SlideShare a Scribd company logo
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
1
ON OPTIMIZATION OF DOPING OF A HETERO-
STRUCTURE DURING MANUFACTURING OF P-I-N-
DIODES
E.L. Pankratov1,3
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
3
Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-
novskoe Shosse, Nizhny Novgorod, 603950, Russia
ABSTRACT
We introduce an approach of manufacturing of a p-i-n-heterodiodes. The approach based on using a δ-
doped heterostructure, doping by diffusion or ion implantation of several areas of the heterostructure. After
the doping the dopant and/or radiation defects have been annealed. We introduce an approach to optimize
annealing of the dopant and/or radiation defects. We determine several conditions to manufacture more
compact p-i-n-heterodiodes.
KEYWORDS
p-i-n-heterodiodes; decreasing of dimensions of p-i-n-diodes; optimization of manufacturing; δ-doping;
analytical approach for modelling
1. INTRODUCTION
Development of the solid state electronic devices leads to necessity of increasing of performance,
reliability and integration rate of elements of integrated circuits (p-n- junctions, their systems et
al) [1-7]. Increasing of integration rate of elements of integrated circuits leads to necessity to de-
crease their dimensions. One way to increase performance of the above elements is determination
new materials with high charge carrier’s motilities. The second one is elaboration new technolo-
gical processes and optimization existing one [8-21]. Dimensions of elements of integrated cir-
cuits could be also decreased by using new technological processes and optimization existing one
[8-17].
In the present paper we consider an approach to decrease dimensions of p-i-n-diodes. The ap-
proach based on using a heterostructure from Fig. 1. The heterostructure consist of a substrate
and four epitaxial layers. A δ-layer has been grown between average epitaxial layers to manufac-
ture required type of conductivity (n or p) in the doped area. Another epitaxial layers have been
manufactured with sections (see Fig. 1). The sections have been manufactured by using another
materials. We assumed, that the sections have been doped by diffusion or ion implantation to pro-
duce in this section required type of conductivity (p or n). The considered approach gives us pos-
sibility to manufacture more thin p-i-n-diodes. After doping sections dopant and/or radiation de-
fects have been annealed. Annealing of dopant gives us possibility to infuse the dopant on re-
quired depth. Annealing of radiation defects gives us possibility to decrease their quantity.
Framework this paper we analyzed dynamics of dopant and radiation defects during annealing.
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
2
Substrate
Epitaxial layer 1
Epitaxial layer 2
Epitaxial layer 3
Epitaxial layer 4
δ-layer
Fig. 1. A multilayer structure with a substrate and four epitaxial layers.
Heterostructure, which consist of a substrate, four epitaxial layers and sections framework the layers
2. METHOD OF SOLUTION
We determine distributions of concentrations of dopants in space and time to solve our aim. To
determine the distributions we solved the second Fick's law [1,3,17]
( ) ( ) ( ) ( )






+





+





=
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC
CCC
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,,,,,,,,,,
. (1)
Boundary and initial conditions for the equations are
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C (x,y,z,0)=f (x,y,z). (2)
The function C(x,y,z,t) describes distribution of concentration of dopant in space and time; T is
the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient
has different values in different materials. Value of dopant diffusion coefficient changing with
heating and cooling of heterostructure (with account Arrhenius law). Dopant diffusion coefficient
could be approximated by the following relation [22-24]
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
. (3)
The function DL(x,y,z,T) describes variation of dopant diffusion coefficient in space (due inhomo-
geneity of heterostructure) and with variation of temperature (due to Arrhenius law); the function
P(x,y,z,T) describes the limit of solubility of dopant; parameter γ is integer in the following inter-
val γ ∈[1,3] [22]; the function V (x,y,z,t) describes variation of distribution of concentration of
radiation vacancies in space and time; the parameter V*
describes the equilibrium distribution of
concentration of vacancies. Dependence of dopant diffusion coefficient on concentration of do-
pant has been described in details in [22]. It should be noted, that using diffusion type of doping
did not generation radiation defects. In this situation ζ1=ζ2=0. We determine distributions of con-
centrations of radiation defects in space and time by solving the following system of equations
[23,24]
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
3
( ) ( ) ( ) ( ) ( ) ( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
IIII ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
tzyxI VII ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× (4)
( ) ( ) ( ) ( ) ( ) ( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVVV ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
tzyxV VIV ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× .
Boundary and initial conditions for these equations are
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ=I,V; the function I(x,y,z,t) describes distribution of concentration of radiation interstitials
in space and time; Dρ(x,y,z,T) are the diffusion coefficients of point radiation defects; terms
V2
(x,y,z,t) and I2
(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V(x,y,z,T) is the
parameter of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parame-
ters of generation of simplest complexes of point radiation defects.
Distributions of concentrations of divacancies ΦV(x,y,z,t) and dinterstitials ΦI (x,y,z,t) in space and
time have been determined by solving the following system of equations [23,24]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects;
kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes.
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
4
To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to
the following integro-differential form
( ) ( ) ( )
( )
×∫ ∫ ∫








++=∫ ∫ ∫
t y
L
z
Lzy
x
L
y
L
z
Lzyx y zx y z V
wvxV
V
wvxV
LL
zy
udvdwdtwvuC
LLL
zyx
0
2*
2
2*1
,,,,,,
1,,,
τ
ς
τ
ς
( ) ( )
( )
( ) ( ) ×∫ ∫ ∫+





+×
t x
L
z
L
L
zx
L
x z
TwyuD
LL
zx
d
x
wvxC
TwvxP
wvxC
TwvxD
0
,,,
,,,
,,,
,,,
1,,, τ
∂
τ∂τ
ξ γ
γ
( ) ( )
( )
( )
( )
( ) +





+








++× τ
∂
τ∂τ
ξ
τ
ς
τ
ς γ
γ
d
y
wyuC
TzyxP
wyuC
V
wyuV
V
wyuV ,,,
,,,
,,,
1
,,,,,,
1 2*
2
2*1
( ) ( ) ( )
( )
( )
( )
×∫ ∫ ∫ 





+








+++
t x
L
y
L
L
yx x y TzyxP
zvuC
V
zvuV
V
zvuV
TzvuD
LL
yx
0
2*
2
2*1
,,,
,,,
1
,,,,,,
1,,, γ
γ
τ
ξ
τ
ς
τ
ς
( ) ( )∫ ∫ ∫+×
x
L
y
L
z
Lzyx x y z
udvdwdwvuf
LLL
zyx
d
z
zvuC
,,
,,,
τ
∂
τ∂
. (1a)
We determine solution of the above equation by using Bubnov-Galerkin approach [25]. Frame-
work the approach we determine solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nCnnnnC tezcycxcatzyxC
0
0 ,,, ,
where ( ) ( )[ ]222
0
22
exp −−−
++−= zyxCnC LLLtDnte π , cn(χ)=cos(π nχ/Lχ). The above series includes
into itself finite number of terms N. The considered series is similar with solution of linear Eq.(1)
(i.e. with ξ =0) and averaged dopant diffusion coefficient D0. Substitution of the series into
Eq.(1a) leads to the following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫



×



∑+−=∑
==
t y
L
z
L
N
n
nCnnnnC
zy
N
n
nCnnn
C
y z
ewcvcxca
LL
zy
tezsysxs
n
azyx
0 11
32
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( )×∑








++



×
=
N
n
nnnCL vcxsaTwvxD
V
wvxV
V
wvxV
TwvxP 1
2*
2
2*1 ,,,
,,,,,,
1
,,,
τ
ς
τ
ς
ξ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ×









∑+−×
=
t x
L
z
L
N
m
mCmmmmC
zx
nCn
x z TwyuP
ewcycuca
LL
zx
dewcn
0 1 ,,,
1 γ
γ
ξ
τττ
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×∑








++×
=
ττ
τ
ς
τ
ς dewcysucn
V
wyuV
V
wyuV
TwyuD
N
n
nCnnnL
1
2*
2
2*1
,,,,,,
1,,,
( )
( )
( ) ( ) ( ) ( ) ×∫ ∫ ∫









∑+−×
=
t x
L
y
L
N
n
nCnnnnCL
yx
nC
x y
ezcvcuca
TzvuP
TzvuD
LL
yx
a
0 1,,,
1,,,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×+∑








++×
=
zyx
N
n
nCnnnnC
LLL
zyx
dezsvcucan
V
zvuV
V
zvuV
ττ
τ
ς
τ
ς
1
2*
2
2*1
,,,,,,
1
( )∫ ∫ ∫×
x
L
y
L
z
Lx y z
udvdwdwvuf ,, ,
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
5
where sn(χ)=sin(πnχ/Lχ). We determine coefficients an by using orthogonality condition of terms
of the considered series framework scale of heterostructure. The condition gives us possibility to
obtain relations for calculation of parameters an for any quantity of terms N. In the common case
the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫



