Project 1
Building Science Project 1Building Science Project 1
Building Science Project 1
 
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2
SEM 5 : PROJECT 1 REPORT BUILDING SCIENCE 2
 
Ccc case study report taylor's university
Ccc case study report taylor's universityCcc case study report taylor's university
Ccc case study report taylor's university
 
Ccc case study report taylor's university
Ccc case study report taylor's universityCcc case study report taylor's university
Ccc case study report taylor's university
 
Building Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignBuilding Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic Design
 
Final a
Final aFinal a
Final a
 
Building Science II: Acoustic Report
Building Science II: Acoustic ReportBuilding Science II: Acoustic Report
Building Science II: Acoustic Report
 

More from Gary Yeow

project management
project management project management
project management Gary Yeow
 
individual project management
individual project managementindividual project management
individual project managementGary Yeow
 
Adpanalysis shin
Adpanalysis shinAdpanalysis shin
Adpanalysis shinGary Yeow
 
synopsis reaction paper.
synopsis reaction paper.synopsis reaction paper.
synopsis reaction paper.Gary Yeow
 
comparative essay
comparative essay comparative essay
comparative essay Gary Yeow
 
Bscience final 3
Bscience final 3Bscience final 3
Bscience final 3Gary Yeow
 
BTECH P2
BTECH P2BTECH P2
BTECH P2Gary Yeow
 
bstrut report
bstrut reportbstrut report
bstrut reportGary Yeow
 
building service report
building service report building service report
building service report Gary Yeow
 
Conservation slides
Conservation slidesConservation slides
Conservation slidesGary Yeow
 
Architectural conservation arc3413 king street penang
Architectural conservation arc3413 king street penangArchitectural conservation arc3413 king street penang
Architectural conservation arc3413 king street penangGary Yeow
 
AA MIHO MUSEUM
AA MIHO MUSEUMAA MIHO MUSEUM
AA MIHO MUSEUMGary Yeow
 
Final mpu
Final mpuFinal mpu
Final mpuGary Yeow
 
Final site a analysis
Final site a analysisFinal site a analysis
Final site a analysisGary Yeow
 
Social psychology report
Social psychology reportSocial psychology report
Social psychology reportGary Yeow
 
Psycho comic
Psycho comicPsycho comic
Psycho comicGary Yeow
 
PSYCHO JOURNAL
PSYCHO JOURNALPSYCHO JOURNAL
PSYCHO JOURNALGary Yeow
 
Interview report
Interview reportInterview report
Interview reportGary Yeow
 

More from Gary Yeow (20)

project management
project management project management
project management
 
individual project management
individual project managementindividual project management
individual project management
 
Adpanalysis shin
Adpanalysis shinAdpanalysis shin
Adpanalysis shin
 
synopsis reaction paper.
synopsis reaction paper.synopsis reaction paper.
synopsis reaction paper.
 
comparative essay
comparative essay comparative essay
comparative essay
 
Bscience final 3
Bscience final 3Bscience final 3
Bscience final 3
 
BTECH P2
BTECH P2BTECH P2
BTECH P2
 
bstrut report
bstrut reportbstrut report
bstrut report
 
building service report
building service report building service report
building service report
 
Conservation slides
Conservation slidesConservation slides
Conservation slides
 
Architectural conservation arc3413 king street penang
Architectural conservation arc3413 king street penangArchitectural conservation arc3413 king street penang
Architectural conservation arc3413 king street penang
 
AA MIHO MUSEUM
AA MIHO MUSEUMAA MIHO MUSEUM
AA MIHO MUSEUM
 
Final mpu
Final mpuFinal mpu
Final mpu
 
Final site a analysis
Final site a analysisFinal site a analysis
Final site a analysis
 
Social psychology report
Social psychology reportSocial psychology report
Social psychology report
 
Psycho comic
Psycho comicPsycho comic
Psycho comic
 
PSYCHO JOURNAL
PSYCHO JOURNALPSYCHO JOURNAL
PSYCHO JOURNAL
 
Essay
EssayEssay
Essay
 
Essay
EssayEssay
Essay
 
Interview report
Interview reportInterview report
Interview report
 

Recently uploaded

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)Dr. Mazin Mohamed alkathiri
 

