SlideShare a Scribd company logo
Oscillation: an effect that repeatedly and
regularly fluctuates about the mean value
Oscillator: circuit that produces oscillation
Characteristics: wave-shape, frequency,
amplitude, distortion, stability
•Ref:06103104HKN
•EE3110 Oscillator •1
 Oscillators are used to generate signals, e.g.
◦ Used as a local oscillator to transform the RF
signals to IF signals in a receiver;
◦ Used to generate RF carrier in a transmitter
◦ Used to generate clocks in digital systems;
◦ Used as sweep circuits in TV sets and CRO.
•Ref:06103104HKN
•EE3110 Oscillator •2
1. Wien Bridge Oscillators
2. RC Phase-Shift Oscillators
3. LC Oscillators
4. Stability
•Ref:06103104HKN
•EE3110 Oscillator •3
•Ref:06103104HKN
•EE3110 Oscillator •4
For sinusoidal input is connected
“Linear” because the output is approximately sinusoidal
A linear oscillator contains:
- a frequency selection feedback network
- an amplifier to maintain the loop gain at unity

+
+
Amplifier (A)
Frequency-Selective
Feedback Network ()
Vf
Vs Vo
V
Positive
Feedback
•Ref:06103104HKN
•EE3110 Oscillator •5

+
+
SelectiveNetwork
(f)
Vf
Vs Vo
V
A(f)
)
( f
s
o V
V
A
AV
V 

  and o
f V
V 


A
A
V
V
s
o



1
If Vs = 0, the only way that Vo can be nonzero
is that loop gain A=1 which implies that
0
1
|
|





A
A (Barkhausen Criterion)
•Ref:06103104HKN
•EE3110 Oscillator •6
Frequency Selection Network
Let
1
1
1
C
XC

 and
1
1
1 C
jX
R
Z 

2
2
1
C
XC


2
2
2
2
1
2
2
2
1
1
C
C
C jX
R
X
jR
jX
R
Z













Therefore, the feedback factor,
)
/
(
)
(
)
/
(
2
2
2
2
1
1
2
2
2
2
2
1
2
C
C
C
C
C
i
o
jX
R
X
jR
jX
R
jX
R
X
jR
Z
Z
Z
V
V











2
2
2
2
1
1
2
2
)
)(
( C
C
C
C
X
jR
jX
R
jX
R
X
jR






Vi Vo
R1 C1
R2
C2
Z1
Z2
•Ref:06103104HKN
•EE3110 Oscillator •7
 can be rewritten as:
)
( 2
1
2
1
2
2
1
2
2
1
2
2
C
C
C
C
C
C
X
X
R
R
j
X
R
X
R
X
R
X
R






For Barkhausen Criterion, imaginary part = 0, i.e.,
0
2
1
2
1 
 C
C X
X
R
R
Supposing,
R1=R2=R and XC1= XC2=XC,
2
1
2
1
2
1
2
1
/
1
1
1
or
C
C
R
R
C
C
R
R






)
(
3 2
2
C
C
C
X
R
j
RX
RX




0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
Feedback
factor

-1
-0.5
0
0.5
1
Phase
Frequency
=1/3
Phase=0
f(R=Xc)
•Ref:06103104HKN
•EE3110 Oscillator •8
Rf
+

R
R
C
C
Z1
Z2
R1
Vo
By setting , we get
Imaginary part = 0 and
RC
1


3
1


Due to Barkhausen Criterion,
Loop gain Av=1
where
Av : Gain of the amplifier
1
1
3
1
R
R
A
A
f
v
v 





2
1

R
Rf
Therefore, Wien Bridge Oscillator
•Ref:06103104HKN
•EE3110 Oscillator •9
+

Rf
R1
R R R
C C C
 Using an inverting amplifier
 The additional 180o phase shift is provided by an RC
phase-shift network
•Ref:06103104HKN
•EE3110 Oscillator •10
R R R
C C C
V1 Vo
I1 I2 I3
Solve for I3, we get
)
2
(
0
)
2
(
0
)
(
3
2
3
2
1
2
1
1
C
C
C
jX
R
I
R
I
R
I
jX
R
I
R
I
R
I
jX
R
I
V












C
C
C
C
C
jX
R
R
R
jX
R
R
R
jX
R
R
jX
R
R
V
R
jX
R
I













2
0
2
0
0
0
0
2
3
1
)
2
(
]
)
2
)[(
( 2
2
2
2
1
3
C
C
C jX
R
R
R
jX
R
jX
R
R
V
I






Or
•Ref:06103104HKN
•EE3110 Oscillator •11
The output voltage,
)
2
(
]
)
2
)[(
( 2
2
2
3
1
3
C
C
C
o
jX
R
R
R
jX
R
jX
R
R
V
R
I
V







