SlideShare a Scribd company logo
MOTION
CLASS :- IX D
NAME :- PRAKRITI SINGH
ROLL NO :- 20
1) Describing motion :-
i) Motion :- is the change in position of a body with time.
Motion can be described in terms of the distance moved or the
displacement.
ii) Distance moved :- is the actual length of the path travelled by
a
body.
iii) Displacement :- is the length of the shortest path travelled by
a
body from its initial position to its final position.
E.g. If a body starts moving in a straight line from origin O
and
moves through C and B and reaches A and then moves back
and
reaches C through B, then
Distance travelled = 60 + 35 = 95 km
Displacement = 25 km
O C B
2) Uniform motion and Non uniform
motion :-i) Uniform motion :- If a body travels equal distances in equal
intervals of
time, it is said to be in uniform motion.
ii) Non uniform motion :- If a body travels unequal distances in equal
intervals of time, it is said to be in non uniform motion.
iii) Speed :- of a body is the distance travelled by the body in unit time.
Distance
Speed = ------------
Time
If a body travels a distance s in time t then its speed v is
s
v = ---
t
The SI unit of speed is meter per second m/s or ms -1
Since speed has only magnitude it is a scalar quantity.
iv) Average speed :- is the ratio of the total distance travelled to the
total time
taken.
Total distance travelled
Average speed = --------------------------------
3) Speed with direction :-
The rate of motion of a body is more meaningful if we specify its
direction of motion along with speed. The quantity which specifies both the
direction of motion and speed is velocity.
i) Velocity :- of a body is the displacement of the body per unit time.
Displacement
Velocity = ------------------
Time taken
Since velocity has both magnitude and direction, it is a vector
quantity.
ii) Average velocity :- is the ratio of the total displacement to the total
time taken.
Total displacement
Average velocity = --------------------------
Total time taken
Average velocity is also the mean of the initial velocity u and final
velocity v.
Initial velocity + Final velocity u
+ v
Average velocity = ---------------------------------------- v =
4) Rate of change of velocity :-
During uniform motion of a body in a straight line the velocity
remains constant with time. In this case the change in velocity at any
time interval is zero ( no change in velocity).
During non uniform motion the velocity changes with time. In this
case the change in velocity at any time interval is not zero. It may be
positive (+ ve) or negative (- ve).
The quantity which specifies changes in velocity is acceleration.
Acceleration :- is the change in velocity of a body per unit time.( or the
rate of change of velocity.)
Change in velocity
Acceleration = -------------------------
Time
If the velocity of a body changes from initial value u to final value v in
time t,
then acceleration a is
v - u
a = --------
t
The SI unit of acceleration is ms - 2
Uniform acceleration :- If the change in velocity is equal in equal
intervals of time it is uniform acceleration.
Non uniform acceleration :- If the change in velocity is unequal in
equal intervals of time it is non uniform acceleration.
5) Graphical representation of motion :-
a) Distance – Time graphs :-
The change in the position of a body with time can be represented on the distance
time graph. In this graph distance is taken on the y – axis and time is taken on the x
– axis.
i) The distance time graph for uniform speed is a straight line ( linear ). This is
because in uniform speed a body travels equal distances in equal intervals of time.
We can determine the speed of the body from the distance – time graph.
For the speed of the body between the points A and B, distance is (s 2 – s1) and
time is (t2 – t1).
s (s2 – s1)
v = ---- v = -----------
t (t2 – t1)
20 – 10 10
= --------- = ----
10 – 5 5
= 2 ms -1
A
B
10
20
30
t1 t2
s1
s2
C
Time (s)
Distance(m)
X
Y
5 10 15 20
Distance – time graph for a body moving with uniform speed
0
ii) The distance – time graph for non uniform motion is non
linear. This is because in non uniform speed a body travels
unequal distances in equal intervals of time.
20
40
Time (s)
Distance(m)
X
10
30
50 10 15 20
Distance – time graph for a body moving with non uniform speed
Y
b) Velocity – time graphs :-
The change in the velocity of a body with time can be represented on the velocity
time graph. In this graph velocity is taken on the y – axis and time is taken on the x
– axis.
i) If a body moves with uniform velocity, the graph will be a straight line parallel
to the x – axis . This is because the velocity does not change with time.
To determine the distance travelled by the body between the points A and B
with velocity 20 km h-1
s