Recently uploaded (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 

PICC acoustic system

  • 1. TAYLOR’S UNIVERSITY BUILDING SCIENCE II PROJECT 1 __________________________________________________________________________________ Building Science 2 ARC 3413 / BLD 61303 Case study on Acoustic Design of Putrajaya International Convention Centre (PICC) Tutor: Mr. Azim Sulaiman Submission date : 2nd of May 2017 Student name and ID: Lee Pui San 0319089 Beh NianZi 0319445 Eng Shi Yi 0317849 Fong Tze Ying 0324073 Gary Yeow Jinn Sheng 0318797 Lynette Law Yong Yi 0317761 Liu Jyue Yow 1007P74080 Fatemehalsadat Fattahhosseini 0318452
  • 2. Table of content Topic Page 1.0 Abstract 1 2.0 Acknowledgement 2 3.0 Introduction -3.1 Historical Background -3.2 Programmes -3.3 Architectural Design -3.4 PICC Master Plans 3 4 4-5 5-6 7-9 4.0 Sound Source -4.1 Speech Intelligibility -4.2 Sound Reinforcement System (Sound Amplifier) 10 11-12 13-14 5.0 Sound Path -5.1 Echoes -5.2 Focusing -5.2 Room Shape 15 15-16 17 18-19 6.0 Material used in sound acoustic system -6.1 Wall -6.1.1 Perforated Acoustic Panel -6.1.2 Acoustical Fabric -6.1.3 Timber Frame -6.1.4 Wall Acoustic Panel -6.1.5 Translator Room -6.2 Ceiling -6.3 Floor -6.4 Seating -6.5 Door 20 21 22-24 25 26-27 28-29 30-32 33-34 35-36 37-39 40-42 7.0 Conclusion 43 8.0 References 44-45
  • 3. 1 1.0 Abstract In this assignment, we , a group of 8 students are required to conduct a case study on a local auditorium. They have to carry out a site visit to their respective chosen building to observe and record their findings into a report. Throughout the assignment, we are able to understand the importance of sound acoustic system as a significant role in an auditorium. Meanwhile, we can illustrate our ideas and understanding after on-site findings as well as references on books and online resources.
  • 4. 2 2.0 Acknowledgement First of all, we would like to address our appreciation to Mr Azim for his guidance throughout the process of this project. We are able to improve our works with the time Mr Azim had spent with us. We were given a precious chance to visit Malaysian Philharmonic Orchestra for in-depth explanations from professionals. Also, we would like to thank Ar Edwin had gave us lessons during lecture which helpful for our study. From the given slides, we are able to realize the characteristic of sound comprehensively. Last but not least, we are truly grateful that Putrajaya International Conventional Centre office gave us this opportunity to visit the Plenary Hall to observe and analyse the sound acoustic system of the hall. The tour guide was generous to provide us as much informations as she could for us.
  • 5. 3 3.0 Introduction Figure 3.0.1 Front view of PICC The Putrajaya International Convention Centre is the main convention centre in Putrajaya, Malaysia. This building is located on the top of Taman Puncak Selatan in Precinct 5. PICC receives a yearly average of more than 230,000 delegates and 15,000 visitors around the world since 2006. Architect : Hijjas Kasturi Associates / Amir Hamzah Client : Jabatan Perdana Menteri Built Area : 135,000 sqm Commission Year : 2000 Design : 2001 Construction : 2001 - 2003 Occupancy : 2003 Total Floor Area : 135,000 sqm
  • 6. 4 3.1 Historical Background Construction of the convention centre began in 2001 and finished in April 2003. The first conference held in PICC was the 10th Islamic Summit organised by the Organisation of Islamic Cooperation (OIC) in October of the same year. In October 2004, the Putrajaya Convention Centre was officially renamed to the Putrajaya International Convention Centre or PICC. It is a precinct landmark, and was designed by Malaysia’s fourth Prime Minister, Tun Dr. Mahathir Bin Mohamad. 3.2 Programmes Figure 3.2.1 Facilities and services in PICC A low-slung bridge through tropical gardens connects to the Plenary Hall, one of the most impressive of the 5 building modules. It can conveniently accommodate 3,500 people in a theatre set up for convention meetings or special events. It is also equipped with a permanent stage, dressing rooms and a VIP lounge.The convention centre is a focal point of Malaysia’s new administrative capital. Its seven levels provide a plenary hall for 3000 and two large conference halls (capital 2000), as well as mini halls, meeting rooms, suites,galleries and supporting services - yet its footprint occupies only three acres of its 51-acre site, leaving the