×



∑+−=∑−
==
t L L L N
n
nCnnnnCL
zy
N
n
nC
nCzyx
x y z
ezcycxcaTzyxD
LL
te
n
aLLL
0 0 0 0 1
2
1
65
222
1,,,
2
γ
τ
ππ
( )
( ) ( )
( )
( ) ( ) ( ) ( )×∑








++



×
=
N
n
nCnnn
nC
ezcycxs
n
a
V
zyxV
V
zyxV
TzyxP 1
2*
2
2*1 2
,,,,,,
1
,,,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−






−+






−+×
t L L L
Ln
z
nn
y
n
x y z
TzyxDdxdydzdzc
n
L
zszyc
n
L
ysy
0 0 0 0
,,,11 τ
ππ
( ) ( ) ( ) ( ) ( )
( )
( )



++









∑+×
=
*1
1
,,,
1
,,,
1,,,
V
zyxV
TzyxP
ezcycxcaTzyxD
N
n
nCnnnnCL
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )[ ]∑ ×






−+








++




+
=
N
n
nC
n
x
n
n
a
xc
n
L
xsx
V
zyxV
V
zyxV
V
zyxV
1
2*
2
2*12*
2
2 1
,,,,,,
1
,,,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )[ ] ×−






−+× 22
2
12
2 π
τ
π
τ
π
yx
n
z
nnCnnn
zx
LL
dxdydzdzc
n
L
zszezcysxc
LL
( ) ( ) ( ) ( )
( )
( )
( )∫ ∫ ∫ ∫




++









∑+×
=
t L L L N
n
nCnnnnC
x y z
V
zyxV
TzyxP
ezcycxca
0 0 0 0
2*
2
2
1
,,,
1
,,,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑






−+


+
=
N
n
n
x
nnnn
nC
L xc
n
L
xsxzsycxc
n
a
TzyxD
V
zyxV
1
*1 1,,,
,,,
π
τ
ς
( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×






−++






−+×
=
N
n
L
n
x
nnCn
y
n
x
xc
n
L
xsxdxdydzdeyc
n
L
ysy
1 0
11
π
ττ
π
( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫






−+






−+×
y z
L L
n
z
nn
y
n xdydzdzyxfzc
n
L
zszyc
n
L
ysy
0 0
,,11
ππ
.
As an example for γ = 0 we obtain
( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +






−+






−+=
x y zL L L
nn
y
nn
y
nnC xsxydzdzyxfzc
n
L
zszyc
n
L
ysya
0 0 0
,,11
ππ
( )[ ] ( ) ( ) ( ) ( )[ ] ( )







∫ ∫ ∫ ∫ ×






−+



−×
t L L L
Ln
y
nnn
x
n
x y z
TzyxDyc
n
L
ysyycxs
n
xd
n
L
xc
0 0 0 0
,,,12
2
1
ππ
( ) ( )[ ] ( ) ( )
( ) ( )
×





+








++






−+×
TzyxPV
zyxV
V
zyxV
zc
n
L
zsz n
y
n
,,,
1
,,,,,,
11 2*
2
2*1 γ
ξτ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫






−++×
t L L L
nnn
y
nnnCnCn
x y z
zcysxc
n
L
xsxxcedexdydzdzc
0 0 0 0
21
π
τττ
( ) ( )[ ]
( )
( ) ( )
( )
×








++





+






−+× 2*
2
2*1
,,,,,,
1
,,,
11
V
zyxV
V
zyxV
TzyxP
zc
n
L
zsz n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×






−++×
t L L
nnn
x
nnnCL
x y
ysycxc
n
L
xsxxcedxdydzdTzyxD
0 0 0
1,,,
π
ττ
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
6
( )[ ] ( ) ( )
( )
( )
( )∫




++





+



−+×
zL
Lnn
y
V
zyxV
TzyxP
TzyxDzsyc
n
L
y
0
2*
2
2
,,,
1
,,,
1,,,21
τ
ς
ξ
π γ
( ) ( )
1
65
222
*1
,,,
−




−






+ te
n
LLL
dxdydzd
V
zyxV
nC
zzz
π
τ
τ
ς .
For γ = 1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )∫ ∫ ∫+±−=
x y zL L L
nnnnn
n
n
nC xdydzdzyxfzcycxca
0 0 0
2
,,4
2
αβ
α
β
,
where ( ) ( ) ( ) ( )
( )
( )
( )∫ ∫ ∫ ∫ ×








++=
t L L L
L
nnC
zy
n
x y z
TzyxP
TzyxD
V
zyxV
V
zyxV
xse
n
LL
0 0 0 0
2*
2
2*12
,,,
,,,,,,,,,
12
2
τ
ς
τ
ςτ
π
ξ
α
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∫+






−+






−+×
t
nC
zx
n
z
nn
y
nnn e
n
LL
dxdydzdzc
n
L
zszyc
n
L
ysyzcyc
0
2
2
11 τ
π
ξ
τ
ππ
( ) ( )[ ] ( ) ( )[ ] ( ) ( )
( )
×∫ ∫ ∫








++






−−






−+×
x y zL L L
n
z
nn
x
n
V
zyxV
V
zyxV
zc
n
L
zszxc
n
L
xsx
0 0 0
2*
2
2*1
,,,,,,
111
τ
ς
τ
ς
ππ
( ) ( ) ( )
( )
( )
( ) ( ) ( )
( )
( )
×∫ ∫ ∫ ∫+×
t L L L
L
nnnC
yxL
nnn
x y z
TzyxP
TzyxD
ycxce
n
LL
dxdydzd
TzyxP
TzyxD
zcysxc
0 0 0 0
2
,,,
,,,
2,,,
,,,
2 τ
π
ξ
τ
( ) ( )
( )
( ) ( )[ ] ( ) ( )[ ] ×






−+






−+








++× ydyc
n
L
ysyxc
n
L
xsx
V
zyxV
V
zyxV
n
y
nn
x
n 11
,,,,,,
1 2*
2
2*1
ππ
τ
ς
τ
ς
( ) τdxdzdzsn 2× , ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×








++=
t L L L
nnnC
zy
n
x y z
V
zyxV
V
zyxV
zcxse
n
LL
0 0 0 0
2*
2
2*12
,,,,,,
12
2
τ
ς
τ
ςτ
π
β
( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ×+






−+






−+× 2
2
11,,,
π
τ
ππ n
LL
dxdydyc
n
L
ysyyczdzc
n
L
zszTzyxD zx
n
y
nnn
z
nL
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
( )
×∫ ∫ ∫ ∫








++






−+×
t L L L
nnn
x
nnnC
x y z
V
zyxV
V
zyxV
zcysxc
n
L
xsxxce
0 0 0 0
2*
2
2*1
,,,,,,
121
τ
ς
τ
ς
π
τ
( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−++






−+×
t L
n
x
nnC
yx
n
z
nL
x
xc
n
L
xsxe
n
LL
dxdydzdzc
n
L
zszTzyxD
0 0
2
1
2
1,,,
π
τ
π
τ
π
( ) ( )[ ] ( ) ( ) ( ) ( )
( )
∫ ×∫








