SlideShare a Scribd company logo
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
1
ON OPTIMIZATION OF MANUFACTURING OF
FIELD-EFFECT HETEROTRANSISTORS A THREE-
STAGE AMPLIFIER CIRCUIT, TO INCREASE THEIR
DENSITY
E.L. Pankratov
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
ABSTRACT
In this paper we introduce an approach to increase density of field-effect heterotransistors framework a
three-stage amplifier circuit. At the same time one can obtain decreasing of dimensions of the above tran-
sistors. Dimensions of the elements will be decreased due to manufacture heterostructure with specific
structure, doping of required areas of the heterostructure by diffusion or ion implantation and optimization
of annealing of dopant and/or radiation defects.
Keywords:
.
field-effect heterotransistors; three-stage amplifier circuit; optimization of technological process; ana-
lytical approach for modeling.
1. INTRODUCTION
Currently density of elements of integrated circuits and their performance intensively increasing.
Simultaneously with increasing of the density of the elements of integrated circuit their dimen-
sions decreases. One way to decrease dimensions of these elements of these integrated circuit is
manufacturing of these elements in thin-film heterostructures [1-4]. An alternative approach to
decrease dimensions of the elements of integrated circuits is using laser and microwave types an-
nealing [5-7]. Using these types of annealing leads to generation inhomogeneous distribution of
temperature. Due to Arrhenius law the inhomogeneity of the diffusion coefficient and other pa-
rameters of process. The in homogeneity gives us possibility to decrease dimensions of elements
of integrated circuits. Changing of properties of electronic materials could be obtain by using rad-
iation processing of these materials [8,9].
In this paper we consider a three-stage amplifier circuit described in Ref. [10] (see Fig.1). We
assume, that element of the considered circuit has been manufactured in heterostructure from Fig.
1. The heterostructure consist of a substrate and an epitaxial layer. The epitaxial layer includes
into itself several sections manufactured by using another materials. The sections have been
doped by diffusion or ion implantation to generation into these sections required type of conduc-
tivity (n or p). Framework this paper we analyzed redistribution of dopant during annealing of
dopant and/or radiation defects to formulate conditions for decreasing of dimensions of the consi-
dered circuit.
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
2
S G D
Fig. 1a. Circuit of the three-stage amplifier circuit [10]
Source Channel Drain DrainChannelSource
Fig. 1b. Heterostructure with two layers and sections in the epitaxial layer
2. METHOD OF SOLUTION
We determine spatio-temporal distribution of concentration of dopant by solving the following
boundary problem
( )=
t
tzyxC
∂
∂ ,,, ( ) ( ) ( )






+





+





=
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
x
CCC
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,,,,,,,
(1)
with boundary and initial conditions
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
, (2)
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
,
C(x,y,z,0)=f (x,y,z).
Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; T is the temperature
of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends
on properties of materials, speed of heating and cooling of heterostructure (with account Arrhe-
nius law). Dependences of dopant diffusion coefficients could be approximated by the following
function [9,11,12]
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
3
( ) ( )
( )
( ) ( )
( ) 





++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC
ςςξ γ
γ
, (3)
where DL (x,y,z,T) is the spatial (due to existing several layers wit different properties in hetero-
structure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficient; P
(x,y,z,T) is the limit of solubility of dopant; parameter γ could be integer framework the following
interval γ ∈[1,3] [9]; V (x,y,z,t) is the spatio-temporal distribution of concentration of radiation
vacancies; V*
is the equilibrium distribution of concentration of vacancies. Concentration depen-
dence of dopant diffusion coefficient have been discussed in details in [9]. It should be noted, that
using diffusion type of doping did not leads to generation radiation defects and ζ1=ζ2=0. We de-
termine spatio-temporal distributions of concentrations of point defects have been determine by
solving the following system of equations [11,12]
( ) ( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
II
,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( )−−





∂
∂
∂
∂
+ tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
VII ,,,,,,,,,
,,,
,,, ,
( ) ( )tzyxITzyxk II ,,,,,, 2
,− (4)
( ) ( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VV
,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( )−−





∂
∂
∂
∂
+ tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
VIV ,,,,,,,,,
,,,
,,, ,
( ) ( )tzyxVTzyxk VV ,,,,,, 2
,−
with boundary and initial conditions
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ=I,V; I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials;
Dρ(x,y,z,T) is the diffusion coefficients of radiation interstitials and vacancies; terms V2
(x,y,z,t) and
I2
(x,y,z,t) correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T) is the parameter
of recombination of point radiation defects; kρ,ρ(x,y,z,T) are the parameters of generation of sim-
plest complexes of point radiation defects.
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
4
We determine spatio-temporal distributions of concentrations of divacancies ΦV (x, y,z,t) and diin-
terstitials ΦI(x,y,z,t) by solving the following system of equations [11,12]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx III
II
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I
,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx VVV
VV
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V
,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
with boundary and initial conditions
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, (7)
ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z).
Here DΦρ(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; kρ(x,y,z,T) are
the parameters of decay of complexes of radiation defects.
We determine spatio-temporal distributions of concentrations of dopant and radiation defects by
using method of averaging of function corrections [13] with decreased quantity of iteration steps
[14]. Framework the approach we used solutions of Eqs. (1), (4) and (6) in linear form and with
averaged values of diffusion coefficients D0L, D0I, D0V, D0ΦI, D0ΦV as initial-order approximations
of the required concentrations. The solutions could be written as
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
0
1
2
,,,
n
nCnnnnC
zyxzyx
C
tezcycxcF
LLLLLL
F
tzyxC ,
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
0
1
2
,,,
n
nInnnnI
zyxzyx
I
tezcycxcF
LLLLLL
F
tzyxI ,
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
0
1
2
,,,
n
nVnnnnC
zyxzyx
C
tezcycxcF
LLLLLL
F
tzyxV ,
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
5
( ) ( ) ( ) ( ) ( )∑+=Φ
∞
=
ΦΦ
Φ
1
0
1
2
,,,
n
nnnnn
zyxzyx
I tezcycxcF
LLLLLL
F
tzyx II
I
,
( ) ( ) ( ) ( ) ( )∑+=Φ
∞
=
ΦΦ
Φ
1
0
1
2
,,,
n
nnnnn
zyxzyx
V tezcycxcF
LLLLLL
F
tzyx VV
V
,
Where
( )
