  • 7. 5 remainder for use as a public park. To achieve this, more than 60 per cent of the spaces are submerged below ground. The glazed walls of the above ground structure are sloped and louvered to prevent direct solar gain; the membrane roof is made of Sarnafil. The plenary hall is renowned for hosting grand and historic events and concerts. Besides hosting the 10th Islamic Summit, PICC is also a conference venue for high security risk events, hosted by the government or the private sector. PICC has had many important guests including foreign head of states and heads of government, important corporate personalities such as the world's richest man, Bill Gates, as well as the current CEO of Microsoft, Steve Ballmer. 3.3 Architectural Design Figure 3.3.1 Inspired from Pending Perak (left) to site plan of PICC The design of the building is based on the shape of the eye of 'pending perak' (a silver Malay royal belt buckle). However, the structure of the roof was designed similar to a folded origami to alleviate the plain roundness of the structure. From the frontview, the building's eaves or wings are lifted at the sides, creating broad overhangings over the raking wall. Most of the walls are made of glass, so natural sunlight can easily illuminate the auditorium through the raked and shaded windows.
  • 8. 6 Figure 3.3.2 Interior view of Plenary Hall from the stage Figure 3.3.3 Interior view of Plenary Hall toward the stage The roof structure, which is geometrically complex, covers the plenary hall and the column-free banquet hall. The latter space can accommodate 3000 delegates, each with an uninterrupted view of the stage with the conference and main auditorium floors above supported on a sculptural system of radial arms.Surrounding these main spaces the ancillary accommodation follows a conical geometry with the rings increasing in diameter up the building to provide the larger area needed for the plenary hall itself. The roof structure is unique with its complicated geometry and long span. The shape of the roof resembles a ‘pending’ which is a buckle worn in Malay weddings.
  • 9. 7 3.4 PICC Master Plans Figure 3.4.1 Site Plan of PICC Figure 3.4.2 Front elevation of PICC (North)
  • 10. 8 Figure 3.4.3 North South sectional elevation of PICC
  • 11. 9 Figure 3.4.4 Floor Plan of Plenary Hall, PICC
  • 12. 10 4.0 Sound Source Figure 4.0.1 Events that carried out in Plenary Hall, and most of them strongly related to speech The main activities that carried out in Plenary Hall are talks, convocations, conferences, award ceremony etc. Most of the events are closely related to speech intelligibility, which are supposed to giving verbal informations clear so the audience can perceive and understand it.
  • 13. 11 4.1 Speech Intelligibility Speech is composed of phonemes, which are individual and distinctive sounds that, to an extent, vary from language to language. Normal speech averages between 55 and 65 dBA sound pressure level at 0.9m to 1.2m from the source.The higher the frequency, the greater a sound’s directivity, and the less it diffraction. High frequency tones are most easily absorbed and least diffracted. Speech intelligibility is heavily influenced by two factors, which are power and clarity. Power is affected by: Clarity is affected by: Distance from speaker Delayed reflections : echoes, near echoes, reverberation Directional relationship to speaker Duplication of sound source by loudspeakers Audience absorption of direct sound Ambient noise Reinforcement by reflectors Intrusive noise Reinforcement by loudspeakers Sound shadows 10 log3.0)( V T optimumR  Optimum reverberation time in seconds, for speech. Whereas V = Volume of the room (cubic meters) - 52173 cubic meters )(optimumRT of Plenary hall (52173 cbm) = 1.12 seconds
  • 14. 12 A V TR 16.0  Sabine Formula to calculate reverberation time of PICC, in seconds Whereas RT = Reverberation time V = Volume of the room (cubic meters) A = total absorption of room area (sqm) 500 Hz Surface Area Absorption coefficient Abs unit Wall (fibreboard on solid backing) 4387 sqm 0.15 658.05 Ceiling (metal 32.5% perforated ceiling, backed by 30mm rockwool) 2637 sqm 0.87 2294.19 Floor (carpet) 2637 sqm 0.50 1318.5 Occupant 3000 0.46 1380 Total Absorption (A) 5650.74 74.5650 )52173(16.0 RT RT = 1.48 seconds Reverberation time for PICC is 1.48 seconds. The reverberation time of PICC is took slight longer time than the optimum. It means that the sound required slight longer time to decay after the sound has been switched off. An increase of 20% in reverberation time would make the room excessively live and bloom, but it would affects speech intelligibility.