Hence the transfer function of the phase-shift network is given by,
)
6
(
)
5
( 2
3
2
3
3
1 C
C
C
o
X
R
X
j
RX
R
R
V
V






For 180o phase shift, the imaginary part = 0, i.e.,
RC
R
X
X
R
X C
C
C
6
1
6
X
(Rejected)
0
or
0
6
2
2
C
2
3







and,
29
1



Note: The –ve sign mean the
phase inversion from the
voltage
•Ref:06103104HKN
•EE3110 Oscillator •12
+

~
Av Ro
Z1 Z2
Z3
1
2
Zp
 The frequency selection
network (Z1, Z2 and Z3)
provides a phase shift of
180o
 The amplifier provides an
addition shift of 180o
Two well-known Oscillators:
• Colpitts Oscillator
• Harley Oscillator
•Ref:06103104HKN
•EE3110 Oscillator •13
+
~
Av Ro
Z1 Z2
Z3
Zp
Vf Vo
3
2
1
3
1
2
3
1
2
)
(
)
//(
Z
Z
Z
Z
Z
Z
Z
Z
Z
Zp






For the equivalent circuit from the output
p
o
p
v
i
o
p
o
p
o
i
v
Z
R
Z
A
V
V
Z
V
Z
R
V
A






or
Therefore, the amplifier gain is obtained,
)
(
)
(
)
(
3
1
2
3
2
1
3
1
2
Z
Z
Z
Z
Z
Z
R
Z
Z
Z
A
V
V
A
o
v
i
o








o
o
f V
Z
Z
Z
V
V
3
1
1


 
Zp
AvVi
Ro
+


+
Vo
Io
•Ref:06103104HKN
•EE3110 Oscillator •14
The loop gain,
)
(
)
( 3
1
2
3
2
1
2
1
Z
Z
Z
Z
Z
Z
R
Z
Z
A
A
o
v







If the impedance are all pure reactances, i.e.,
3
3
2
2
1
1 and
, jX
Z
jX
Z
jX
Z 


The loop gain becomes,
)
(
)
( 3
1
2
3
2
1
2
1
X
X
X
X
X
X
jR
X
X
A
A
o
v






The imaginary part = 0 only when X1+ X2+ X3=0
 It indicates that at least one reactance must be –ve (capacitor)
 X1 and X2 must be of same type and X3 must be of opposite type
2
1
3
1
1
X
X
A
X
X
X
A
A v
v





With imaginary part = 0,
For Unit Gain & 180o Phase-shift,
1
2
1
X
X
A
A v 



•Ref:06103104HKN
•EE3110 Oscillator •15
R L1
L2
C
R
C1
C2
L
Hartley Oscillator Colpitts Oscillator
T
o
LC
1


1
2
RC
C
gm 
2
1
2
1
C
C
C
C
CT


C
L
L
o
)
(
1
2
1 


2
1
RL
L
gm 
•Ref:06103104HKN
•EE3110 Oscillator •16
R
C1
C2
L
Equivalent circuit
In the equivalent circuit, it is assumed that:
 Linear small signal model of transistor is used
 The transistor capacitances are neglected
 Input resistance of the transistor is large enough
+

V
gmV
R C1
C2
L
•Ref:06103104HKN
•EE3110 Oscillator •17
)
(
1
1 L
j
i
V
V 
 

At node 1,
where,

 V
C
j
i 2
1 
)
1
( 2
2
1 LC
V
V 
 


Apply KCL at node 1, we have
0
1
1
1
2 


 V
C
j
R
V
V
g
V
C
j m 
 

0
1
)
1
( 1
2
2
2 









 C
j
R
LC
V
V
g
V
C
j m 

 


  0
)
(
1
2
1
3
2
1
2
2













 C
LC
C
C
j
R
LC
R
gm 


For Oscillator V must not be zero, therefore it enforces,
+

V
gmV
R C1
C2
L
node 1
I1
I2
I3
I4
V
•Ref:06103104HKN
•EE3110 Oscillator •18
Imaginary part = 0, we have
  0
)
(
1
2
1
3
2
1
2
2













 C
LC
C
C
j
R
LC
R
gm 


T
o
LC
1


1
2
RC
C
gm 
2
1
2
1
C
C
C
C
CT


Real part = 0, yields
 The frequency stability of an oscillator is
defined as
 Use high stability capacitors, e.g. silver
mica, polystyrene, or teflon capacitors and
low temperature coefficient inductors for
high stable oscillators.
•Ref:06103104HKN
•EE3110 Oscillator •19
C
ppm/
T
o
o
o d
d