++−= 2220
22 111
exp
zyx
n
LLL
tDnte ρρ π ,
( ) ( ) ( ) ( )∫ ∫ ∫=
x y zL L L
nnnn udvdwdwvufvcvcucF
0 0 0
,,ρρ , cn(χ)=cos(π nχ/Lχ).
The second-order approximations and approximations with higher orders of concentrations of
dopant and radiation defects we determine framework standard iterative procedure [13,14].
Framework this procedure to calculate approximations with the n-order one shall replace the
functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y,z,t), ΦV(x,y, z,t) in the right sides of the Eqs. (1),
(4) and (6) on the following sums αnρ+ρ n-1(x,y,z, t). As an example we present equations for the
second-order approximations of the considered concentrations
( ) ( ) ( )
( )
( )[ ]
( )



×





 +
+








++=
∗∗
TzyxP
tzyxC
V
tzyxV
V
tzyxV
xt
tzyxC C
,,,
,,,
1
,,,,,,
1
,,, 12
2
2
21
2
γ
γ
α
ξςς
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( )
( )



×





+++


× ∗∗ 2
2
21
1
,,,,,,
1,,,
,,,
,,,
V
tzyxV
V
tzyxV
TzyxD
yx
tzyxC
TzyxD LL
ςς
∂
∂
∂
∂
( )[ ]
( )
( ) ( ) ( )



×+









 +
+×
z
tzyxC
TzyxD
zy
tzyxC
TzyxP
tzyxC
L
C
∂
∂
∂
∂
∂
∂α
ξ γ
γ
,,,
,,,
,,,
,,,
,,,
1 1112
( ) ( )
( )
( )[ ]
( ) 








 +
+








++× ∗∗
TzyxP
tzyxC
V
tzyxV
V
tzyxV C
,,,
,,,
1
,,,,,,
1 12
2
2
21 γ
γ
α
ξςς (8)
( ) ( ) ( ) ( ) ( ) +





+





=
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
II
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
( ) ( ) ( )[ ] ( )[ ]×++−





+ tzyxVtzyxI
z
tzyxI
TzyxD
z
VII ,,,,,,
,,,
,,, 1212
1
αα
∂
∂
∂
∂
( ) ( ) ( )[ ]2
12,,
,,,,,,,,, tzyxITzyxkTzyxk IIIVI
+−× α (9)
( ) ( ) ( ) ( ) ( ) +





+





=
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VV
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,, 112
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
6
( ) ( ) ( )[ ] ( )[ ]×++−





+ tzyxVtzyxI
z
tzyxV
TzyxD
z
VIV ,,,,,,
,,,
,,, 1212
1
αα
∂
∂
∂
∂
( ) ( ) ( )[ ]2
12,, ,,,,,,,,, tzyxVTzyxkTzyxk VVVVI +−× α
( ) ( ) ( ) ( )

×+




 Φ
=
Φ
ΦΦ TzyxD
yx
tzyx
TzyxD
xt
tzyx
II
II
,,,
,,,
,,,
,,, 12
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )×+




 Φ
+

Φ
× Φ Tzyxk
z
tzyx
TzyxD
zy
tzyx
II
II
I
,,,
,,,
,,,
,,,
,
11
∂
∂
∂
∂
∂
∂
( ) ( ) ( )tzyxITzyxktzyxI I ,,,,,,,,,2
−× (10)
( ) ( ) ( ) ( )

×+




 Φ
=
Φ
ΦΦ TzyxD
yx
tzyx
TzyxD
xt
tzyx
VV
VV
,,,
,,,
,,,
,,, 12
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )×+




 Φ
+

Φ
× Φ Tzyxk
z
tzyx
TzyxD
zy
tzyx
VV
VI
V
,,,
,,,
,,,
,,,
,
11
∂
∂
∂
∂
∂
∂
( ) ( ) ( )tzyxVTzyxktzyxV V ,,,,,,,,,2
−× .
Integration of the left and right sides of Eqs.(8)-(10) gives us possibility to obtain relations for the
second-order approximations of concentrations of dopant and radiation defects in final form
( ) ( ) ( )
( )
( )[ ]
( )



∫ ×





 +
+








++=
∗∗
t
C
TzyxP
zyxC
V
zyxV
V
zyxV
x
tzyxC
0
12
2
2
212
,,,
,,,
1
,,,,,,
1,,, γ
γ
τα
ξ
τ
ς
τ
ς
∂
∂
( ) ( ) ( ) ( )
( )



∫ ×








+++


×
∗∗
t
L
V
zyxV
V
zyxV
y
d
x
zyxC
TzyxD
0
2
2
21
1 ,,,,,,
1
,,,
,,,
τ
ς
τ
ς
∂
∂
τ
∂
τ∂
( ) ( )[ ]
( )
( ) ( )


∫ ×+









 +
+×
t
L
C
L TzyxD
z
d
y
zyxC
TzyxP
zyxC
TzyxD
0
112
,,,
,,,
,,,
,,,
1,,,
∂
∂
τ
∂
τ∂τα
ξ γ
γ
( ) ( )
( )
( )[ ]
( )
( ) +









 +
+








++× ∗∗
τ
∂
τ∂τα
ξ
τ
ς
τ
ς γ
γ
d
z
zyxC
TzyxP
zyxC
V
zyxV
V
zyxV C ,,,
,,,
,,,
1
,,,,,,
1 112
2
2
21
( )zyxfC ,,+ (8a)
( ) ( ) ( ) ( )

∫ ×+





∫=
t
I
t
I TzyxD
y
d
x
zyxI
TzyxD
x
tzyxI
00
1
2 ,,,
,,,
,,,,,,
∂
∂
τ
∂
τ∂
∂
∂
( ) ( ) ( ) ( )×∫−





∫+


×
t
II
t
I Tzyxkd
z
zyxI
TzyxD
z
d
y
zyxI
0
,
0
11
,,,
,,,
,,,
,,,
τ
∂
τ∂
∂
∂
τ
∂
τ∂
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
7
( )[ ] ( ) ( ) ( )[ ]×∫ +−++×
t
IVIII zyxITzyxkzyxfdzyxI
0
12,
2
12 ,,,,,,,,,,, ταττα
( )[ ] ττα dzyxVV ,,,12 +× (9a)
( ) ( ) ( ) ( )

∫ ×+





∫=
t
V
t
V TzyxD
y
d
x
zyxV
TzyxD
x
tzyxV
00
1
2 ,,,
,,,
,,,,,,
∂
∂
τ
∂
τ∂
∂
∂
( ) ( ) ( ) ( )×∫−