  • 15. 13 4.2 Sound Reinforcement System (Sound Amplifier) To amplify the sound, sound speakers were adapted in order to create higher volume and power so that audience can listen to every single words clearly. Amplifiers must be rated to deliver sufficient power to produce intensity level of 80dB for speech. Listen with the understanding that when the venue fills with people, the reverberation will be lessened. This natural absorption will help with intelligibility, but it will also absorb high frequencies disproportionately to low frequencies, which can muddy the sound and affect intelligibility. In order to obtain the consistency of acoustical experience from one section to another section, supplement speakers are helpful when distributed in proper manner and location. Figure 4.2.1 6 central speakers located high above the stage.
  • 16. 14 Figure 4.2.2 Supplemental loudspeaker were installed around the wall of Plenary Hall. Figure 4.2.3 Central speaker provides wide angle of sound, while 32 supplement speakers are distributed along the blue axis wall-mounted in the auditorium.
  • 17. 15 5.0 Sound Path Ideally, every listener in a theatre should hear the speaker or performer with the same degree of loudness and clarity. Since this is obviously impossible by direct-path sound, the essential design task is to devise methods for reinforcing desirable reflections and minimizing and controlling undesirable ones. Normally only the reflection is considered in ray diagramming since its strongest. 5.1 Echoes Figure 5.1.1 Ray diagram of direct (D) and reflected (R1 and R2) sound path in Plenary Hall (shaded area) 34.0 21 DRR Tdelay   Formula of time delay, in milliseconds Whereas R1 and R2 - ceiling reflection distance,in meter (R1 = 25m, R2 = 25m) D - direct distance from speaker to audience, in meter (D = 25m)
  • 18. 16 The time delay in PICC is 73.5 msec, is deemed as an echoes because it takes longer delayed time for speech (maximum 40 msec). Figure 5.1.2 Ray diagram of direct (D) and reflected (R1 and R2) sound path in Plenary Hall floor plan. (Red as speaker, Blue as audience) R1 (47m) + R2 (31m) - D (25m) = 53m 53m is more than 14m, which contributes to the occurrence of echoes in PICC. When we were there, one of the group mates stood on the stage and clap her hand. We can hear clearly the same clapping sound after the dying out of the original sound. However, there are some solutions for echoes. Usually the surfaces that produced echoes are back wall and ceiling. Ones can: 1. Add panel to lower the ceiling height in order to reflect the sound further back. 2. Add panel at the rear to reduce the back wall height to be exposed. 3. Add absorption to the back wall, to reduce the loudness of the reflected sound.
  • 19. 17 5.2 Focusing Figure 5.2.1 Recessed concave ceiling with voids around to allow light ventilations. Concave ceiling in PICC Plenary Hall reflected sound into certain areas of the auditorium, so called sound concentration. This has several disadvantages. It will deprive some listeners of useful sound reflections and cause hot spots at other audience positions. Figure 5.2.1 Ray diagrams of how concave ceiling reflects the sound and concentrate into one specific spot.
  • 20. 18 5.3 Room Shape Figure 5.2.1 Roundness of Plenary Hall tends to encourage the sound to be centralized. Plenary Hall with circular shape or round walls is undesirable for acoustic system because such walls concentrate the reflected sound (like spherical mirrors) in particular areas that leads to a non-uniform sound intensity in the audience area. The sound moves toward the constructive centre thereby creating echoes. Plenary Hall is well known for form aesthetics but not really an appropriate for acoustic. In order to have an adequately low reverberation time, the room was equipped with good absorption system, so that sound drops off fast rather than highly dispersed within the space.
  • 21. 19 Figure 5.2.2 (Before) Sound is played throughout a round room. Figure 5.2.3 (After) Sounds stopped dispersing in round room with soft,smooth edges.
  • 22. 20 6.0 Material used in sound acoustic system Generally, there are four types of materials used in acoustic system, which are: 1. Absorption materials 2. Diffuser materials 3. Reflection materials 4. Noise barrier Figure 6.0.1 Different behaviour of sound when it contacts on various of materials 1. Sound absorber - absorb acoustical panels and soundproofing materials to eliminate sound reflections to improve speech intelligibility, reduce standing waves and prevent comb filtering. Usually the absorption materials are porous materials, like foam fibreglass etc. 2. Sound diffuser - reduce the intensity of sound by scattering it over an expanded area, rather than eliminating the sound reflections as an absorber would. Temporal diffusers, such as binary arrays and quadratics, scatter sound in a manner similar to diffraction of light, where the timing of reflections from an uneven surface of varying depths causes interference which spreads the sound. It divides the energy of the wave, sending it in many different directions which depletes its energy faster. 