 







1
 In order to start the oscillation, the loop
gain is usually slightly greater than unity.
 LC oscillators in general do not require
amplitude stabilization circuits because of
the selectivity of the LC circuits.
 In RC oscillators, some non-linear devices,
e.g. NTC/PTC resistors, FET or zener
diodes can be used to stabilized the
amplitude
•Ref:06103104HKN
•EE3110 Oscillator •20
•Ref:06103104HKN
•EE3110 Oscillator •21
Vrms
irms
Operating
point
+

R
R
C
C
R2
Blub
•Ref:06103104HKN
•EE3110 Oscillator •22
Rf
+

R
R
C
C
R1
Vo
•Ref:06103104HKN
•EE3110 Oscillator •23
+

low pass filter
high pass filter
low pass region high pass region
fr f
Filter output
•Ref:06103104HKN
•EE3110 Oscillator •24
+

vo
v1
v+
Vth
+Vcc
-Vcc
vo
v1
-Vth
+Vcc
-Vcc
vo
v1
Vth
+Vcc
-Vcc
vo
v1
-Vth
•Ref:06103104HKN
•EE3110 Oscillator •25
+

vo
vc
vf
vc
vo
+vf
¡Ð
vf
+vmax
¡Ð
vmax

More Related Content

Similar to Oscillators.ppt

Oscillator
OscillatorOscillator
Oscillator
SedhuMadhavan7
 
Wein bridge oscillator old rev
Wein bridge oscillator old revWein bridge oscillator old rev
Wein bridge oscillator old rev
Raj Mehra Mehar
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
ProfVilasShamraoPati
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
ProfVilasShamraoPati
 
Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator
veeravanithaD
 
NEET coaching class in Mumbai
NEET coaching class in MumbaiNEET coaching class in Mumbai
NEET coaching class in Mumbai
Ekeeda
 
Oscillator
OscillatorOscillator
Oscillator
Ankit Dubey
 
Colpitts Oscillator
Colpitts OscillatorColpitts Oscillator
Colpitts Oscillator
ayesha zaheer
 
transistor oscillators
transistor oscillators transistor oscillators
transistor oscillators
Emdadul Haque
 
Electrical Engineering
Electrical EngineeringElectrical Engineering
Electrical Engineering
Ekeeda
 
Oscillators
OscillatorsOscillators
Oscillators
azhagujaisudhan
 
Study of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorStudy of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled Oscillator
Neha Mannewar
 
ADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdfADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdf
bhavithchandra1
 
Differentiator
DifferentiatorDifferentiator
Differentiator
Preeti Choudhary
 
OSCILLATOR Chapter+12
OSCILLATOR Chapter+12OSCILLATOR Chapter+12
Oscillators
OscillatorsOscillators
Oscillators
Nagaveni Nitin
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
Touqeer Jumani
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
PonnalaguRN1
 

Similar to Oscillators.ppt (20)

Oscillator
OscillatorOscillator
Oscillator
 
Wein bridge oscillator old rev
Wein bridge oscillator old revWein bridge oscillator old rev
Wein bridge oscillator old rev
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
 
Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator
 
NEET coaching class in Mumbai
NEET coaching class in MumbaiNEET coaching class in Mumbai
NEET coaching class in Mumbai
 
Oscillator
OscillatorOscillator
Oscillator
 
Colpitts Oscillator
Colpitts OscillatorColpitts Oscillator
Colpitts Oscillator
 
transistor oscillators
transistor oscillators transistor oscillators
transistor oscillators
 
Oscillators
OscillatorsOscillators
Oscillators
 
Electrical Engineering
Electrical EngineeringElectrical Engineering
Electrical Engineering
 
Oscillators
OscillatorsOscillators
Oscillators
 
Pdc ppt
Pdc pptPdc ppt
Pdc ppt
 
Study of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorStudy of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled Oscillator
 
ADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdfADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdf
 
Differentiator
DifferentiatorDifferentiator
Differentiator
 
OSCILLATOR Chapter+12
OSCILLATOR Chapter+12OSCILLATOR Chapter+12
OSCILLATOR Chapter+12
 
Oscillators
OscillatorsOscillators
Oscillators
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
 

Recently uploaded

Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
Kamal Acharya
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.pptPROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
bhadouriyakaku
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Ethernet Routing and switching chapter 1.ppt
Ethernet Routing and switching chapter 1.pptEthernet Routing and switching chapter 1.ppt
Ethernet Routing and switching chapter 1.ppt
azkamurat
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 