∫+


×
t
VV
t
V Tzyxkd
z
zyxV
TzyxD
z
d
y
zyxV
0
,
0
11
,,,
,,,
,,,
,,,
τ
∂
τ∂
∂
∂
τ
∂
τ∂
( )[ ] ( ) ( ) ( )[ ]×∫ +−++×
t
IVIVI zyxITzyxkzyxfdzyxV
0
12,
2
12 ,,,,,,,,,,, ταττα
( )[ ] ττα dzyxVV ,,,12 +×
( ) ( ) ( ) ( )

∫ ×+





∫
Φ
=Φ ΦΦ
tt
I
I TzyxD
y
d
x
zyx
TzyxD
x
tzyx II
00
1
2 ,,,
,,,
,,,,,,
∂
∂
τ
∂
τ∂
∂
∂
( ) ( ) ( ) ( )×∫+





∫
Φ
+

Φ
× Φ
t
II
t
II
Tzyxkd
z
zyx
TzyxD
z
d
y
zyx
I
0
,
0
11
,,,
,,,
,,,
,,,
τ
∂
τ∂
∂
∂
τ
∂
τ∂
( ) ( ) ( ) ( )zyxfdzyxITzyxkdzyxI I
t
I ,,,,,,,,,,,
0
2
Φ+∫−× ττττ (10a)
( ) ( ) ( ) ( )

∫ ×+





∫
Φ
=Φ ΦΦ
tt
V
V TzyxD
y
d
x
zyx
TzyxD
x
tzyx VV
00
1
2 ,,,
,,,
,,,,,,
∂
∂
τ
∂
τ∂
∂
∂
( ) ( ) ( ) ( )×∫+





∫
Φ
+

Φ
× Φ
t
VV
t
VI
Tzyxkd
z
zyx
TzyxD
z
d
y
zyx
V
0
,
0
11
,,,
,,,
,,,
,,,
τ
∂
τ∂
∂
∂
τ
∂
τ∂
( ) ( ) ( ) ( )zyxfdzyxVTzyxkdzyxV V
t
V ,,,,,,,,,,,
0
2
Φ+∫−× ττττ
We determine average values of the second-orders approximations of the considered concentra-
tions by using the following standard relations [13,14]
( ) ( )[ ]∫ ∫ ∫ ∫ −
Θ
=
Θ
0 0 0 0
122 ,,,,,,
1 x y zL L L
zyx
tdxdydzdtzyxtzyx
LLL
ρρα ρ . (11)
Substitution of relations (8a)-(10a) into relation (11) gives us possibility to obtain relations for
the required average values α2ρ
( )∫ ∫ ∫=
x y zL L L
C
zyx
С xdydzdzyxf
LLL 0 0 0
2 ,,
1
α , (12)
( ) [{ −+−−+++= 112010200
2
0021001
00
2 41
2
1
IVIIIVVIIIVVIIIV
II
I AAAAAAA
A
ααα
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
8
( )
00
0021001
2
1
0 0 0 2
1
,,
1
II
IVVIIIV
L L L
I
zyx A
AAA
xdydzdzyxf
LLL
x y z α+++
−








∫ ∫ ∫− (13a)
( )
4
313
4
2
3
4
2
4
4
42
1
B
AB
A
ByB
yB
AB
B
V
+
−




 −
+−
+
=α , (13b)
where ( ) ( ) ( ) ( )∫ ∫ ∫ ∫−Θ
Θ
=
Θ
0 0 0 0
11, ,,,,,,,,,
1 x y zL L L
ji
ba
zyx
abij tdxdydzdtzyxVtzyxITzyxkt
LLL
A ,
( )2
0000
2
00
2
00
2
004 2 VVIIIVIVIV AAAAAB −−= ,
−++= 2
001000
3
0001
2
00003 IVIIIVIVIVIVIV AAAAAAAB
( ) ( ) ( )[ ]−++−+++−− 121224 10100010010000010000
2
00 VVIVIIIIIVIVIVIVVVIIIV AAAAAAAAAAA
2
000100
2
000010 24 IVIVIVIVIIIV AAAAAA +− ,
( ){ ×++++= 00
2
01
2
00
2
1001
2
002 1 IVIVIVIIIVIV AAAAAAB
( )




×−−−−++×
zyx
IIIVIIIIIVIIIVIVIVIVIV
LLL
AAAAAAAAAAA
1
442 2011000010100001000000
( ) ( ) ([{ ++−+++






∫ ∫ ∫× 12122,, 10001001000001
0 0 0
IVIIIIIVIVIVIV
L L L
I AAAAAAAxdydzdzyxf
x y z
)] ( ) ( ) (




−−∫ ∫ ∫+++++ 2000
0 0 0
100101
2
10 2,,
2
12 VVII
L L L
V
zyx
IIIVIVVV AAxdydzdzyxf
LLL
AAAA
x y z
) ( )] ( ) ([ ++−++++++− 122121 1000000110010010010111 IVIIIVIVIIIVIVIIIVIVIV AAAAAAAAAAA
)]}10VVA+ , ( ) ( )


×∫ ∫ ∫−−++=
x y zL L L
I
x
IVIIIVIVIV xdydzdzyxf
L
AAAAAB
0 0 0
11
2
100101001 ,,
1
812
( )−−++++




−× 00101000010000
2
0100010020 4
1
IIIVIIIVIVIVIVIVIIIVIVII
zy
AAAAAAAAAAAA
LL
( ) ( ) ( )




+−−+++∫ ∫ ∫− 112000100101
0 0 0
00
21,,
2
2 IVVVIIIIIVIV
L L L
I
zyx
II
AAAAAAxdydzdzyxf
LLL
A x y z
( )] ( ) ( )[ ]0001001010100100100101 212121 IVIVIIVVIVIIIVIVIIIVIV AAAAAAAAAAA +++−+++++ ,
( ) ( +++








−∫ ∫ ∫+= 1001
2
0111
0 0 0
20
2
01000 ,,
1
4 IIIVIVIV
L L L
I
zyx
IIIVII AAAAxdydzdzyxf
LLL
AAAB
x y z
) ( ) ( ) ( )