3. Sound reflector - When the sound hits these surfaces it is sometimes reflected back into the space. These reflections can travel back toward the source or to the receiver as an indirect sound. Reflections can be used to help distribute and amplify the presentation to all of the listeners. Of course, this requires specific characteristics and location of reflective surfaces.
  • 23. 21 6.1 Wall Figure 6.1.1 Wall surface of Plenary Hall, PICC Figure 6.1.2 Circular wall of Plenary Hall, PICC Wall plays a significant role in sound acoustic system as it wraps the envelop of interior. Therefore, the chosen materials and construction details should be paid attention.
  • 24. 22 6.1.1 Perforated Acoustic Panel Figure 6.1.1.1 Front view of perforated acoustic panel with its dimension, in mm Figure 6.1.1.2 Timber perforated acoustic panel is installed on the wall This timber perforated acoustic panel, with octagon shape, is mainly functioning as sound absorber and sound diffuser. The edge of the panel can helps to reduce the intensity of sound by scattering it over an expanding space. The tiny dents on the panels are meant to be transparent that the sound waves pass through it, without being diminished or reflected, to encounter the acoustical treatment that lies behind. As a result, it can lower down the reverberation time of the auditorium, so that low frequency reverberation time able to be controlled.
  • 25. 23 Figure 6.1.1.3 Overall function of sound acoustic elements such as panel, timber plank, fabric and wall Advantage of timber perforated acoustic panel: 1. Absorbing and diffusing sound 2. Add privacy and intimacy to the space 3. Improve speech intelligibility, recording quality and listening clarity 4. Aesthetically comfort and locally symbolic in materiality Figure 6.1.1.4 Construction detail of timber perforated acoustic panel
  • 26. 24 Figure 6.1.1.5 Perforated acoustic panel as the backdrop of the stage Figure 6.1.1.6 Close-up view of the perforated acoustic panel
  • 27. 25 6.1.2 Acoustical Fabric Figure 6.1.2.1 Acoustic fabric (red boxed) covers most of the surface of the wall The wall of the PICC are fully covered with fabric wrapped acoustic panels for sound absorption and noise control. The panels are features with fire retardant needs to resist burning and withstand heat. There are few types of panels that absorb sound, for instance barrier and absorber panels with a mass vinyl sound barrier septum, high impact panels and tackable panels. A fabric wrapped acoustic panels can even have custom artwork on the it, which is normally called artwork acoustic panels. Figure 6.1.2.2 Permeability of the fabric allows the sound energy to travel through A fabric's job on an acoustic panel is to not absorb sound itself, but to allow sound-absorbing products behind the fabric to do their best work. The fabric should never reflect the sound before it can travel to the absorbing product. All surfaces, fabrics included, reflect sound waves to some extent.
  • 28. 26 6.1.3 Timber Frame Figure 6.1.3.1 Timber frames that draws across the wall surface These timber acoustic planks preserve the liveliness of the space because they don’t absorb much sound energy, instead they disperse it, spreading energy around the room. Usually it is made out of hardwood due to its high density. The ideal acoustic diffuser with its surface that causes an incident sound wave from any direction to be evenly scattered in all directions, by its surface profiles. Such profiles able to break up the sound wave so it travels along many much smaller paths. The timber acoustical planks can be decorative element as well. In this case, it mimics the design motifs of Mengkuang weaving patterns. Figure 6.1.3.2 Stepped profile of acoustic planks, disperse the sound with its irregular or uneven surface
  • 29. 27 Figure 6.1.3.3 Uneven profile on seating divider wall for sound diffusion purpose. Figure 6.1.3.4 Grooved acoustic planks on translator and VIP room.
  • 30. 28 6.1.4 Wall Acoustic Panel Figure 6.1.4.1 The placement of sound diffuser panels(red boxed) on right wall of Plenary Hall. There are 2 panels facing to the stage in the hall. Figure 6.1.4.2 Geometric sound diffuser panels arranged in such stepping configuration to disperse the sound waves into different directions Sound diffusers are designed to disperse and scatter sound waves, thereby to reduce standing waves and echoes to improve sound clarity. A diffuser are normally used in critical listening environments, for instance recording studios, control rooms, auditorium and music production