Recently uploaded (20)

Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.pptPROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Ethernet Routing and switching chapter 1.ppt
Ethernet Routing and switching chapter 1.pptEthernet Routing and switching chapter 1.ppt
Ethernet Routing and switching chapter 1.ppt
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 

Oscillators.ppt

  • 1. Oscillation: an effect that repeatedly and regularly fluctuates about the mean value Oscillator: circuit that produces oscillation Characteristics: wave-shape, frequency, amplitude, distortion, stability •Ref:06103104HKN •EE3110 Oscillator •1
  • 2.  Oscillators are used to generate signals, e.g. ◦ Used as a local oscillator to transform the RF signals to IF signals in a receiver; ◦ Used to generate RF carrier in a transmitter ◦ Used to generate clocks in digital systems; ◦ Used as sweep circuits in TV sets and CRO. •Ref:06103104HKN •EE3110 Oscillator •2
  • 3. 1. Wien Bridge Oscillators 2. RC Phase-Shift Oscillators 3. LC Oscillators 4. Stability •Ref:06103104HKN •EE3110 Oscillator •3
  • 4. •Ref:06103104HKN •EE3110 Oscillator •4 For sinusoidal input is connected “Linear” because the output is approximately sinusoidal A linear oscillator contains: - a frequency selection feedback network - an amplifier to maintain the loop gain at unity  + + Amplifier (A) Frequency-Selective Feedback Network () Vf Vs Vo V Positive Feedback
  • 5. •Ref:06103104HKN •EE3110 Oscillator •5  + + SelectiveNetwork (f) Vf Vs Vo V A(f) ) ( f s o V V A AV V     and o f V V    A A V V s o    1 If Vs = 0, the only way that Vo can be nonzero is that loop gain A=1 which implies that 0 1 | |      A A (Barkhausen Criterion)
  • 6. •Ref:06103104HKN •EE3110 Oscillator •6 Frequency Selection Network Let 1 1 1 C XC   and 1 1 1 C jX R Z   2 2 1 C XC   2 2 2 2 1 2 2 2 1 1 C C C jX R X jR jX R Z              Therefore, the feedback factor, ) / ( ) ( ) / ( 2 2 2 2 1 1 2 2 2 2 2 1 2 C C C C C i o jX R X jR jX R jX R X jR Z Z Z V V            2 2 2 2 1 1 2 2 ) )( ( C C C C X jR jX R jX R X jR       Vi Vo R1 C1 R2 C2 Z1 Z2
  • 7. •Ref:06103104HKN •EE3110 Oscillator •7  can be rewritten as: ) ( 2 1 2 1 2 2 1 2 2 1 2 2 C C C C C C X X R R j X R X R X R X R       For Barkhausen Criterion, imaginary part = 0, i.e., 0 2 1 2 1   C C X X R R Supposing, R1=R2=R and XC1= XC2=XC, 2 1 2 1 2 1 2 1 / 1 1 1 or C C R R C C R R       ) ( 3 2 2 C C C X R j RX RX     0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 Feedback factor  -1 -0.5 0 0.5 1 Phase Frequency =1/3 Phase=0 f(R=Xc)
  • 8. •Ref:06103104HKN •EE3110 Oscillator •8 Rf +  R R C C Z1 Z2 R1 Vo By setting , we get Imaginary part = 0 and RC 1   3 1   Due to Barkhausen Criterion, Loop gain Av=1 where Av : Gain of the amplifier 1 1 3 1 R R A A f v v       2 1  R Rf Therefore, Wien Bridge Oscillator
  • 9. •Ref:06103104HKN •EE3110 Oscillator •9 +  Rf R1 R R R C C C  Using an inverting amplifier  The additional 180o phase shift is provided by an RC phase-shift network
  • 10. •Ref:06103104HKN •EE3110 Oscillator •10 R R R C C C V1 Vo I1 I2 I3 Solve for I3, we get ) 2 ( 0 ) 2 ( 0 ) ( 3 2 3 2 1 2 1 1 C C C jX R I R I R I jX R I R I R I jX R I V             C C C C C jX R R R jX R R R jX R R jX R R V R jX R I              2 0 2 0 0 0 0 2 3 1 ) 2 ( ] ) 2 )[( ( 2 2 2 2 1 3 C C C jX R R R jX R jX R R V I       Or