+−−+++∫ ∫ ∫−+ 112000100101
0 0 0
002
21,,
2
1 IVVVIIIIIVIV
L L L
V
zyx
II
AAAAAAxdydzdzyxf
LLL
A x y z
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
9
( )]2
100101 1 IIIVIV AAA +++ ,
6
23 323 32 B
qpqqpqy +++−−+= ,
( )×−= 031 82 BBBq
( )
8
4
21648
2
1
2
320
3
22 BBBBBB −−
++× , ( )[ ] 722823 2
2031 BBBBp −−= ,
2
2
3 48 BByA −+= ,
( ) ( ) ( ) +∫ ∫ ∫ ∫−Θ
Θ
−=
Θ
Φ
0 0 0 0
202 ,,,,,,
1 x y z
I
L L L
I
zyx
II tdxdydzdtzyxITzyxkt
LLL
Aα
( )∫ ∫ ∫+ Φ
x y zL L L
I
zyx
xdydzdzyxf
LLL 0 0 0
,,
1
(14)
( ) ( ) ( ) +∫ ∫ ∫ ∫−Θ
Θ
−=
Θ
Φ
0 0 0 0
202 ,,,,,,
1 x y z
V
L L L
V
zyx
VV tdxdydzdtzyxVTzyxkt
LLL
Aα
( )∫ ∫ ∫+ Φ
x y zL L L
V
zyx
xdydzdzyxf
LLL 0 0 0
,,
1
.
The considered substitution gives us possibility to obtain equation for parameter α2C. Solution of
the equation depends on value of parameter γ. Analysis of spatio-temporal distributions of con-
centrations of dopant and radiation defects has been done by using their second-order approxima-
tions framework the method of averaged of function corrections with decreased quantity of itera-
tive steps. The second-order approximation is usually enough good approximation to make qualit-
ative analysis and obtain some quantitative results. Results of analytical calculation have been
checked by comparison with results of numerical simulation.
3. DISCUSSION
In this section we analyzed the spatio-temporal distribution of concentration of dopant in the con-
sidered heterostructure during annealing. Figs. 2 shows spatial distributions of concentrations of
dopants infused (Fig. 2a) or implanted (Fig. 2b) in epitaxial layer. Value of annealing time is
equal for all distributions framework every figure 2a and 2b. Increasing of number of curves cor-
responds to increasing of difference between values of dopant diffusion coefficients in layers of
heterostructure. The figures show that presents of interface between layers of heterostructure
gives us possibility to increase absolute value of gradient of concentration of dopant in direction,
which is perpendicular to the interface. We obtain increasing of absolute value of the gradient in
neighborhood of the interface. Due to the increasing one can obtain decreasing dimensions of
transistors, which have been used in the pass transistor multiplexer circuit. At the same time with
increasing of the gradient homogeneity of concentration of dopant in enriched area increases.
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
10
Fig.2a. Distributions of concentration of infused dopant in heterostructure
from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer sub-
strate. Increasing of number of curve corresponds to increasing of difference between values of
dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant
diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in sub-
strate
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.2b. Distributions of concentration of implanted dopant in heterostructure
from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer sub-
strate. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4
corresponds to annealing time Θ = 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 corresponds to homo-
genous sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of
dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient
in substrate
To choose annealing time it should be accounted decreasing of absolute value of gradient of con-
centration of dopant in neighborhood of interface between substrate and epitaxial layer with in-
creasing of annealing time. Decreasing of value of annealing time leads to decreasing of homo-
geneity of concentration of dopant in enriched area (see Fig. 3a for diffusion doping of materials
and Fig. 3b for ion doping of materials). Let us determine compromise value of annealing time
framework recently introduced criteria [15-20]. Framework the criteria we approximate real dis-
tributions of concentration of dopant by ideal rectangle distribution ψ (x,y,z). Farther we deter-
mine compromise value of annealing time by minimization of the mean-squared error
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
11
C(x,Θ)
0 Lx
2
1
3
4
Fig. 3a. Spatial distributions of dopant in heterostructure after dopant infusion.
Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ-
ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal-
ing time
x
C(x,Θ)
1
2
3
4
0 L
Fig.3b. Spatial distributions of dopant in heterostructure after ion implantation.
Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ-
ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal-
ing time
( ) ( )[ ]∫ ∫ ∫ −Θ=
x y zL L L
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (15)
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0
L
-2
3
2
4
1
Fig.4a. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been
obtained by minimization of mean-squared error, on several parameters.
Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ=
0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.
Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for
a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
12
of parameter ξ for a/L =1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal an-
nealing time on value of parameter γ for a/L=1/2 and ε=ξ=0
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0
L
-2
3
2
4
1
Fig.4b. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have
been obtained by minimization of mean-squared error, on several parameters.
Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ=0
for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve
2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2
and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of pa-
rameter ξ for a/L =1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing
time on value of parameter γ for a/L=1/2 and ε=ξ=0
Dependences of optimal annealing time are presented on Figs. 4 for diffusion and ion types of
doping, respectively. It should be noted, that it is necessary to anneal radiation defects after ion
implantation. One could find spreading of concentration of distribution of dopant during this an-
nealing. In the ideal case distribution of dopant achieves appropriate interfaces between materials
of heterostructure during annealing of radiation defects. If dopant did not achieves any interfaces
during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this
situation optimal value of additional annealing time of implanted dopant is smaller, than anneal-
ing time of infused dopant. At the same time ion type of doping gives us possibility to decrease
mismatch-induced stress in heterostructure [21].
4. CONCLUSION
In this paper we model redistribution of infused and implanted dopants during manufacture the
three-stage amplifier circuit on field-effect heterotransistors. Several recommendations to optim-
ize manufacture the heterotransistors have been formulated. Analytical approach to model diffu-
sion and ion types of doping with account concurrent changing of parameters in space and time
has been introduced. At the same time the approach gives us possibility to take into account non-
linearity of doping processes.
REFERENCES
[1] G. Volovich. Modern Electronics. Issue 2. P. 10-17 (2006).
[2] A. Kerentsev, V. Lanin, Power Electronics. Issue 1. P. 34 (2008).
[3] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik,
P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[4] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V.
Falina, A.S. Yastrebov. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001).
International Journal of Electronic Design and Test (JEDT) Vol.1 No.2
13
[5] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Appl. Phys. Lett. 89
(17), 172111-172114 (2006).
[6] H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. 98 (9), 094901-094905 (2006).
[7] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov,
Yu.N. Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-
843 (2003).
[8] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg,
2003, in Russian).
[9] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka",
Kiev, 1979, in Russian).
[10] Xi Qu, Ze-kun Zhou, Bo Zhang. Analog Integr. Circ. Sig. Process. Vol. 79. P. 543-553
(2014).
[11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow,
1991).
[12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989).
[13] Yu.D. Sokolov. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955).
[14] E.L. Pankratov. The European Physical Journal B. Vol. 57 (3). P. 251-256 (2007).
[15] E.L. Pankratov. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).
[16] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187-197 (2008).
[17] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 14 (10). P. 4803-4814 (2010).
[18] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 14 (7). P. 3548-3555
(2017).
[19] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[20] E.L. Pankratov, E.A. Bulaeva. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
[21] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).