++






−+×
y z
L L
Lnn
y
n zd
V
zyxV
V
zyxV
TzyxDzsyc
n
L
ysy
0 0
2*
2
2*1
,,,,,,
1,,,21
τ
ς
τ
ς
π
( ) ( ) ( ) 65222
nteLLLdxdxcydyc nCzyxnn πτ −× .
Analogous way could be used to calculate values of parameters an for larger values of parameter
γ. However the relations will not be present in the paper because the relations are bulky.
Equations of the system (4) have been also solved by using Bubnov-Galerkin approach. Previous-
ly we transform the differential equations to the following integro- differential form
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
7
( ) ( ) ( ) ×∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
I
x
L
y
L
z
Lzyx y zx y z
dvdwd
x
wvxI
TwvxDudvdwdtwvuI
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫
∂
∂
+×
x
L
y
L
z
L
VI
t x
L
z
L
I
zxzy x y zx z
Twvukdudwd
x
wyuI
TwyuD
LL
zx
LL
zy
,,,
,,,
,,, ,
0
τ
τ
( ) ( ) ( )×∫ ∫ ∫
∂
∂
+×
t x
L
y
Lyxzyx x y z
zvuI
LL
yx
LLL
zyx
udvdwdtwvuVtwvuI
0
,,,
,,,,,,
τ
( ) ( ) ( ) +∫ ∫ ∫−×
x
L
y
L
z
L
II
zyx
I
x y z
udvdwdtwvuITwvuk
LLL
zyx
dudvdTzvuD ,,,,,,,,, 2
,τ
( )∫ ∫ ∫+
x
L
y
L
z
L
I
zyx x y z
udvdwdwvuf
LLL
zyx
,, (4a)
( ) ( ) ( ) ×∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
V
x
L
y
L
z
Lzyx y zx y z
dvdwd
x
wvxV
TwvxDudvdwdtwvuV
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( )×∫ ∫ ∫+∫ ∫ ∫
∂
∂
+×
t x
L
y
L
V
t x
L
z
L
V
zxzy x yx z
TzvuDdudwd
x
wyuV
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
τ
( ) ( ) ( )×∫ ∫ ∫−
∂
∂
×
x
L
y
L
z
L
VI
zyxyx x y z
twvuITwvuk
LLL
zyx
LL
yx
dudvd
z
zvuV
,,,,,,
,,,
,τ
τ
( ) ( ) ( ) +∫ ∫ ∫−×
x
L
y
L
z
L
VV
zyx x y z
udvdwdtwvuVTwvuk
LLL
zyx
udvdwdtwvuV ,,,,,,,,, 2
,
( )∫ ∫ ∫+
x
L
y
L
z
L
V
zyx x y z
udvdwdwvuf
LLL
zyx
,, .
We determine solutions of the Eqs.(4a) as the following series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Coefficients anρ are not yet known. Substitution of the series into Eqs.(4a) leads to the following
results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
InnnI
zyx
N
n
nInnn
nI
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
InnnInnI
zyx
nnI
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
II
N
n
t x
L
y
L
InnnInnI
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnI
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑×
=
x
L
y
L
z
L
I
zyx
N
n
VInVnnnnVnI
x y z
udvdwdwvuf
LLL
zyx
udvdwdTvvuktewcvcucate ,,,,,
1
,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
VnnnV
zyx
N
n
nVnnn
nV
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
8
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
VnnnVnnV
zyx
nnV
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
VV
N
n
t x
L
y
L
VnnnVnnV
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnV
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑×
=
x
L
y
L
z
L
V
zyx
N
n
VInVnnnnVnI
x y z
udvdwdwvuf
LLL
zyx
udvdwdTvvuktewcvcucate ,,,,,
1
, .
We determine coefficients anρ by using orthogonality condition on the scale of heterostructure.
The condition gives us possibility to obtain relations to calculate anρ for any quantity N of terms
of considered series. In the common case equations for the required coefficients could be written
as
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nI
x
N
n
nI
nIzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nI
y
L
nIn
z
nI
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzIn
x
x yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nIn
z
nzInI dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nI
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnInI
L
nIIn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zIIn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
In
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nV
x
N
n
nV
nVzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nV
y
L
nVn
z
nV
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
9
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzVn
x
x yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nVn
z
nzVnV dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nV
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnVnV
L
nVVn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zVVn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
Vn
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
.
In the final form relations for required parameters could be written as
( )





 −
+−
+
±
+
−=
A
yb
yb
Ab
b
Ab
a nInV
nI
2
3
4
2
3
4
3
4
44
λγ
,
nInI
nInInInInI
nV
a
aa
a
χ
λδγ ++
−=
2
,
where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++






−++=
x y zL L L
ynn
x
nxnn Lysyxc
n
L
xsxLTzyxkte
0 0 0
, 212
2
2,,,2
π
γ ρρρρ
( )[ ] ( ) ( )[ ] xdydzdzc
n
L
zszLyc
n
L
n
z
nzn
y






−++



−+ 12
2
212
2 ππ
, ( )×∫=
t
n
x
n e
nL 0
2
2
1
τ
π
δ ρρ
( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −






−+






−+×
x y zL L L
n
z
nn
y
n ydzdTzyxDzc
n
L
zszyc
n
L
ysy
0 0 0
1,,,1
2
1
2
ρ
ππ
( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−






−+++−
t L L L
znn
x
nxn
y
n
x y z
Lycxc
n
L
xsxLe
nL
dxdxc
0 0 0 0
2
21122
2
1
2
π
τ
π
τ ρ
( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++



−++
t L
nn
z
n
z
n
x
xsxe
nL
dxdydzdTzyxDzc
n
L
zsz
0 0
2
2
2
1
,,,12
2
2 τ
π
τ
π
ρρ
( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −






−++



−++
y z
L L
nn
y
nyn
x
x zdTzyxDzcyc
n
L
ysyLxc
n
L
L
0 0
,,,211
2
12 ρ
ππ
( )te
n
LLL
dxdyd n
zyx
ρ
π
τ 65
222
−× , ( ) ( )[ ] ( )[ ]∫ ∫



+−+






−+=
x yL L
n
y
yn
x
nnIV yc
n
L
Lxc
n
L
xsx
0 0
12
2
1
ππ
χ
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
10
( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc
n
L
zszLTzyxkysy nVnI
L
n
z
nzVIn
z
∫