  • 31. 29 rooms. Sound diffusers doesn’t not trap or eliminate the sound like sound absorbers, it maintains the ‘live’ ambience by reducing standing waves and slap echo. Diffusers are manufactured from molded plastic or E-Glass and wrapped or covered in various fabrics. Sound diffusers are typically used in combination with other materials like sound absorbers, bass traps, ceiling clouds or other provisions to achieve the desired results for the applications. At the same time, it acts as a reflector so that the direct sound can be reflected or disperse to wider range of audience. Figure 6.1.4.3 The acoustical panel (red colored) reflects the direct sound from the speaker (red dotted), to other regions of audience.
  • 32. 30 6.1.5 Translator and VIP Room Figure 6.1.5.1 Translator room(top) and operator room (bottom) cantilevered against the wall There are 2 rooms built on the both walls of Plenary Hall, PICC, which accommodates translator and VIP room. From the picture attached above, the room on the upper flor is for VIP therefore the glass is not treated for sound acoustic for the visual quality. Whereas the lower floor room is for translator, where they should not be affected by the sound outside the room in the hall. Factors that affect the acoustical performance of the glass against the sound are: 1. Thickness of glass Figure 6.1.5.2 Graph of relation between sound frequency and glass thickness
  • 33. 31 Thicker glass tends to provide greater sound reduction even though it may actually transmit more sound at specific frequencies. Every glass pane thickness has a weak frequency value; that is, a frequency for which that glass is less 'noise absorbent' than for the others. That value is known as critical frequency. At low frequencies, sound attenuation is directly proportional to mass. 2. Lamination (treatment of glass) Figure 6.1.5.3 Graph of relation between sound frequency and laminated / unlaminated glass A laminated glass will attenuate sound transmission more than a monolithic glass of the same mass. the critical frequency effect disappears due to the sound damping provided by polyvinyl butyral (the soft interlayer used to permanently bond the glass panes together dissipates energy by vibration).
  • 34. 32 3. Air cavity effect Figure 6.1.5.4 Graph of relation between sound frequency and air cavity between glass a standard double glazed unit does not reduce sound transmission much more than a monolithic glass. What matters is the thickness of the air space between glass panes, but only for really wide cavities.What really matters is the width of the air space, not the small one found at double glazing but the one of a double skin. The ideal cavity width to boost sound attenuation is 200 mm. Figure 6.1.5.5 Operator room glass wall was installed with acoustical film (darker)
  • 35. 33 6.2 Ceiling Figure 6.2.1 Concave ceiling that visible from the interior is actually the bottom part of the roof. By definition perforated panel have perforations on the front panel, that allow for air movement through them into the cabinet insides. A diaphragmatic absorber has a face panel that does not have any perforations and is solid. Even if the cabinet fill material is the same, the diaphragmatic absorber will always go lower than a perforated absorber. Figure 6.2.2 Construction details of a perforated ceiling panel, composed of : 1. Steel panel with 32.5% perforated 2. 2. 30mm thk rockwool 3. 3. 10mm gypsum board
  • 36. 34 Composed of compressed mineral wool or foam, sound absorbing acoustic panels absorb sound waves to reduce general noise, clarify speech and limit reverberation within enclosed areas. Using acoustic panels essentially “cleans” an area of unnecessary sound debris that makes it impossible to hear a person who talking, enjoy beautiful music or record something as crisply as possible. When sound waves travel through the air and strike wall- or ceiling-mounted noise reducing panels, fibreglass fibres or foam pores vibrate, increasing friction among the pores or fibres. These vibrations quickly reach a point where enough friction is created for the conversion of sound energy to kinetic (heat) energy, which is simply the energy of an object in motion. Since kinetic energy can’t be contained, it dissipates quickly, leaving no sound waves and, naturally, no sound.