  • 11. •Ref:06103104HKN •EE3110 Oscillator •11 The output voltage, ) 2 ( ] ) 2 )[( ( 2 2 2 3 1 3 C C C o jX R R R jX R jX R R V R I V        Hence the transfer function of the phase-shift network is given by, ) 6 ( ) 5 ( 2 3 2 3 3 1 C C C o X R X j RX R R V V       For 180o phase shift, the imaginary part = 0, i.e., RC R X X R X C C C 6 1 6 X (Rejected) 0 or 0 6 2 2 C 2 3        and, 29 1    Note: The –ve sign mean the phase inversion from the voltage
  • 12. •Ref:06103104HKN •EE3110 Oscillator •12 +  ~ Av Ro Z1 Z2 Z3 1 2 Zp  The frequency selection network (Z1, Z2 and Z3) provides a phase shift of 180o  The amplifier provides an addition shift of 180o Two well-known Oscillators: • Colpitts Oscillator • Harley Oscillator
  • 13. •Ref:06103104HKN •EE3110 Oscillator •13 + ~ Av Ro Z1 Z2 Z3 Zp Vf Vo 3 2 1 3 1 2 3 1 2 ) ( ) //( Z Z Z Z Z Z Z Z Z Zp       For the equivalent circuit from the output p o p v i o p o p o i v Z R Z A V V Z V Z R V A       or Therefore, the amplifier gain is obtained, ) ( ) ( ) ( 3 1 2 3 2 1 3 1 2 Z Z Z Z Z Z R Z Z Z A V V A o v i o         o o f V Z Z Z V V 3 1 1     Zp AvVi Ro +   + Vo Io
  • 14. •Ref:06103104HKN •EE3110 Oscillator •14 The loop gain, ) ( ) ( 3 1 2 3 2 1 2 1 Z Z Z Z Z Z R Z Z A A o v        If the impedance are all pure reactances, i.e., 3 3 2 2 1 1 and , jX Z jX Z jX Z    The loop gain becomes, ) ( ) ( 3 1 2 3 2 1 2 1 X X X X X X jR X X A A o v       The imaginary part = 0 only when X1+ X2+ X3=0  It indicates that at least one reactance must be –ve (capacitor)  X1 and X2 must be of same type and X3 must be of opposite type 2 1 3 1 1 X X A X X X A A v v      With imaginary part = 0, For Unit Gain & 180o Phase-shift, 1 2 1 X X A A v    
  • 15. •Ref:06103104HKN •EE3110 Oscillator •15 R L1 L2 C R C1 C2 L Hartley Oscillator Colpitts Oscillator T o LC 1   1 2 RC C gm  2 1 2 1 C C C C CT   C L L o ) ( 1 2 1    2 1 RL L gm 
  • 16. •Ref:06103104HKN •EE3110 Oscillator •16 R C1 C2 L Equivalent circuit In the equivalent circuit, it is assumed that:  Linear small signal model of transistor is used  The transistor capacitances are neglected  Input resistance of the transistor is large enough +  V gmV R C1 C2 L
  • 17. •Ref:06103104HKN •EE3110 Oscillator •17 ) ( 1 1 L j i V V     At node 1, where,   V C j i 2 1  ) 1 ( 2 2 1 LC V V      Apply KCL at node 1, we have 0 1 1 1 2     V C j R V V g V C j m     0 1 ) 1 ( 1 2 2 2            C j R LC V V g V C j m         0 ) ( 1 2 1 3 2 1 2 2               C LC C C j R LC R gm    For Oscillator V must not be zero, therefore it enforces, +  V gmV R C1 C2 L node 1 I1 I2 I3 I4 V
  • 18. •Ref:06103104HKN •EE3110 Oscillator •18 Imaginary part = 0, we have   0 ) ( 1 2 1 3 2 1 2 2               C LC C C j R LC R gm    T o LC 1   1 2 RC C gm  2 1 2 1 C C C C CT   Real part = 0, yields
  • 19.  The frequency stability of an oscillator is defined as  Use high stability capacitors, e.g. silver mica, polystyrene, or teflon capacitors and low temperature coefficient inductors for high stable oscillators. •Ref:06103104HKN •EE3110 Oscillator •19 C ppm/ T o o o d d             1
  • 20.  In order to start the oscillation, the loop gain is usually slightly greater than unity.  LC oscillators in general do not require amplitude stabilization circuits because of the selectivity of the LC circuits.  In RC oscillators, some non-linear devices, e.g. NTC/PTC resistors, FET or zener diodes can be used to stabilized the amplitude •Ref:06103104HKN •EE3110 Oscillator •20
  • 23. •Ref:06103104HKN •EE3110 Oscillator •23 +  low pass filter high pass filter low pass region high pass region fr f Filter output