−+++
0
, 12
2
2,,,2
π
,
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×






−+






−+






−+=
x y zL L L
n
z
nn
y
nn
x
nn zc
n
L
zszyc
n
L
ysyxc
n
L
xsx
0 0 0
111
πππ
λ ρ
( ) xdydzdTzyxf ,,,ρ× , 22
4 nInInInVb χγγγ −= , nInInVnInInInInVb γχδχδδγγ −−= 2
3 2 ,
2
2
3 48 bbyA −+= , ( ) 22
2 2 nInInVnInInVnInVnInInVb χλλδχδγγλδγ −+−+= , ×= nIb λ21
nInInVnInV λχδδγ −× ,
4
33 323 32
3b
b
qpqqpqy −++−−+= , 2
4
2
342
9
3
b
bbb
p
−
= ,
( ) 3
4
2
4132
3
3 542792 bbbbbbq +−= .
We determine solutions of the Eqs.(4a) as the following series
( ) ( ) ( ) ( ) ( )∑=Φ
=
Φ
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Coefficients anΦρ are not yet known. Let us previously transform the Eqs.(6) to the following in-
tegro-differential form
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
I
yx
t x
L
z
L
I
I
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
II
zyx
I
x y z
udvdwdwvuITwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
, (6a)
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
I
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuITwvuk
LLL
zyx
,,,,,,,, τ
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
V
yx
t x
L
z
L
V
V
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
VV
zyx
V
x y z
udvdwdwvuVTwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
,
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
V
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuVTwvuk
LLL
zyx
,,,,,,,, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnInIn
zyx
N
n
nInnn
In
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦ
N
n
t x
L
z
L
InnIn
zyx
I
x z
dudwdTwvuDwcuca
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
InnInnIn
zyx
Inn
x y
dudvdTzvuDvcuctezsan
LLL
yx
teysn
1 0
,,, τ
π
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
11
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
II
zyx x y zx y z
udvdwdwvufudvdwdwvuITwvuk
LLL
zyx
,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
I
zyxzyx x y z
udvdwdwvuITwvuk
LLL
zyx
LLL
zyx
τ,,,,,,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnVnVn
zyx
N
n
nVnnn
Vn
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦ
N
n
t x
L
z
L
Vnn
zyx
V
x z
dudwdTwvuDwcucn
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
VnnVnn
zyx
VnnVn
x y
dudvdTzvuDvcuctezsn
LLL
yx
teysa
1 0
,,, τ
π
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ
x
L
y
L
z
L
V
x
L
y
L
z
L
VV
zyx
Vn
x y zx y z
udvdwdwvufudvdwdwvuVTwvuk
LLL
zyx
a ,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
V
zyxzyx x y z
udvdwdwvuVTwvuk
LLL
zyx
LLL
zyx
τ,,,,,, .
We determine coefficients anΦρ by using orthogonality condition on the scale of heterostructure.
The condition gives us possibility to obtain relations to calculate anΦρ for any quantity N of terms
of considered series. In the common case equations for the required coefficients could be written
as
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
In
Inzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
10 0 01
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Inn
z
nI
In
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
10 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nInn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
In
xy
In
In
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
In
In
L
InIny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
II
L
n
y
nn zc
n
L
TzyxktzyxIyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nIn
In
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
In
L
In
z
nn
n
a
xdydzdtzyxITzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nIn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
( )} ( ) xdydzdzyxfzsz In ,,Φ+
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
12
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
Vn
Vnzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
10 0 01
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Vnn
z
nV
Vn
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
10 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nVnn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
Vn
xy
Vn
Vn
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
Vn
Vn
L
VnVny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
VV
L
n
y
nn zc
n
L
TzyxktzyxVyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nVn
Vn
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
Vn
L
Vn
z
nn
n
a
xdydzdtzyxVTzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nVn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
( )} ( ) xdydzdzyxfzsz Vn ,,Φ+ .
3. DISCUSSION
In this section we used relations from previous section for analysis of influence of parameters on
distributions of concentrations of infused and implanted dopants. The typical distributions are
presented on Figs. 2 and 3, respectively. The figures correspond to doping of one layer of two-
layer structure with higher value of dopant diffusion coefficient in comparison with value of do-
pant diffusion coefficient in the second layer. The figures show, that using interface between lay-
ers of heterostructure leads to increasing of compactness of p-i-n-heterodiode. At the same time
we homogeneity of distributions of concentrations of dopants in doped areas increases with de-
creasing of the homogeneity outside the enriched areas.
We note, that using the considered approach of manufacturing p-i-n-diodes leads to necessity to
optimize annealing of dopant and/or radiation defects. Necessity of this optimization is following.
Increasing of annealing time of dopant gives a possibility to obtain too homogenous distribution
of concentration of dopant. If the annealing time is small, the dopant has not enough time to
achieve interface between layers of heterostructure. In this situation one can not find any modifi-
cation of distribution of concentration of dopant due to existing the interface. In this situation it is
required optimization of annealing time. We optimize annealing time of dopant framework re-
cently introduced criterion [26-35]. Dependences of optimal annealing time on parameters are
presented on Figs. 4 and 5. Optimal annealing time of implanted dopant is smaller, than optimal
annealing time of infused dopant. Reason of the difference is necessity of annealing of radiation
defects. One can find spreading of distribution of concentration of dopant during annealing of
radiation defects. In the ideal distribution of concentration of dopant achieves interface between
layers of heterostructure during annealing of radiation defects. It is practicably to use additional
annealing of dopant in the case, one the dopant has not enough time to achieve the interface. The
Fig. 5 shows just dependences of optimal values of additional annealing time of dopant.
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
13
It is known, that using diffusion type of doping did not leads radiation damage of materials in
comparison with ion type of doping. However ion doping of heterostructures attracted an interest
for large difference of the lattice constant. In this case radiation damage leads to mismatch-
induced stress [36].
Fig.2. Dependences of concentration of infused dopant in heterostructure from Fig. 1 near one of
interfaces. Value of dopant diffusion coefficient in the left layer is larger, than value of dopant
diffusion coefficient in the right layer. Increasing of number of curve corresponds to increasing of
difference between values of dopant diffusion coefficient in layers of heterostructure
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Dependence of concentration of implanted dopant on coordinate in heterostructure from
Fig. 1 near one of interfaces. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx
2
+Ly
2
+
Lz
2
)/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2
are distributions of concentration of implanted dopant in a homogenous sample. Curves 3 and 4
are distributions of concentration of implanted dopant in a heterostructure near one of interfaces.
Value of dopant diffusion coefficient in the left layer is larger, than value of dopant diffusion
coefficient in the right layer. Increasing of number of curve corresponds to increasing of differ-
ence between values of dopant diffusion coefficient in layers of heterostructure
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
14
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0L
-2
3
2
4
1
Fig.4. Optimal annealing time of infused dopant as a functions of several parameters. Curve 1 is
the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for
equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is
the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and
ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of para-
meter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing
time on value of parameter γ for a/L=1/2 and ε = ξ = 0
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0L
-2
3
2
4
1
Fig.5. Optimal annealing time for ion doping of heterostructure as a function of several parame-
ters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ
= γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostruc-
ture. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on
value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless op-
timal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
15
4. CONCLUSIONS
In this paper we introduce an approach to manufacture p-i-n-heterodiodes. The approach based on
using a δ-doped heterostructure, doping by diffusion or ion implantation of several areas of the
heterostructure. After the doping the dopant and/or radiation defects have been annealed.At the
same time we consider an analytical approach to model technological processes. Framework the
approach gives a possibility to manage without stitching decisions on the interfaces between lay-
ers heterostructures.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod and educational fellowship for scientific research of Government of Russian
and of Nizhny Novgorod State University of Architecture and Civil Engineering.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
[3] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
[4] A. Polishscuk. Analog integrated circuits Anadigm: the whole range of analog electronics on a single
chip. The first acquaintance. Modern Electronics. Issue 12. P. 8-11 (2004).
[5] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.
P. 10-17 (2006).
[6] A. Kerentsev, V. Lanin, Constructive-technological features of MOSFET-transistors. Power Electron-
ics. Issue 1. P. 34 (2008).
[7] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-
vin, V.V. Milenin, A.V. Sachenko. Au–TiBx-n-6H-SiC Schottky barrier diodes: the features of cur-
rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[8] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP /GaAs
pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009).
[9] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For-
mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc-
tors. Vol. 32 (9). P. 1029-1032 (1998).
[10] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in
CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol.
43 (8). P. 1016-1020 (2009).
[11] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[12] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
[13] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the re-
crystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 89
(17), 172111-172114 (2006).
[14] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9),
094901-094905 (2006).
[15] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Diffusion processes in semiconductor structures dur-
ing microwave annealing. Semiconductors. Vol.36 (5). P. 611-617 (2002).
[16] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.
Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
16
[17] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[18] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For-
mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc-
tors. Vol. 32 (9). P. 1029-1032 (1998).
[19] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in
CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol.
43 (8). P. 1016-1020 (2009).
[20] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[21] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
[22] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[23] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[24] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. 1989. Vol. 61. № 2. P. 289-388.
[25] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976).
[26] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[27] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-
ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.
187–197 (2008).
[28] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[29] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[30] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver-
tical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[31] E.L. Pankratov, E.A. Bulaeva. Optimization of doping of heterostructure during manufacturing of p-i-
n-diodes. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7-14 (2013).
[32] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer-
sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).
[33] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture a heterobipolar transistors in thin film
structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31
(2014).
[34] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver-
tical field-effect transistors. J. Nanoengineering and Nanomanufacturing. Vol. 2 (3). P. 275-280
(2012).
[35] E.L. Pankratov, E.A. Bulaeva. Influence of drain of dopant on distribution of dopant in diffusion-
heterojunction rectifiers. J. Adv. Phys. Vol. 2 (2). P. 147-150 (2013).
[36] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor het-erostructure by
radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor
course in Radiophysical Department of Nizhny Novgorod State University. He has 105 published papers in
area of his researches.
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015
17
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2).
She has 52 published papers in area of her researches.

More Related Content

What's hot

On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
msejjournal
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
ijcsitcejournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
ijrap
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ijcsitcejournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
JaresJournal
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
BRNSS Publication Hub
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
jedt_journal
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
antjjournal
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
antjjournal
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ijoejournal
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
BRNSS Publication Hub
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
BRNSS Publication Hub
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
ijcax
 

What's hot (14)

On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 

Viewers also liked

A N E XQUISITE A PPROACH FOR I MAGE C OMPRESSION T ECHNIQUE USING L OSS...
A N  E XQUISITE  A PPROACH FOR  I MAGE  C OMPRESSION  T ECHNIQUE USING  L OSS...A N  E XQUISITE  A PPROACH FOR  I MAGE  C OMPRESSION  T ECHNIQUE USING  L OSS...
A N E XQUISITE A PPROACH FOR I MAGE C OMPRESSION T ECHNIQUE USING L OSS...
ijcsitcejournal
 
A N APPROACH TO MODEL OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
A N APPROACH TO MODEL  OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...A N APPROACH TO MODEL  OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
A N APPROACH TO MODEL OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
ijcsitcejournal
 
A H YBRID C RITICAL P ATH M ETHODOLOGY – ABCP (A S B UILT C RITICAL P ...
A H YBRID  C RITICAL  P ATH  M ETHODOLOGY  – ABCP (A S  B UILT  C RITICAL  P ...A H YBRID  C RITICAL  P ATH  M ETHODOLOGY  – ABCP (A S  B UILT  C RITICAL  P ...
A H YBRID C RITICAL P ATH M ETHODOLOGY – ABCP (A S B UILT C RITICAL P ...
ijcsitcejournal
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
ijcsitcejournal
 
BOT - Financial Aid Improvement - sept 9 presentation
BOT - Financial Aid Improvement - sept 9 presentationBOT - Financial Aid Improvement - sept 9 presentation
BOT - Financial Aid Improvement - sept 9 presentationCalvin B. Madlock
 
The Dating of New Testament Papyri NTSb
The Dating of New Testament Papyri NTSbThe Dating of New Testament Papyri NTSb
The Dating of New Testament Papyri NTSbDon Barker
 
Nama sudut
Nama sudutNama sudut
Nama sudut
fizasolah158
 
Tina Hauman Resume
Tina Hauman ResumeTina Hauman Resume
Tina Hauman ResumeTina Hauman
 