More Related Content

What's hot

AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
JaresJournal
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ijoejournal
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration framework
ijaceeejournal
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
ijcsitcejournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
ijrap
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects in
ijcsa
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
ijfcstjournal
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
msejjournal
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
antjjournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
antjjournal
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
BRNSS Publication Hub
 

What's hot (12)

AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration framework
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects in
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 

Similar to ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE STAGE AMPLIFIER CIRCUIT, TO INCREASE THEIR DENSITY

ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
JaresJournal
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ijaceeejournal
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Zac Darcy
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
Zac Darcy
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
antjjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
ijrap
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ijcsa
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
Zac Darcy
 
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUITON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
jedt_journal
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
msejjournal
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
msejjournal
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebase
ijaceeejournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
ijrap
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
ijfcstjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
msejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
msejjournal
 

Similar to ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE STAGE AMPLIFIER CIRCUIT, TO INCREASE THEIR DENSITY (20)

ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUITON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebase
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 

More from jedt_journal

A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BISTA REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
jedt_journal
 
Jedt 1 page cfp.11
Jedt 1 page cfp.11Jedt 1 page cfp.11
Jedt 1 page cfp.11
jedt_journal
 
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
jedt_journal
 
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
jedt_journal
 
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
jedt_journal
 
Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)
jedt_journal
 
Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)
jedt_journal
 
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
jedt_journal
 

More from jedt_journal (8)

A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BISTA REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
A REVIEW OF LOW POWERAND AREA EFFICIENT FSM BASED LFSR FOR LOGIC BIST
 
Jedt 1 page cfp.11
Jedt 1 page cfp.11Jedt 1 page cfp.11
Jedt 1 page cfp.11
 
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
 
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
FREE PUBLICATION CHARGES - International Journal of Electronic Design and Tes...
 
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
NO PUBLICATION CHARGES - International Journal of Electronic Design and Test ...
 
Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)
 
Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)Call for Papers - International Journal of Electronic Design and Test (JEDT)
Call for Papers - International Journal of Electronic Design and Test (JEDT)
 
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
A SINGLE-ENDED AND BIT-INTERLEAVING 7T SRAM CELL IN SUB-THRESHOLD REGION WITH...
 

Recently uploaded

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 

Recently uploaded (20)

