Precalculus<br />Test 2 Study Guide<br />3657600149860uu1714500149860Magnitude<br />354330085725Resultant<br />194310020955vvScalar<br />Vector<br />1.Find the magnitude and direction of:<br />a)  2vb)  v+uc)  -v+2ud)  12v-2u<br />2.Find the magnitude of the horizontal and vertical components of v and u.<br />3.a=2, 3, -1 and b=-7,1,-3<br />Write the ordered triple that represents each expression. Find the magnitude of the resultant vector.<br />a)  a+bb)  -a+2bc)  12a-bd)  -b+4a <br />e)  3a+b+2bf)  -13b<br />4.Write the vector as the sum of unit vectors. Find the magnitude of each vector.<br />a)  2,4b) -3,5c)  -1,3,-2d) 12,3,-8       <br />5.Write the ordered pair or triple that represents YZ.<br />a)  Y-2,5, Z2, 8b)   Y-1,-5, Z3,7c)  Y-4, 12, Z0, -3  <br />d)  Y0,6,3, Z1,4,-3 e)  Y-2,4,7, Z-3,5,2 <br />6.Find the inner (dot) product of each set of vectors. Are the vectors perpendicular?<br />a)  4,8∙6,-3 b)  -6,7,5∙4,9,-3 c)  -7,1,0∙4,0,-2<br />7.Find the cross product of each set of vectors.  Verify that the resulting vector is perpendicular to the given vectors.<br />a)  4,8,2×6,-3,-1b)  5,-2,5×-1,0,-3c)  -2,3,0×5,2,0 <br />8.Prove that for any vector a, a×-a=0<br />9.Use the definition of cross products to prove that for any vectors a, b, c, a×b+c=a×b+a+c<br />10.Graph the following points on the Polar plane.<br />a)  2, 180°b)  -1, 3π4c)  3, -45°d)  -2,-π6<br />11.Convert the polar coordinates into rectangular.<br />a)  2, 180°b)  -1, 3π4c)  3, -45°d)  -2,-π6<br />12.Convert the rectangular coordinates into polar.<br />a)  -3,4b)  (-5,-12)c)  3,-1d)  22,-22<br />13.Solve the equation for x and y. <br />a)  2x+y+xi+yi=5+4i<br />b)  2x-5yi=12+15i<br />c)  1+x+yi=y+3xi<br />14.Write the complex number in polar form.<br />a)  -2+4ib)  -42c)  -1-3id)  6-8i<br />15.Write the complex number in rectangular form.<br />a)  2cos5π4+isin5π4b)  cos-π6+isin-π6c)  2.5cos1+isin1<br />16.  r represents the ____________ of the complex number.<br />
PC Test 2 study guide 2011

PC Test 2 study guide 2011

  • 1.
    Precalculus<br />Test 2Study Guide<br />3657600149860uu1714500149860Magnitude<br />354330085725Resultant<br />194310020955vvScalar<br />Vector<br />1.Find the magnitude and direction of:<br />a) 2vb) v+uc) -v+2ud) 12v-2u<br />2.Find the magnitude of the horizontal and vertical components of v and u.<br />3.a=2, 3, -1 and b=-7,1,-3<br />Write the ordered triple that represents each expression. Find the magnitude of the resultant vector.<br />a) a+bb) -a+2bc) 12a-bd) -b+4a <br />e) 3a+b+2bf) -13b<br />4.Write the vector as the sum of unit vectors. Find the magnitude of each vector.<br />a) 2,4b) -3,5c) -1,3,-2d) 12,3,-8 <br />5.Write the ordered pair or triple that represents YZ.<br />a) Y-2,5, Z2, 8b) Y-1,-5, Z3,7c) Y-4, 12, Z0, -3 <br />d) Y0,6,3, Z1,4,-3 e) Y-2,4,7, Z-3,5,2 <br />6.Find the inner (dot) product of each set of vectors. Are the vectors perpendicular?<br />a) 4,8∙6,-3 b) -6,7,5∙4,9,-3 c) -7,1,0∙4,0,-2<br />7.Find the cross product of each set of vectors. Verify that the resulting vector is perpendicular to the given vectors.<br />a) 4,8,2×6,-3,-1b) 5,-2,5×-1,0,-3c) -2,3,0×5,2,0 <br />8.Prove that for any vector a, a×-a=0<br />9.Use the definition of cross products to prove that for any vectors a, b, c, a×b+c=a×b+a+c<br />10.Graph the following points on the Polar plane.<br />a) 2, 180°b) -1, 3π4c) 3, -45°d) -2,-π6<br />11.Convert the polar coordinates into rectangular.<br />a) 2, 180°b) -1, 3π4c) 3, -45°d) -2,-π6<br />12.Convert the rectangular coordinates into polar.<br />a) -3,4b) (-5,-12)c) 3,-1d) 22,-22<br />13.Solve the equation for x and y. <br />a) 2x+y+xi+yi=5+4i<br />b) 2x-5yi=12+15i<br />c) 1+x+yi=y+3xi<br />14.Write the complex number in polar form.<br />a) -2+4ib) -42c) -1-3id) 6-8i<br />15.Write the complex number in rectangular form.<br />a) 2cos5π4+isin5π4b) cos-π6+isin-π6c) 2.5cos1+isin1<br />16. r represents the ____________ of the complex number.<br />