Board results
Board resultsBoard results
Board results
boardresults
 
Des avions d'exception , vols en jets privés
Des avions d'exception , vols en jets privés Des avions d'exception , vols en jets privés
Des avions d'exception , vols en jets privés
CEO Kevelair
 
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Henrik Illerström
 
Panama , le trésor caché des vacances
Panama , le trésor caché des vacances Panama , le trésor caché des vacances
Panama , le trésor caché des vacances
CEO Kevelair
 
CISOA Presentationv as of 03 08 2015 Final
CISOA Presentationv as of 03 08 2015 FinalCISOA Presentationv as of 03 08 2015 Final
CISOA Presentationv as of 03 08 2015 FinalCalvin B. Madlock
 
Clavicle Fractures - A review
Clavicle Fractures - A reviewClavicle Fractures - A review
Clavicle Fractures - A review
Henrik Illerström
 
Arthropods
ArthropodsArthropods
Arthropods
cabinganrowena08
 
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0Calvin B. Madlock
 

Viewers also liked (17)

A N E XQUISITE A PPROACH FOR I MAGE C OMPRESSION T ECHNIQUE USING L OSS...
A N  E XQUISITE  A PPROACH FOR  I MAGE  C OMPRESSION  T ECHNIQUE USING  L OSS...A N  E XQUISITE  A PPROACH FOR  I MAGE  C OMPRESSION  T ECHNIQUE USING  L OSS...
A N E XQUISITE A PPROACH FOR I MAGE C OMPRESSION T ECHNIQUE USING L OSS...
 
A N APPROACH TO MODEL OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
A N APPROACH TO MODEL  OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...A N APPROACH TO MODEL  OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
A N APPROACH TO MODEL OPTIMIZATION OF MA N- UFACTURING OF EMI T TER - COUPLE...
 
A H YBRID C RITICAL P ATH M ETHODOLOGY – ABCP (A S B UILT C RITICAL P ...
A H YBRID  C RITICAL  P ATH  M ETHODOLOGY  – ABCP (A S  B UILT  C RITICAL  P ...A H YBRID  C RITICAL  P ATH  M ETHODOLOGY  – ABCP (A S  B UILT  C RITICAL  P ...
A H YBRID C RITICAL P ATH M ETHODOLOGY – ABCP (A S B UILT C RITICAL P ...
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
 
BOT - Financial Aid Improvement - sept 9 presentation
BOT - Financial Aid Improvement - sept 9 presentationBOT - Financial Aid Improvement - sept 9 presentation
BOT - Financial Aid Improvement - sept 9 presentation
 
The Dating of New Testament Papyri NTSb
The Dating of New Testament Papyri NTSbThe Dating of New Testament Papyri NTSb
The Dating of New Testament Papyri NTSb
 
Nama sudut
Nama sudutNama sudut
Nama sudut
 
Tina Hauman Resume
Tina Hauman ResumeTina Hauman Resume
Tina Hauman Resume
 
Board results
Board resultsBoard results
Board results
 
Kian's resume
Kian's resumeKian's resume
Kian's resume
 
Des avions d'exception , vols en jets privés
Des avions d'exception , vols en jets privés Des avions d'exception , vols en jets privés
Des avions d'exception , vols en jets privés
 
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
 
Panama , le trésor caché des vacances
Panama , le trésor caché des vacances Panama , le trésor caché des vacances
Panama , le trésor caché des vacances
 
CISOA Presentationv as of 03 08 2015 Final
CISOA Presentationv as of 03 08 2015 FinalCISOA Presentationv as of 03 08 2015 Final
CISOA Presentationv as of 03 08 2015 Final
 
Clavicle Fractures - A review
Clavicle Fractures - A reviewClavicle Fractures - A review
Clavicle Fractures - A review
 
Arthropods
ArthropodsArthropods
Arthropods
 
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0
Campus Wireless Infrastructure Deployment -Board Presentation 7-9-12 -v1.0
 

Similar to On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUFACTURING OF P-I-NDIODES

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
ijrap
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
ijfcstjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
ijrap
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Zac Darcy
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
Zac Darcy
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
msejjournal
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ijoejournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
ijrap
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
BRNSSPublicationHubI
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
ijrap
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
BRNSS Publication Hub
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
antjjournal
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
msejjournal
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
BRNSSPublicationHubI
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
antjjournal
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
BRNSSPublicationHubI
 

Similar to On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUFACTURING OF P-I-NDIODES (20)

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 

More from ijcsitcejournal

THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
ijcsitcejournal
 
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONEPANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
ijcsitcejournal
 
Library Information Retrieval (IR) System of University of Cyprus (UCY)
Library Information Retrieval (IR) System of University of Cyprus (UCY)Library Information Retrieval (IR) System of University of Cyprus (UCY)
Library Information Retrieval (IR) System of University of Cyprus (UCY)
ijcsitcejournal
 
6119ijcsitce01
6119ijcsitce016119ijcsitce01
6119ijcsitce01
ijcsitcejournal
 
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGENETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
ijcsitcejournal
 
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
ijcsitcejournal
 
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSISNEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
ijcsitcejournal
 
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUESA STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
ijcsitcejournal
 
The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...
ijcsitcejournal
 
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
ijcsitcejournal
 
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
ijcsitcejournal
 

More from ijcsitcejournal (11)

THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
THE USE OF VIRTUAL PRIVATE NETWORK IN THE CONTEXT OF “BRING YOUR OWN DEVICE” ...
 
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONEPANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
PANDEMIC INFORMATION DISSEMINATION WEB APPLICATION: A MANUAL DESIGN FOR EVERYONE
 
Library Information Retrieval (IR) System of University of Cyprus (UCY)
Library Information Retrieval (IR) System of University of Cyprus (UCY)Library Information Retrieval (IR) System of University of Cyprus (UCY)
Library Information Retrieval (IR) System of University of Cyprus (UCY)
 
6119ijcsitce01
6119ijcsitce016119ijcsitce01
6119ijcsitce01
 
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGENETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
NETCDL : THE NETWORK CERTIFICATION DESCRIPTION LANGUAGE
 
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
PREDICTIVE MODEL FOR LIKELIHOOD OF DETECTING CHRONIC KIDNEY FAILURE AND DISEA...
 
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSISNEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
NEURO-FUZZY APPROACH FOR DIAGNOSING AND CONTROL OF TUBERCULOSIS
 
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUESA STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
A STUDY ON OPTICAL CHARACTER RECOGNITION TECHNIQUES
 
The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...
 
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
SEARCH OF INFORMATION BASED CONTENT IN SEMI-STRUCTURED DOCUMENTS USING INTERF...
 
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
DESIGN OF FAST TRANSIENT RESPONSE, LOW DROPOUT REGULATOR WITH ENHANCED STEADY...
 

Recently uploaded

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 

Recently uploaded (20)