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 

ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE STAGE AMPLIFIER CIRCUIT, TO INCREASE THEIR DENSITY

  • 1. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 1 ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS A THREE- STAGE AMPLIFIER CIRCUIT, TO INCREASE THEIR DENSITY E.L. Pankratov Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we introduce an approach to increase density of field-effect heterotransistors framework a three-stage amplifier circuit. At the same time one can obtain decreasing of dimensions of the above tran- sistors. Dimensions of the elements will be decreased due to manufacture heterostructure with specific structure, doping of required areas of the heterostructure by diffusion or ion implantation and optimization of annealing of dopant and/or radiation defects. Keywords: . field-effect heterotransistors; three-stage amplifier circuit; optimization of technological process; ana- lytical approach for modeling. 1. INTRODUCTION Currently density of elements of integrated circuits and their performance intensively increasing. Simultaneously with increasing of the density of the elements of integrated circuit their dimen- sions decreases. One way to decrease dimensions of these elements of these integrated circuit is manufacturing of these elements in thin-film heterostructures [1-4]. An alternative approach to decrease dimensions of the elements of integrated circuits is using laser and microwave types an- nealing [5-7]. Using these types of annealing leads to generation inhomogeneous distribution of temperature. Due to Arrhenius law the inhomogeneity of the diffusion coefficient and other pa- rameters of process. The in homogeneity gives us possibility to decrease dimensions of elements of integrated circuits. Changing of properties of electronic materials could be obtain by using rad- iation processing of these materials [8,9]. In this paper we consider a three-stage amplifier circuit described in Ref. [10] (see Fig.1). We assume, that element of the considered circuit has been manufactured in heterostructure from Fig. 1. The heterostructure consist of a substrate and an epitaxial layer. The epitaxial layer includes into itself several sections manufactured by using another materials. The sections have been doped by diffusion or ion implantation to generation into these sections required type of conduc- tivity (n or p). Framework this paper we analyzed redistribution of dopant during annealing of dopant and/or radiation defects to formulate conditions for decreasing of dimensions of the consi- dered circuit.
  • 2. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 2 S G D Fig. 1a. Circuit of the three-stage amplifier circuit [10] Source Channel Drain DrainChannelSource Fig. 1b. Heterostructure with two layers and sections in the epitaxial layer 2. METHOD OF SOLUTION We determine spatio-temporal distribution of concentration of dopant by solving the following boundary problem ( )= t tzyxC ∂ ∂ ,,, ( ) ( ) ( )       +      +      = z tzyxC D zy tzyxC D yx tzyxC D x CCC ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,,,,,,,, (1) with boundary and initial conditions ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , (2) ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=f (x,y,z). Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials, speed of heating and cooling of heterostructure (with account Arrhe- nius law). Dependences of dopant diffusion coefficients could be approximated by the following function [9,11,12]
  • 3. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 3 ( ) ( ) ( ) ( ) ( ) ( )       ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ , (3) where DL (x,y,z,T) is the spatial (due to existing several layers wit different properties in hetero- structure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficient; P (x,y,z,T) is the limit of solubility of dopant; parameter γ could be integer framework the following interval γ ∈[1,3] [9]; V (x,y,z,t) is the spatio-temporal distribution of concentration of radiation vacancies; V* is the equilibrium distribution of concentration of vacancies. Concentration depen- dence of dopant diffusion coefficient have been discussed in details in [9]. It should be noted, that using diffusion type of doping did not leads to generation radiation defects and ζ1=ζ2=0. We de- termine spatio-temporal distributions of concentrations of point defects have been determine by solving the following system of equations [11,12] ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI II ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( )−−      ∂ ∂ ∂ ∂ + tzyxVtzyxITzyxk z tzyxI TzyxD z VII ,,,,,,,,, ,,, ,,, , ( ) ( )tzyxITzyxk II ,,,,,, 2 ,− (4) ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VV ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( )−−      ∂ ∂ ∂ ∂ + tzyxVtzyxITzyxk z tzyxV TzyxD z VIV ,,,,,,,,, ,,, ,,, , ( ) ( )tzyxVTzyxk VV ,,,,,, 2 ,− with boundary and initial conditions ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ=I,V; I(x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; Dρ(x,y,z,T) is the diffusion coefficients of radiation interstitials and vacancies; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T) is the parameter of recombination of point radiation defects; kρ,ρ(x,y,z,T) are the parameters of generation of sim- plest complexes of point radiation defects.
  • 4. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 4 We determine spatio-temporal distributions of concentrations of divacancies ΦV (x, y,z,t) and diin- terstitials ΦI(x,y,z,t) by solving the following system of equations [11,12] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx III II ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx VVV VV ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ with boundary and initial conditions ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , (7) ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z). Here DΦρ(x,y,z,T) are the diffusion coefficients of complexes of radiation defects; kρ(x,y,z,T) are the parameters of decay of complexes of radiation defects. We determine spatio-temporal distributions of concentrations of dopant and radiation defects by using method of averaging of function corrections [13] with decreased quantity of iteration steps [14]. Framework the approach we used solutions of Eqs. (1), (4) and (6) in linear form and with averaged values of diffusion coefficients D0L, D0I, D0V, D0ΦI, D0ΦV as initial-order approximations of the required concentrations. The solutions could be written as ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 0 1 2 ,,, n nCnnnnC zyxzyx C tezcycxcF LLLLLL F tzyxC , ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 0 1 2 ,,, n nInnnnI zyxzyx I tezcycxcF LLLLLL F tzyxI , ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 0 1 2 ,,, n nVnnnnC zyxzyx C tezcycxcF LLLLLL F tzyxV ,