  • 37. 35 6.3 Floor Figure 6.3.1 Carpet covers over the floorin Plenary Hall, PICC While carpets reduce noise transmission through the floor in muiti-storied buildings, the degree of actual noise reduction, as well as people’s perception of it, are dependent on the frequency distribution of the sound.Wool carpet because of the fibre’s natural ability to absorb a wider range of frequencies, also provides superior sound insulation for those below. Figure 6.3.2 Carpet absorbs the impact or retard the energy of the sound
  • 38. 36 Carpet can improve the impact insulation class of common flooring ceiling systems by approximately 30dB. The porosity of the surface of carpets means that sound waves can penetrate into the pile, rather than being reflected back into the room as they would from a smooth surface. Figure 6.3.3 Absorption of carpet in relation to time and impact Carpets are extremely effective sound absorbers because the individual fibres, pile tufts and underlay have different resonant frequencies at which they absorb sound. Wool carpets are particularly effective, as the millions of wool fibers in an area of carpet have a range of lengths, diameters, crimps and spirallity, which enables them to absorb sounds over a wide range of frequencies. Figure 6.3.4 Construction details of acoustical floor carpet
  • 39. 37 6.4 Seating Figure 6.4.1 3000 seatings provided in Pleanary Hall, PICC A reflective front stage area provides strong early reflections that are integrated with the direct sound and enhances it, On the contrary, strong late reflection and reverberations, such as from rear walls, would not be integrated and may produce echoes. To accommodate this, the stage area and front of the hall are made reflective and absorption is placed in the rear of the hall; as well as in the seating area. Figure 6.4.2 Close-up view of an individual chair
  • 40. 38 Figure 6.4.3 10mm holes on the base of the chair Figure 6.4.4 Fabric with small dents for permeability Like the remaining of the structure interior, local material and locally manufactured finishes custom designed for PICC was used for the construction of the seats. Local timber resulted in the wooden perforated panels along the bottom of all 3000 seats. Having a wide sound absorption spectrum, allows it to aid the locally weaved carpets below in absorbing and diffusing sounds. On top of the wooden perforated panels, the seats in PICC consists of fabric finishes, and moulded timber panel to the back as well as the arms. Polyurethane foam, a high density foam with a long lasting nature, with its ability to absorb sound and prevent echo is utilised in the seats.
  • 41. 39 In order to improve sight lines and fidelity in the seating area, seats in PICC were arranged on a sloping floor; allowing the listener to receive more direct sound that would be available on a flat floor. A sloping (raked) floor is desirable in halls where audience sound absorption must be minimised. Figure 6.4.5 Chart shows the effect of both occupied and unoccupied seats in chairs of low absorption (above) and high absorption (bottom). Source: Choi Y.J.
  • 42. 40 6.5 Door Figure 6.5.1 Exit door Figure 6.5.2 Entrance door at the lobby Average transmission loss values for doors, that is the arithmetic average of the octave band transmission losses in the range of 150Hz to 3000Hz , are not useful for two reasons : 1. The very important low-frequency attenuation data are absent. 2. Sharp peaks and valleys in the curves are unrecognized. As a result, a particularly troublesome frequency may not be sufficiently attenuated. In the absence of a completely frequency analysis, the STC rating of a door is a better indication than an average transmission loss figure. Louvered doors ( and doors undercut to permit air movement ) are useless as sound barriers. The most important step in soundproofing doors is complete sealing around the opening. A
  • 43. 41 door in the closed position. A door in the closed position should exert pressure on gaskets, making the joints alright. When a single door does not provide sufficient attenuation and specially constructed high-attenuation commercial acoustic doors are not practical, a simple and very effective technique is the construction of a sound lock consisting of two doors, preferably with sufficient space between them to permit full door swing. All surfaces in the sound lock should be covered completely by absorbent material and the floor carpeted. Such an arrangement will increase attenuation across the board by at least 10dB and by as much as 20dB at some frequencies, depending upon the shape of the sound lock and the type, amount, and mounting of absorptive material in the sound lock. The two doors of the sound lock must be gasketed. Figure 6.5.3 Gasket installation on the door frame so it can seals better as a sound proof door