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 

On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUFACTURING OF P-I-NDIODES

  • 1. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 1 ON OPTIMIZATION OF DOPING OF A HETERO- STRUCTURE DURING MANUFACTURING OF P-I-N- DIODES E.L. Pankratov1,3 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia 3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi- novskoe Shosse, Nizhny Novgorod, 603950, Russia ABSTRACT We introduce an approach of manufacturing of a p-i-n-heterodiodes. The approach based on using a δ- doped heterostructure, doping by diffusion or ion implantation of several areas of the heterostructure. After the doping the dopant and/or radiation defects have been annealed. We introduce an approach to optimize annealing of the dopant and/or radiation defects. We determine several conditions to manufacture more compact p-i-n-heterodiodes. KEYWORDS p-i-n-heterodiodes; decreasing of dimensions of p-i-n-diodes; optimization of manufacturing; δ-doping; analytical approach for modelling 1. INTRODUCTION Development of the solid state electronic devices leads to necessity of increasing of performance, reliability and integration rate of elements of integrated circuits (p-n- junctions, their systems et al) [1-7]. Increasing of integration rate of elements of integrated circuits leads to necessity to de- crease their dimensions. One way to increase performance of the above elements is determination new materials with high charge carrier’s motilities. The second one is elaboration new technolo- gical processes and optimization existing one [8-21]. Dimensions of elements of integrated cir- cuits could be also decreased by using new technological processes and optimization existing one [8-17]. In the present paper we consider an approach to decrease dimensions of p-i-n-diodes. The ap- proach based on using a heterostructure from Fig. 1. The heterostructure consist of a substrate and four epitaxial layers. A δ-layer has been grown between average epitaxial layers to manufac- ture required type of conductivity (n or p) in the doped area. Another epitaxial layers have been manufactured with sections (see Fig. 1). The sections have been manufactured by using another materials. We assumed, that the sections have been doped by diffusion or ion implantation to pro- duce in this section required type of conductivity (p or n). The considered approach gives us pos- sibility to manufacture more thin p-i-n-diodes. After doping sections dopant and/or radiation de- fects have been annealed. Annealing of dopant gives us possibility to infuse the dopant on re- quired depth. Annealing of radiation defects gives us possibility to decrease their quantity. Framework this paper we analyzed dynamics of dopant and radiation defects during annealing.
  • 2. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 2 Substrate Epitaxial layer 1 Epitaxial layer 2 Epitaxial layer 3 Epitaxial layer 4 δ-layer Fig. 1. A multilayer structure with a substrate and four epitaxial layers. Heterostructure, which consist of a substrate, four epitaxial layers and sections framework the layers 2. METHOD OF SOLUTION We determine distributions of concentrations of dopants in space and time to solve our aim. To determine the distributions we solved the second Fick's law [1,3,17] ( ) ( ) ( ) ( )       +      +      = z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC CCC ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,,,,,,,,,,, . (1) Boundary and initial conditions for the equations are ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C (x,y,z,0)=f (x,y,z). (2) The function C(x,y,z,t) describes distribution of concentration of dopant in space and time; T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient has different values in different materials. Value of dopant diffusion coefficient changing with heating and cooling of heterostructure (with account Arrhenius law). Dopant diffusion coefficient could be approximated by the following relation [22-24] ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ . (3) The function DL(x,y,z,T) describes variation of dopant diffusion coefficient in space (due inhomo- geneity of heterostructure) and with variation of temperature (due to Arrhenius law); the function P(x,y,z,T) describes the limit of solubility of dopant; parameter γ is integer in the following inter- val γ ∈[1,3] [22]; the function V (x,y,z,t) describes variation of distribution of concentration of radiation vacancies in space and time; the parameter V* describes the equilibrium distribution of concentration of vacancies. Dependence of dopant diffusion coefficient on concentration of do- pant has been described in details in [22]. It should be noted, that using diffusion type of doping did not generation radiation defects. In this situation ζ1=ζ2=0. We determine distributions of con- centrations of radiation defects in space and time by solving the following system of equations [23,24]
  • 3. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 3 ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI IIII ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxI TzyxD z tzyxI VII ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× (4) ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVVV ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxV TzyxD z tzyxV VIV ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ=I,V; the function I(x,y,z,t) describes distribution of concentration of radiation interstitials in space and time; Dρ(x,y,z,T) are the diffusion coefficients of point radiation defects; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V(x,y,z,T) is the parameter of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parame- ters of generation of simplest complexes of point radiation defects. Distributions of concentrations of divacancies ΦV(x,y,z,t) and dinterstitials ΦI (x,y,z,t) in space and time have been determined by solving the following system of equations [23,24] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes.
  • 4. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 4 To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to the following integro-differential form ( ) ( ) ( ) ( ) ×∫ ∫ ∫         ++=∫ ∫ ∫ t y L z Lzy x L y L z Lzyx y zx y z V wvxV V wvxV LL zy udvdwdtwvuC LLL zyx 0 2* 2 2*1 ,,,,,, 1,,, τ ς τ ς ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+      +× t x L z L L zx L x z TwyuD LL zx d x wvxC TwvxP wvxC TwvxD 0 ,,, ,,, ,,, ,,, 1,,, τ ∂ τ∂τ ξ γ γ ( ) ( ) ( ) ( ) ( ) ( ) +      +         ++× τ ∂ τ∂τ ξ τ ς τ ς γ γ d y wyuC TzyxP wyuC V wyuV V wyuV ,,, ,,, ,,, 1 ,,,,,, 1 2* 2 2*1 ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫       +         +++ t x L y L L yx x y TzyxP zvuC V zvuV V zvuV TzvuD LL yx 0 2* 2 2*1 ,,, ,,, 1 ,,,,,, 1,,, γ γ τ ξ τ ς τ ς ( ) ( )∫ ∫ ∫+× x L y L z Lzyx x y z udvdwdwvuf LLL zyx d z zvuC ,, ,,, τ ∂ τ∂ . (1a) We determine solution of the above equation by using Bubnov-Galerkin approach [25]. Frame- work the approach we determine solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( )∑= = N n nCnnnnC tezcycxcatzyxC 0 0 ,,, , where ( ) ( )[ ]222 0 22 exp −−− ++−= zyxCnC LLLtDnte π , cn(χ)=cos(π nχ/Lχ). The above series includes into itself finite number of terms N. The considered series is similar with solution of linear Eq.(1) (i.e. with ξ =0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫    ×    ∑+−=∑ == t y L z L N n nCnnnnC zy N n nCnnn C y z ewcvcxca LL zy tezsysxs n azyx 0 11 32 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑         ++    × = N n nnnCL vcxsaTwvxD V wvxV V wvxV TwvxP 1 2* 2 2*1 ,,, ,,,,,, 1 ,,, τ ς τ ς ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ×          ∑+−× = t x L z L N m mCmmmmC zx nCn x z TwyuP ewcycuca LL zx dewcn 0 1 ,,, 1 γ γ ξ τττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑         ++× = ττ τ ς τ ς dewcysucn V wyuV V wyuV TwyuD N n nCnnnL 1 2* 2 2*1 ,,,,,, 1,,, ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫          ∑+−× = t x L y L N n nCnnnnCL yx nC x y ezcvcuca TzvuP TzvuD LL yx a 0 1,,, 1,,, γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×+∑         ++× = zyx N n nCnnnnC LLL zyx dezsvcucan V zvuV V zvuV ττ τ ς τ ς 1 2* 2 2*1 ,,,,,, 1 ( )∫ ∫ ∫× x L y L z Lx y z udvdwdwvuf ,, ,
  • 5. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 5 where sn(χ)=sin(πnχ/Lχ). We determine coefficients an by using orthogonality condition of terms of the considered series framework scale of heterostructure. The condition gives us possibility to obtain relations for calculation of parameters an for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫    ×    ∑+−=∑− == t L L L N n nCnnnnCL zy N n nC nCzyx x y z ezcycxcaTzyxD LL te n aLLL 0 0 0 0 1 2 1 65 222 1,,, 2 γ τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑         ++    × = N n nCnnn nC ezcycxs n a V zyxV V zyxV TzyxP 1 2* 2 2*1 2 ,,,,,, 1 ,,, τ τ ς τ ς ξ γ ( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−       −+       −+× t L L L Ln z nn y n x y z TzyxDdxdydzdzc n L zszyc n L ysy 0 0 0 0 ,,,11 τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( )    ++          ∑+× = *1 1 ,,, 1 ,,, 1,,, V zyxV TzyxP ezcycxcaTzyxD N n nCnnnnCL τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ×       −+         ++     + = N n nC n x n n a xc n L xsx V zyxV V zyxV V zyxV 1 2* 2 2*12* 2 2 1 ,,,,,, 1 ,,, π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( )[ ] ×−       −+× 22 2 12 2 π τ π τ π yx n z nnCnnn zx LL dxdydzdzc n L zszezcysxc LL ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫     ++          ∑+× = t L L L N n nCnnnnC x y z V zyxV TzyxP ezcycxca 0 0 0 0 2* 2 2 1 ,,, 1 ,,, 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑       −+   + = N n n x nnnn nC L xc n L xsxzsycxc n a TzyxD V zyxV 1 *1 1,,, ,,, π τ ς ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×       −++       −+× = N n L n x nnCn y n x xc n L xsxdxdydzdeyc n L ysy 1 0 11 π ττ π ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫       −+       −+× y z L L n z nn y n xdydzdzyxfzc n L zszyc n L ysy 0 0 ,,11 ππ . As an example for γ = 0 we obtain ( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +       −+       −+= x y zL L L nn y nn y nnC xsxydzdzyxfzc n L zszyc n L ysya 0 0 0 ,,11 ππ ( )[ ] ( ) ( ) ( ) ( )[ ] ( )        ∫ ∫ ∫ ∫ ×       −+    −× t L L L Ln y nnn x n x y z TzyxDyc n L ysyycxs n xd n L xc 0 0 0 0 ,,,12 2 1 ππ ( ) ( )[ ] ( ) ( ) ( ) ( ) ×      +         ++       −+× TzyxPV zyxV V zyxV zc n L zsz n y n ,,, 1 ,,,,,, 11 2* 2 2*1 γ ξτ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫       −++× t L L L nnn y nnnCnCn x y z zcysxc n L xsxxcedexdydzdzc 0 0 0 0 21 π τττ ( ) ( )[ ] ( ) ( ) ( ) ( ) ×         ++      +       −+× 2* 2 2*1 ,,,,,, 1 ,,, 11 V zyxV V zyxV TzyxP zc n L zsz n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×       −++× t L L nnn x nnnCL x y ysycxc n L xsxxcedxdydzdTzyxD 0 0 0 1,,, π ττ