  • 5. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 5 ( ) ( ) ( ) ( ) ( )∑+=Φ ∞ = ΦΦ Φ 1 0 1 2 ,,, n nnnnn zyxzyx I tezcycxcF LLLLLL F tzyx II I , ( ) ( ) ( ) ( ) ( )∑+=Φ ∞ = ΦΦ Φ 1 0 1 2 ,,, n nnnnn zyxzyx V tezcycxcF LLLLLL F tzyx VV V , Where ( )                 ++−= 2220 22 111 exp zyx n LLL tDnte ρρ π , ( ) ( ) ( ) ( )∫ ∫ ∫= x y zL L L nnnn udvdwdwvufvcvcucF 0 0 0 ,,ρρ , cn(χ)=cos(π nχ/Lχ). The second-order approximations and approximations with higher orders of concentrations of dopant and radiation defects we determine framework standard iterative procedure [13,14]. Framework this procedure to calculate approximations with the n-order one shall replace the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y,z,t), ΦV(x,y, z,t) in the right sides of the Eqs. (1), (4) and (6) on the following sums αnρ+ρ n-1(x,y,z, t). As an example we present equations for the second-order approximations of the considered concentrations ( ) ( ) ( ) ( ) ( )[ ] ( )    ×       + +         ++= ∗∗ TzyxP tzyxC V tzyxV V tzyxV xt tzyxC C ,,, ,,, 1 ,,,,,, 1 ,,, 12 2 2 21 2 γ γ α ξςς ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )    ×      +++   × ∗∗ 2 2 21 1 ,,,,,, 1,,, ,,, ,,, V tzyxV V tzyxV TzyxD yx tzyxC TzyxD LL ςς ∂ ∂ ∂ ∂ ( )[ ] ( ) ( ) ( ) ( )    ×+           + +× z tzyxC TzyxD zy tzyxC TzyxP tzyxC L C ∂ ∂ ∂ ∂ ∂ ∂α ξ γ γ ,,, ,,, ,,, ,,, ,,, 1 1112 ( ) ( ) ( ) ( )[ ] ( )           + +         ++× ∗∗ TzyxP tzyxC V tzyxV V tzyxV C ,,, ,,, 1 ,,,,,, 1 12 2 2 21 γ γ α ξςς (8) ( ) ( ) ( ) ( ) ( ) +      +      = y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI II ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112 ( ) ( ) ( )[ ] ( )[ ]×++−      + tzyxVtzyxI z tzyxI TzyxD z VII ,,,,,, ,,, ,,, 1212 1 αα ∂ ∂ ∂ ∂ ( ) ( ) ( )[ ]2 12,, ,,,,,,,,, tzyxITzyxkTzyxk IIIVI +−× α (9) ( ) ( ) ( ) ( ) ( ) +      +      = y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VV ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, 112
  • 6. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 6 ( ) ( ) ( )[ ] ( )[ ]×++−      + tzyxVtzyxI z tzyxV TzyxD z VIV ,,,,,, ,,, ,,, 1212 1 αα ∂ ∂ ∂ ∂ ( ) ( ) ( )[ ]2 12,, ,,,,,,,,, tzyxVTzyxkTzyxk VVVVI +−× α ( ) ( ) ( ) ( )  ×+      Φ = Φ ΦΦ TzyxD yx tzyx TzyxD xt tzyx II II ,,, ,,, ,,, ,,, 12 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )×+      Φ +  Φ × Φ Tzyxk z tzyx TzyxD zy tzyx II II I ,,, ,,, ,,, ,,, , 11 ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( )tzyxITzyxktzyxI I ,,,,,,,,,2 −× (10) ( ) ( ) ( ) ( )  ×+      Φ = Φ ΦΦ TzyxD yx tzyx TzyxD xt tzyx VV VV ,,, ,,, ,,, ,,, 12 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )×+      Φ +  Φ × Φ Tzyxk z tzyx TzyxD zy tzyx VV VI V ,,, ,,, ,,, ,,, , 11 ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( )tzyxVTzyxktzyxV V ,,,,,,,,,2 −× . Integration of the left and right sides of Eqs.(8)-(10) gives us possibility to obtain relations for the second-order approximations of concentrations of dopant and radiation defects in final form ( ) ( ) ( ) ( ) ( )[ ] ( )    ∫ ×       + +         ++= ∗∗ t C TzyxP zyxC V zyxV V zyxV x tzyxC 0 12 2 2 212 ,,, ,,, 1 ,,,,,, 1,,, γ γ τα ξ τ ς τ ς ∂ ∂ ( ) ( ) ( ) ( ) ( )    ∫ ×         +++   × ∗∗ t L V zyxV V zyxV y d x zyxC TzyxD 0 2 2 21 1 ,,,,,, 1 ,,, ,,, τ ς τ ς ∂ ∂ τ ∂ τ∂ ( ) ( )[ ] ( ) ( ) ( )   ∫ ×+           + +× t L C L TzyxD z d y zyxC TzyxP zyxC TzyxD 0 112 ,,, ,,, ,,, ,,, 1,,, ∂ ∂ τ ∂ τ∂τα ξ γ γ ( ) ( ) ( ) ( )[ ] ( ) ( ) +           + +         ++× ∗∗ τ ∂ τ∂τα ξ τ ς τ ς γ γ d z zyxC TzyxP zyxC V zyxV V zyxV C ,,, ,,, ,,, 1 ,,,,,, 1 112 2 2 21 ( )zyxfC ,,+ (8a) ( ) ( ) ( ) ( )  ∫ ×+      ∫= t I t I TzyxD y d x zyxI TzyxD x tzyxI 00 1 2 ,,, ,,, ,,,,,, ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( )×∫−      ∫+   × t II t I Tzyxkd z zyxI TzyxD z d y zyxI 0 , 0 11 ,,, ,,, ,,, ,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂
  • 7. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 7 ( )[ ] ( ) ( ) ( )[ ]×∫ +−++× t IVIII zyxITzyxkzyxfdzyxI 0 12, 2 12 ,,,,,,,,,,, ταττα ( )[ ] ττα dzyxVV ,,,12 +× (9a) ( ) ( ) ( ) ( )  ∫ ×+      ∫= t V t V TzyxD y d x zyxV TzyxD x tzyxV 00 1 2 ,,, ,,, ,,,,,, ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( )×∫−      ∫+   × t VV t V Tzyxkd z zyxV TzyxD z d y zyxV 0 , 0 11 ,,, ,,, ,,, ,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂ ( )[ ] ( ) ( ) ( )[ ]×∫ +−++× t IVIVI zyxITzyxkzyxfdzyxV 0 12, 2 12 ,,,,,,,,,,, ταττα ( )[ ] ττα dzyxVV ,,,12 +× ( ) ( ) ( ) ( )  ∫ ×+      ∫ Φ =Φ ΦΦ tt I I TzyxD y d x zyx TzyxD x tzyx II 00 1 2 ,,, ,,, ,,,,,, ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( )×∫+      ∫ Φ +  Φ × Φ t II t II Tzyxkd z zyx TzyxD z d y zyx I 0 , 0 11 ,,, ,,, ,,, ,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂ ( ) ( ) ( ) ( )zyxfdzyxITzyxkdzyxI I t I ,,,,,,,,,,, 0 2 Φ+∫−× ττττ (10a) ( ) ( ) ( ) ( )  ∫ ×+      ∫ Φ =Φ ΦΦ tt V V TzyxD y d x zyx TzyxD x tzyx VV 00 1 2 ,,, ,,, ,,,,,, ∂ ∂ τ ∂ τ∂ ∂ ∂ ( ) ( ) ( ) ( )×∫+      ∫ Φ +  Φ × Φ t VV t VI Tzyxkd z zyx TzyxD z d y zyx V 0 , 0 11 ,,, ,,, ,,, ,,, τ ∂ τ∂ ∂ ∂ τ ∂ τ∂ ( ) ( ) ( ) ( )zyxfdzyxVTzyxkdzyxV V t V ,,,,,,,,,,, 0 2 Φ+∫−× ττττ We determine average values of the second-orders approximations of the considered concentra- tions by using the following standard relations [13,14] ( ) ( )[ ]∫ ∫ ∫ ∫ − Θ = Θ 0 0 0 0 122 ,,,,,, 1 x y zL L L zyx tdxdydzdtzyxtzyx LLL ρρα ρ . (11) Substitution of relations (8a)-(10a) into relation (11) gives us possibility to obtain relations for the required average values α2ρ ( )∫ ∫ ∫= x y zL L L C zyx С xdydzdzyxf LLL 0 0 0 2 ,, 1 α , (12) ( ) [{ −+−−+++= 112010200 2 0021001 00 2 41 2 1 IVIIIVVIIIVVIIIV II I AAAAAAA A ααα
  • 8. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 8 ( ) 00 0021001 2 1 0 0 0 2 1 ,, 1 II IVVIIIV L L L I zyx A AAA xdydzdzyxf LLL x y z α+++ −         ∫ ∫ ∫− (13a) ( ) 4 313 4 2 3 4 2 4 4 42 1 B AB A ByB yB AB B V + −      − +− + =α , (13b) where ( ) ( ) ( ) ( )∫ ∫ ∫ ∫−Θ Θ = Θ 0 0 0 0 11, ,,,,,,,,, 1 x y zL L L ji ba zyx abij tdxdydzdtzyxVtzyxITzyxkt LLL A , ( )2 0000 2 00 2 00 2 004 2 VVIIIVIVIV AAAAAB −−= , −++= 2 001000 3 0001 2 00003 IVIIIVIVIVIVIV AAAAAAAB ( ) ( ) ( )[ ]−++−+++−− 121224 10100010010000010000 2 00 VVIVIIIIIVIVIVIVVVIIIV AAAAAAAAAAA 2 000100 2 000010 24 IVIVIVIVIIIV AAAAAA +− , ( ){ ×++++= 00 2 01 2 00 2 1001 2 002 1 IVIVIVIIIVIV AAAAAAB ( )     ×−−−−++× zyx IIIVIIIIIVIIIVIVIVIVIV LLL AAAAAAAAAAA 1 442 2011000010100001000000 ( ) ( ) ([{ ++−+++       ∫ ∫ ∫× 12122,, 10001001000001 0 0 0 IVIIIIIVIVIVIV L L L I AAAAAAAxdydzdzyxf x y z )] ( ) ( ) (     −−∫ ∫ ∫+++++ 2000 0 0 0 100101 2 10 2,, 2 12 VVII L L L V zyx IIIVIVVV AAxdydzdzyxf LLL AAAA x y z ) ( )] ( ) ([ ++−++++++− 122121 1000000110010010010111 IVIIIVIVIIIVIVIIIVIVIV AAAAAAAAAAA )]}10VVA+ , ( ) ( )   ×∫ ∫ ∫−−++= x y zL L L I x IVIIIVIVIV xdydzdzyxf L AAAAAB 0 0 0 11 2 100101001 ,, 1 812 ( )−−++++     −× 00101000010000 2 0100010020 4 1 IIIVIIIVIVIVIVIVIIIVIVII zy AAAAAAAAAAAA LL ( ) ( ) ( )     +−−+++∫ ∫ ∫− 112000100101 0 0 0 00 21,, 2 2 IVVVIIIIIVIV L L L I zyx II AAAAAAxdydzdzyxf LLL A x y z ( )] ( ) ( )[ ]0001001010100100100101 212121 IVIVIIVVIVIIIVIVIIIVIV AAAAAAAAAAA +++−+++++ , ( ) ( +++         −∫ ∫ ∫+= 1001 2 0111 0 0 0 20 2 01000 ,, 1 4 IIIVIVIV L L L I zyx IIIVII AAAAxdydzdzyxf LLL AAAB x y z ) ( ) ( ) ( )     +−−+++∫ ∫ ∫−+ 112000100101 0 0 0 002 21,, 2 1 IVVVIIIIIVIV L L L V zyx II AAAAAAxdydzdzyxf LLL A x y z