  • 44. 42 Figure 6.5.4 Transom seal at the door bottom, in contact with the carpeted floor, in Plenary Hall, PICC Another important consideration with respect to sound intrusion via doors is the location fo a door relative to sources of unwanted sound. This is particularly important in multiple-resident buildings of all types, including private homes, apartment houses, hotels, and rooming houses. The same principle applies to commercial spaces where numerous private spaces such as offices open onto a common lobby or foyer.
  • 45. 43 7.0 Conclusion Through this assignment, we are able to to identify the sound source and main activities carried out in PICC which mainly consists of ceremonies and conferences. These leads to in depth research on the speech intelligibility that shows how the sound from the speaker is delivered throughout the interior space. Other than that, we are able to deliver the sound paths, echoes and focusing ( sound concentration ) by using ray diagrams. We are also able to identify the main materials used in the sound acoustic system for the PICC which consists of the components – walls, ceiling, floor, and door.
  • 46. 44 8.0 References Book 1. Grondzik W.T., Kwok A.G., Stein B., Reynolds J.S. (2010). Mechanical and Electrical Equipment For Buildings. John Wiley & Sons. 2. McMullan, R. (2012). Environmental Science in Buildings. McMillan. Online Resources 1. SoundProofingCo. (n.a). Door Sweep Soundprrofing. Retrieved 30th April 2017 from http://www.soundproofing.org/infopages/soundproofing_doors.htm. 2. Decustik. (n.a.) Perforated Acoustic Panels. Retrieved 30th April 2017 from http://www.decustik.com/en/perforated-acoustic-panels. 3. PhysicalClassroom. (n.a.) Reflection, Refraction, and Diffraction. Retrieved 30th April 2017 from http://www.physicsclassroom.com/class/sound/Lesson-3/Reflection,-Refraction,-and-Diffraction . 4. Akustik. (n.a.) Absorption Coefficients. Retrieved 30th April 2017 from http://www.acoustic.ua/st/web_absorption_data_eng.pdf 5. SilAcoustics. (n.a.) Perforated Acoustic Panels. Retrieved 30th April 2017 from http://www.stil-acoustics.co.uk/Timber-Acoustic/Perforated.html 6. Acoustical. (n.a.) Sound Diffusers. Retrieved 30th April 2017 from https://acousticalsolutions.com/product-category/sound-diffusers/ 7. Norsonic. (n.a.) Reverberation Time Measurement. Retrieved 30th April 2017 from http://www.norsonic.com/no/applikasjoner/bygningsakustikk/reverberation_time_measurement/ 8. SoundFighter. (n.a.) Absorptive vs Reflective. Retrieved 30th April 2017 from https://www.soundfighter.com/our-technology/absorptive-vs-reflective/ 9. kineticsNosie. (n.a.) Ovation Acoustic Panel. Retrieved 30th April 2017 from http://www.kineticsnoise.com/interiors/ovation.html 10. Decoustics. (n.a.) Reflective Wall Panels. Retrieved 30th April 2017 from http://www.decoustics.com/products/Fabric/Reflective
  • 47. 45 11. Choi Y.J. (n.a.) The Effects of Occupancy on Theatre Chair Absorption Characteristics. Retrived 1st May 2017 from http://www.caa-aca.ca/conferences/isra2013/proceedings/Papers/P048.pdf 12. ForumSeating (n.a.) Acoustic As Important As Ergonomics. Retrieved 1st May 2017 from http://www.forumseating.com/news/a2015/art,164,acoustics-as-important-as-ergonomics.html 13. Tucker B. (2016). Acoustic Physics in Theatre. Retrieved 1st May 2017 from https://www.octaneseating.com/acoustic-physics-in-the-theater 14. IndoSonic. (n.a.). Acoustic Floor Carpet. Retrieved 1st May 2017 from http://indosonic.com/isonic-acoustic-floor-carpet-rolls.html 15. Sontext (n.a.). Panels in an Auditorium. Retrieved 1st May 2017 from http://www.sontext.com.au/acoustic-panels-in-an-auditorium/ 16. BusinessWire (n.a.) Acoustic Panels. Retrieved 1st May 2017 from http://www.businesswire.com/news/home/20140910006590/en/Snowsound%C2%AE-USA-Intr oduces-Acoustic-Panels 17. AcousticFirst. (n.a.). Fabric Wrapped Acoustic Wall Panels. Retrieved 1st May 2017 from http://www.acousticsfirst.com/sonora-wall-panels.htm 18. Voss S. (2015). A Beginner’s Guide to Acoustic Panel and Acoustic Fabric. Retrieved 1st May 2017 from http://blog.guilfordofmaine.com/a-beginners-guide-to-acoustic-panels-and-acoustic-fabric 19. ProAcosutics. (n.a.). Auditorium Sound System. Retrieved 1st May 2017 from http://www.proacousticsusa.com/complete-sound-systems/school-sound-systems/auditorium-s ound-systems.html
  • 48. 46
  • 49. 47
  • 50. 48
  • 51. 49
  • 52. 50
  • 53. 51
  • 54. 52
  • 55. 53