  • 6. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 6 ( )[ ] ( ) ( ) ( ) ( ) ( )∫     ++      +    −+× zL Lnn y V zyxV TzyxP TzyxDzsyc n L y 0 2* 2 2 ,,, 1 ,,, 1,,,21 τ ς ξ π γ ( ) ( ) 1 65 222 *1 ,,, −     −       + te n LLL dxdydzd V zyxV nC zzz π τ τ ς . For γ = 1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( )∫ ∫ ∫+±−= x y zL L L nnnnn n n nC xdydzdzyxfzcycxca 0 0 0 2 ,,4 2 αβ α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ×         ++= t L L L L nnC zy n x y z TzyxP TzyxD V zyxV V zyxV xse n LL 0 0 0 0 2* 2 2*12 ,,, ,,,,,,,,, 12 2 τ ς τ ςτ π ξ α ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ×∫+       −+       −+× t nC zx n z nn y nnn e n LL dxdydzdzc n L zszyc n L ysyzcyc 0 2 2 11 τ π ξ τ ππ ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ×∫ ∫ ∫         ++       −−       −+× x y zL L L n z nn x n V zyxV V zyxV zc n L zszxc n L xsx 0 0 0 2* 2 2*1 ,,,,,, 111 τ ς τ ς ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫+× t L L L L nnnC yxL nnn x y z TzyxP TzyxD ycxce n LL dxdydzd TzyxP TzyxD zcysxc 0 0 0 0 2 ,,, ,,, 2,,, ,,, 2 τ π ξ τ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×       −+       −+         ++× ydyc n L ysyxc n L xsx V zyxV V zyxV n y nn x n 11 ,,,,,, 1 2* 2 2*1 ππ τ ς τ ς ( ) τdxdzdzsn 2× , ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×         ++= t L L L nnnC zy n x y z V zyxV V zyxV zcxse n LL 0 0 0 0 2* 2 2*12 ,,,,,, 12 2 τ ς τ ςτ π β ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ×+       −+       −+× 2 2 11,,, π τ ππ n LL dxdydyc n L ysyyczdzc n L zszTzyxD zx n y nnn z nL ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫         ++       −+× t L L L nnn x nnnC x y z V zyxV V zyxV zcysxc n L xsxxce 0 0 0 0 2* 2 2*1 ,,,,,, 121 τ ς τ ς π τ ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −++       −+× t L n x nnC yx n z nL x xc n L xsxe n LL dxdydzdzc n L zszTzyxD 0 0 2 1 2 1,,, π τ π τ π ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ∫ ×∫         ++       −+× y z L L Lnn y n zd V zyxV V zyxV TzyxDzsyc n L ysy 0 0 2* 2 2*1 ,,,,,, 1,,,21 τ ς τ ς π ( ) ( ) ( ) 65222 nteLLLdxdxcydyc nCzyxnn πτ −× . Analogous way could be used to calculate values of parameters an for larger values of parameter γ. However the relations will not be present in the paper because the relations are bulky. Equations of the system (4) have been also solved by using Bubnov-Galerkin approach. Previous- ly we transform the differential equations to the following integro- differential form
  • 7. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 7 ( ) ( ) ( ) ×∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L I x L y L z Lzyx y zx y z dvdwd x wvxI TwvxDudvdwdtwvuI LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ×∫ ∫ ∫−∫ ∫ ∫ ∂ ∂ +× x L y L z L VI t x L z L I zxzy x y zx z Twvukdudwd x wyuI TwyuD LL zx LL zy ,,, ,,, ,,, , 0 τ τ ( ) ( ) ( )×∫ ∫ ∫ ∂ ∂ +× t x L y Lyxzyx x y z zvuI LL yx LLL zyx udvdwdtwvuVtwvuI 0 ,,, ,,,,,, τ ( ) ( ) ( ) +∫ ∫ ∫−× x L y L z L II zyx I x y z udvdwdtwvuITwvuk LLL zyx dudvdTzvuD ,,,,,,,,, 2 ,τ ( )∫ ∫ ∫+ x L y L z L I zyx x y z udvdwdwvuf LLL zyx ,, (4a) ( ) ( ) ( ) ×∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L V x L y L z Lzyx y zx y z dvdwd x wvxV TwvxDudvdwdtwvuV LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( )×∫ ∫ ∫+∫ ∫ ∫ ∂ ∂ +× t x L y L V t x L z L V zxzy x yx z TzvuDdudwd x wyuV TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ τ ( ) ( ) ( )×∫ ∫ ∫− ∂ ∂ × x L y L z L VI zyxyx x y z twvuITwvuk LLL zyx LL yx dudvd z zvuV ,,,,,, ,,, ,τ τ ( ) ( ) ( ) +∫ ∫ ∫−× x L y L z L VV zyx x y z udvdwdtwvuVTwvuk LLL zyx udvdwdtwvuV ,,,,,,,,, 2 , ( )∫ ∫ ∫+ x L y L z L V zyx x y z udvdwdwvuf LLL zyx ,, . We determine solutions of the Eqs.(4a) as the following series ( ) ( ) ( ) ( ) ( )∑= = N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Coefficients anρ are not yet known. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L InnnI zyx N n nInnn nI y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L InnnInnI zyx nnI x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L II N n t x L y L InnnInnI zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnI x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑× = x L y L z L I zyx N n VInVnnnnVnI x y z udvdwdwvuf LLL zyx udvdwdTvvuktewcvcucate ,,,,, 1 , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L VnnnV zyx N n nVnnn nV y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π
  • 8. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L VnnnVnnV zyx nnV x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L VV N n t x L y L VnnnVnnV zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnV x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+∑× = x L y L z L V zyx N n VInVnnnnVnI x y z udvdwdwvuf LLL zyx udvdwdTvvuktewcvcucate ,,,,, 1 , . We determine coefficients anρ by using orthogonality condition on the scale of heterostructure. The condition gives us possibility to obtain relations to calculate anρ for any quantity N of terms of considered series. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nI x N n nI nIzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nI y L nIn z nI xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzIn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nIn z nzInI dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nI z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnInI L nIIn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zIIn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L In y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nV x N n nV nVzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nV y L nVn z nV xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π
  • 9. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 9 ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzVn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nVn z nzVnV dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nV z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnVnV L nVVn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zVVn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L Vn y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π . In the final form relations for required parameters could be written as ( )       − +− + ± + −= A yb yb Ab b Ab a nInV nI 2 3 4 2 3 4 3 4 44 λγ , nInI nInInInInI nV a aa a χ λδγ ++ −= 2 , where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++       −++= x y zL L L ynn x nxnn Lysyxc n L xsxLTzyxkte 0 0 0 , 212 2 2,,,2 π γ ρρρρ ( )[ ] ( ) ( )[ ] xdydzdzc n L zszLyc n L n z nzn y       −++    −+ 12 2 212 2 ππ , ( )×∫= t n x n e nL 0 2 2 1 τ π δ ρρ ( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −       −+       −+× x y zL L L n z nn y n ydzdTzyxDzc n L zszyc n L ysy 0 0 0 1,,,1 2 1 2 ρ ππ ( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−       −+++− t L L L znn x nxn y n x y z Lycxc n L xsxLe nL dxdxc 0 0 0 0 2 21122 2 1 2 π τ π τ ρ ( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++    −++ t L nn z n z n x xsxe nL dxdydzdTzyxDzc n L zsz 0 0 2 2 2 1 ,,,12 2 2 τ π τ π ρρ ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −       −++    −++ y z L L nn y nyn x x zdTzyxDzcyc n L ysyLxc n L L 0 0 ,,,211 2 12 ρ ππ ( )te n LLL dxdyd n zyx ρ π τ 65 222 −× , ( ) ( )[ ] ( )[ ]∫ ∫    +−+       −+= x yL L n y yn x nnIV yc n L Lxc n L xsx 0 0 12 2 1 ππ χ
  • 10. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 10 ( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc n L zszLTzyxkysy nVnI L n z nzVIn z ∫       −+++ 0 , 12 2 2,,,2 π , ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×       −+       −+       −+= x y zL L L n z nn y nn x nn zc n L zszyc n L ysyxc n L xsx 0 0 0 111 πππ λ ρ ( ) xdydzdTzyxf ,,,ρ× , 22 4 nInInInVb χγγγ −= , nInInVnInInInInVb γχδχδδγγ −−= 2 3 2 , 2 2 3 48 bbyA −+= , ( ) 22 2 2 nInInVnInInVnInVnInInVb χλλδχδγγλδγ −+−+= , ×= nIb λ21 nInInVnInV λχδδγ −× , 4 33 323 32 3b b qpqqpqy −++−−+= , 2 4 2 342 9 3 b bbb p − = , ( ) 3 4 2 4132 3 3 542792 bbbbbbq +−= . We determine solutions of the Eqs.(4a) as the following series ( ) ( ) ( ) ( ) ( )∑=Φ = Φ N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Coefficients anΦρ are not yet known. Let us previously transform the Eqs.(6) to the following in- tegro-differential form ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L I yx t x L z L I I zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂ ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L II zyx I x y z udvdwdwvuITwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , (6a) ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L I zyx x L y L z L I zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuITwvuk LLL zyx ,,,,,,,, τ ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L V yx t x L z L V V zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂ ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L VV zyx V x y z udvdwdwvuVTwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L V zyx x L y L z L V zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuVTwvuk LLL zyx ,,,,,,,, τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnInIn zyx N n nInnn In y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦ N n t x L z L InnIn zyx I x z dudwdTwvuDwcuca LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L InnInnIn zyx Inn x y dudvdTzvuDvcuctezsan LLL yx teysn 1 0 ,,, τ π
  • 11. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 11 ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ x L y L z L I x L y L z L II zyx x y zx y z udvdwdwvufudvdwdwvuITwvuk LLL zyx ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L I zyxzyx x y z udvdwdwvuITwvuk LLL zyx LLL zyx τ,,,,,, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnVnVn zyx N n nVnnn Vn y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦ N n t x L z L Vnn zyx V x z dudwdTwvuDwcucn LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L VnnVnn zyx VnnVn x y dudvdTzvuDvcuctezsn LLL yx teysa 1 0 ,,, τ π ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ x L y L z L V x L y L z L VV zyx Vn x y zx y z udvdwdwvufudvdwdwvuVTwvuk LLL zyx a ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L V zyxzyx x y z udvdwdwvuVTwvuk LLL zyx LLL zyx τ,,,,,, . We determine coefficients anΦρ by using orthogonality condition on the scale of heterostructure. The condition gives us possibility to obtain relations to calculate anΦρ for any quantity N of terms of considered series. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n In Inzyx x y yc n L ysyLxc L te n aLLL 10 0 01 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Inn z nI In xz xsxdexdydzdzc n L zszTzyxD n a 10 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nInn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n In xy In In x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x In In L InIny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z II L n y nn zc n L TzyxktzyxIyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nIn In n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n In L In z nn n a xdydzdtzyxITzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nIn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ ( )} ( ) xdydzdzyxfzsz In ,,Φ+