  • 9. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 9 ( )]2 100101 1 IIIVIV AAA +++ , 6 23 323 32 B qpqqpqy +++−−+= , ( )×−= 031 82 BBBq ( ) 8 4 21648 2 1 2 320 3 22 BBBBBB −− ++× , ( )[ ] 722823 2 2031 BBBBp −−= , 2 2 3 48 BByA −+= , ( ) ( ) ( ) +∫ ∫ ∫ ∫−Θ Θ −= Θ Φ 0 0 0 0 202 ,,,,,, 1 x y z I L L L I zyx II tdxdydzdtzyxITzyxkt LLL Aα ( )∫ ∫ ∫+ Φ x y zL L L I zyx xdydzdzyxf LLL 0 0 0 ,, 1 (14) ( ) ( ) ( ) +∫ ∫ ∫ ∫−Θ Θ −= Θ Φ 0 0 0 0 202 ,,,,,, 1 x y z V L L L V zyx VV tdxdydzdtzyxVTzyxkt LLL Aα ( )∫ ∫ ∫+ Φ x y zL L L V zyx xdydzdzyxf LLL 0 0 0 ,, 1 . The considered substitution gives us possibility to obtain equation for parameter α2C. Solution of the equation depends on value of parameter γ. Analysis of spatio-temporal distributions of con- centrations of dopant and radiation defects has been done by using their second-order approxima- tions framework the method of averaged of function corrections with decreased quantity of itera- tive steps. The second-order approximation is usually enough good approximation to make qualit- ative analysis and obtain some quantitative results. Results of analytical calculation have been checked by comparison with results of numerical simulation. 3. DISCUSSION In this section we analyzed the spatio-temporal distribution of concentration of dopant in the con- sidered heterostructure during annealing. Figs. 2 shows spatial distributions of concentrations of dopants infused (Fig. 2a) or implanted (Fig. 2b) in epitaxial layer. Value of annealing time is equal for all distributions framework every figure 2a and 2b. Increasing of number of curves cor- responds to increasing of difference between values of dopant diffusion coefficients in layers of heterostructure. The figures show that presents of interface between layers of heterostructure gives us possibility to increase absolute value of gradient of concentration of dopant in direction, which is perpendicular to the interface. We obtain increasing of absolute value of the gradient in neighborhood of the interface. Due to the increasing one can obtain decreasing dimensions of transistors, which have been used in the pass transistor multiplexer circuit. At the same time with increasing of the gradient homogeneity of concentration of dopant in enriched area increases.
  • 10. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 10 Fig.2a. Distributions of concentration of infused dopant in heterostructure from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer sub- strate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in sub- strate x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.2b. Distributions of concentration of implanted dopant in heterostructure from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer sub- strate. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ = 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homo- genous sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate To choose annealing time it should be accounted decreasing of absolute value of gradient of con- centration of dopant in neighborhood of interface between substrate and epitaxial layer with in- creasing of annealing time. Decreasing of value of annealing time leads to decreasing of homo- geneity of concentration of dopant in enriched area (see Fig. 3a for diffusion doping of materials and Fig. 3b for ion doping of materials). Let us determine compromise value of annealing time framework recently introduced criteria [15-20]. Framework the criteria we approximate real dis- tributions of concentration of dopant by ideal rectangle distribution ψ (x,y,z). Farther we deter- mine compromise value of annealing time by minimization of the mean-squared error
  • 11. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 11 C(x,Θ) 0 Lx 2 1 3 4 Fig. 3a. Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ- ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal- ing time x C(x,Θ) 1 2 3 4 0 L Fig.3b. Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for differ- ent values of annealing time. Increasing of number of curve corresponds to increasing of anneal- ing time ( ) ( )[ ]∫ ∫ ∫ −Θ= x y zL L L zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (15) 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0 L -2 3 2 4 1 Fig.4a. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ= 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value
  • 12. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 12 of parameter ξ for a/L =1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal an- nealing time on value of parameter γ for a/L=1/2 and ε=ξ=0 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0 L -2 3 2 4 1 Fig.4b. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ=0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of dimensionless optimal annealing time on value of pa- rameter ξ for a/L =1/2 and ε=γ=0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0 Dependences of optimal annealing time are presented on Figs. 4 for diffusion and ion types of doping, respectively. It should be noted, that it is necessary to anneal radiation defects after ion implantation. One could find spreading of concentration of distribution of dopant during this an- nealing. In the ideal case distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieves any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation optimal value of additional annealing time of implanted dopant is smaller, than anneal- ing time of infused dopant. At the same time ion type of doping gives us possibility to decrease mismatch-induced stress in heterostructure [21]. 4. CONCLUSION In this paper we model redistribution of infused and implanted dopants during manufacture the three-stage amplifier circuit on field-effect heterotransistors. Several recommendations to optim- ize manufacture the heterotransistors have been formulated. Analytical approach to model diffu- sion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time the approach gives us possibility to take into account non- linearity of doping processes. REFERENCES [1] G. Volovich. Modern Electronics. Issue 2. P. 10-17 (2006). [2] A. Kerentsev, V. Lanin, Power Electronics. Issue 1. P. 34 (2008). [3] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [4] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S. Yastrebov. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001).
  • 13. International Journal of Electronic Design and Test (JEDT) Vol.1 No.2 13 [5] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Appl. Phys. Lett. 89 (17), 172111-172114 (2006). [6] H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. 98 (9), 094901-094905 (2006). [7] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836- 843 (2003). [8] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [9] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [10] Xi Qu, Ze-kun Zhou, Bo Zhang. Analog Integr. Circ. Sig. Process. Vol. 79. P. 543-553 (2014). [11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [13] Yu.D. Sokolov. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955). [14] E.L. Pankratov. The European Physical Journal B. Vol. 57 (3). P. 251-256 (2007). [15] E.L. Pankratov. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007). [16] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187-197 (2008). [17] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 14 (10). P. 4803-4814 (2010). [18] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 14 (7). P. 3548-3555 (2017). [19] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [20] E.L. Pankratov, E.A. Bulaeva. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012). [21] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).