  • 12. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 12 ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n Vn Vnzyx x y yc n L ysyLxc L te n aLLL 10 0 01 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Vnn z nV Vn xz xsxdexdydzdzc n L zszTzyxD n a 10 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nVnn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n Vn xy Vn Vn x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x Vn Vn L VnVny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z VV L n y nn zc n L TzyxktzyxVyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nVn Vn n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n Vn L Vn z nn n a xdydzdtzyxVTzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nVn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ ( )} ( ) xdydzdzyxfzsz Vn ,,Φ+ . 3. DISCUSSION In this section we used relations from previous section for analysis of influence of parameters on distributions of concentrations of infused and implanted dopants. The typical distributions are presented on Figs. 2 and 3, respectively. The figures correspond to doping of one layer of two- layer structure with higher value of dopant diffusion coefficient in comparison with value of do- pant diffusion coefficient in the second layer. The figures show, that using interface between lay- ers of heterostructure leads to increasing of compactness of p-i-n-heterodiode. At the same time we homogeneity of distributions of concentrations of dopants in doped areas increases with de- creasing of the homogeneity outside the enriched areas. We note, that using the considered approach of manufacturing p-i-n-diodes leads to necessity to optimize annealing of dopant and/or radiation defects. Necessity of this optimization is following. Increasing of annealing time of dopant gives a possibility to obtain too homogenous distribution of concentration of dopant. If the annealing time is small, the dopant has not enough time to achieve interface between layers of heterostructure. In this situation one can not find any modifi- cation of distribution of concentration of dopant due to existing the interface. In this situation it is required optimization of annealing time. We optimize annealing time of dopant framework re- cently introduced criterion [26-35]. Dependences of optimal annealing time on parameters are presented on Figs. 4 and 5. Optimal annealing time of implanted dopant is smaller, than optimal annealing time of infused dopant. Reason of the difference is necessity of annealing of radiation defects. One can find spreading of distribution of concentration of dopant during annealing of radiation defects. In the ideal distribution of concentration of dopant achieves interface between layers of heterostructure during annealing of radiation defects. It is practicably to use additional annealing of dopant in the case, one the dopant has not enough time to achieve the interface. The Fig. 5 shows just dependences of optimal values of additional annealing time of dopant.
  • 13. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 13 It is known, that using diffusion type of doping did not leads radiation damage of materials in comparison with ion type of doping. However ion doping of heterostructures attracted an interest for large difference of the lattice constant. In this case radiation damage leads to mismatch- induced stress [36]. Fig.2. Dependences of concentration of infused dopant in heterostructure from Fig. 1 near one of interfaces. Value of dopant diffusion coefficient in the left layer is larger, than value of dopant diffusion coefficient in the right layer. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Dependence of concentration of implanted dopant on coordinate in heterostructure from Fig. 1 near one of interfaces. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx 2 +Ly 2 + Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 are distributions of concentration of implanted dopant in a homogenous sample. Curves 3 and 4 are distributions of concentration of implanted dopant in a heterostructure near one of interfaces. Value of dopant diffusion coefficient in the left layer is larger, than value of dopant diffusion coefficient in the right layer. Increasing of number of curve corresponds to increasing of differ- ence between values of dopant diffusion coefficient in layers of heterostructure
  • 14. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 14 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0L -2 3 2 4 1 Fig.4. Optimal annealing time of infused dopant as a functions of several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of para- meter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0L -2 3 2 4 1 Fig.5. Optimal annealing time for ion doping of heterostructure as a function of several parame- ters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostruc- ture. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless op- timal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
  • 15. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 15 4. CONCLUSIONS In this paper we introduce an approach to manufacture p-i-n-heterodiodes. The approach based on using a δ-doped heterostructure, doping by diffusion or ion implantation of several areas of the heterostructure. After the doping the dopant and/or radiation defects have been annealed.At the same time we consider an analytical approach to model technological processes. Framework the approach gives a possibility to manage without stitching decisions on the interfaces between lay- ers heterostructures. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod and educational fellowship for scientific research of Government of Russian and of Nizhny Novgorod State University of Architecture and Civil Engineering. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990). [3] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). [4] A. Polishscuk. Analog integrated circuits Anadigm: the whole range of analog electronics on a single chip. The first acquaintance. Modern Electronics. Issue 12. P. 8-11 (2004). [5] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2. P. 10-17 (2006). [6] A. Kerentsev, V. Lanin, Constructive-technological features of MOSFET-transistors. Power Electron- ics. Issue 1. P. 34 (2008). [7] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit- vin, V.V. Milenin, A.V. Sachenko. Au–TiBx-n-6H-SiC Schottky barrier diodes: the features of cur- rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [8] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP /GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009). [9] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For- mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc- tors. Vol. 32 (9). P. 1029-1032 (1998). [10] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol. 43 (8). P. 1016-1020 (2009). [11] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [12] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013). [13] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the re- crystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 89 (17), 172111-172114 (2006). [14] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9), 094901-094905 (2006). [15] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Diffusion processes in semiconductor structures dur- ing microwave annealing. Semiconductors. Vol.36 (5). P. 611-617 (2002). [16] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
  • 16. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 16 [17] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [18] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For- mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc- tors. Vol. 32 (9). P. 1029-1032 (1998). [19] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in CdTe films, preparing at different temperature conditions and further annealing. Semiconductors. Vol. 43 (8). P. 1016-1020 (2009). [20] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [21] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013). [22] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [23] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [24] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. № 2. P. 289-388. [25] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976). [26] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39. [27] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc- ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [28] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [29] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [30] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver- tical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [31] E.L. Pankratov, E.A. Bulaeva. Optimization of doping of heterostructure during manufacturing of p-i- n-diodes. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7-14 (2013). [32] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer- sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013). [33] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture a heterobipolar transistors in thin film structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [34] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver- tical field-effect transistors. J. Nanoengineering and Nanomanufacturing. Vol. 2 (3). P. 275-280 (2012). [35] E.L. Pankratov, E.A. Bulaeva. Influence of drain of dopant on distribution of dopant in diffusion- heterojunction rectifiers. J. Adv. Phys. Vol. 2 (2). P. 147-150 (2013). [36] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor het-erostructure by radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014). Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 105 published papers in area of his researches.
  • 17. International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE) Vol.2, No.3, July 2015 17 Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2). She has 52 published papers in area of her researches.