v = ---
t
s = v x t
v = 20 km h-1
= AC or BD
t = t2 – t1 = DC
= AC (t2 – t1)
s = AC X CD
s = area of the rectangle ABDC
20
40
Time (s)
Velocity(kmh-1
)
X
10
30
50 10 15 20
t1 t2
A B
C D
Velocity – time graph for a body moving with uniform velocity
Y
ii) If a body whose velocity is increasing with time, the graph is a straight line
having an increasing slope. This is because the velocity increases by equal amounts
with equal intervals of time.
The area under the velocity – time graph is the distance (magnitude of
displacement) of the body.
The distance travelled by a body between the points A and E is the area ABCDE
under the velocity – time graph.
s = area ABCDE
= area of rectangle ABCD
+ area of triangle ADE
1
s = AB X BC + --- ( AD X DE )
2
A
B
10
20
30
t1 t2 C
Time (s)
Velocity(ms-1
)
X
Y
10 20 30 40
Velocity – time graph for a body moving with uniform acceleration
D
E
0
iii) If a body whose velocity is decreasing with time, the graph is a straight
line having an decreasing slope. This is because the velocity decreases by
equal amounts with equal intervals of time.
iv) If a body whose velocity is non uniform, the graph shows different
variations. This is because the velocity changes by unequal amounts in
equal intervals of time.
20
40
Time (s)
Velocity(ms-1
)
X
10
30
50 10 15 20
20
40
Time (s)
Velocity(ms-1
)
X
10
30
50 10 15 20
Velocity – time graph for a uniformly
decelerated motion
Velocity – time graph for
non uniform acceleration
Y Y
6) Equations of motions by graphical method :-
The motion of a body moving with uniform acceleration can be
described with the help of three equations called equations of
motion.
The equations of motion are :-
i) v = u + at
ii) s = ut + ½ at2
iii) 2as = v2
– u2
where u - is the initial velocity
v - is the final velocity
a - is acceleration
t - is the time
s - is the distance traveled
a) Equation for velocity – time relation ( v = u
+ at ) :-
Consider a velocity – time graph for a body moving with
uniform acceleration ‘a’. The initial velocity is u at A and
final velocity is v at B in time t.
Perpendicular lines BC and BE are drawn from point B to
the time and velocity axes so that the initial velocity is OA
and final velocity is BC and time interval is OC. Draw AD
parallel to OC.
We observe that
BC = BD + DC = BD + OA
Substituting BC = v and OA = u
We get v = BD + u
or BD = v - u
Change in velocity
Acceleration = -------------------------------------
Time
BD BD v - u
a = ----- = ---------- or a = ---------
AD OC t
v – u = at or v = u + at
Time (s)
Velocity(ms-1
)
XO
Velocity – time graph for a uniformly
accelerated motion
Y
t
u
v
A
B
C
D
E
b) Equation for position – time relation (s = ut
+ ½ at2
) :-
Consider a velocity – time graph for a body moving with
uniform acceleration ‘a’ travelled a distance s in time t.
The distance traveled by the body between the points A
and B is the area OABC.
s = area OABC ( which is a trapezium )
= area of rectangle OABC + area of triangle ABD
1
= OA X OC + --- ( AD X BD )
2
Substituting OA = u, OC = AD = t,
BD = v – u = at
We get
1
s = u x t + -- ( t x at )
2
or s = ut + ½ at2
Time (s)
Velocity(ms-1
)
O
Velocity – time graph for a uniformly
accelerated motion
t
u
v
A
B
C
D
E
c) Equation for position – velocity relation (2as = v2
–u2
) :-
Consider a velocity – time graph for a body moving with uniform acceleration
‘a’ travelled a distance s in time t.
The distance travelled by the body between the points A and B is the area
OABC.
s = area of trapezium OABC
(OA + BC) X OC
s = ----------------------
2
Substituting OA = u, BC = v and OC = t
( u + v ) X t
We get s = -----------------
2
From velocity – time relation
( v – u )
t = -----------
a
( v + u ) X ( v – u )
s = ----------------------- or 2as = v2
– u 2
2a
Time (s)
Velocity(ms-1
)
O
Velocity – time graph for a uniformly
accelerated motion
t
u
v
A
B
C
D
E
7) Circular motion :-
The motion of a body in a circular path is called circular motion.
Uniform circular motion :- If a body moves in a circular path with
uniform speed, its motion is called uniform circular motion.
Uniform circular motion is accelerated motion because in a circular motion a
body continuously changes its direction.
The circumference of a circle of radius r is given by 2лr. If a body takes time t
to go once around the circular path, then the velocity v is given by
2лr
v = ----
t
Motion science ppt

More Related Content

What's hot

Ppt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit guptaPpt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit gupta
MUDIT GUPTA
 
Motion ppt
Motion pptMotion ppt
Motion ppt
Rao Yadav
 
CBSE Class 9 Science Chapter 8- Motion
CBSE Class 9 Science Chapter 8- MotionCBSE Class 9 Science Chapter 8- Motion
CBSE Class 9 Science Chapter 8- Motion
AarthiSam
 
Motion ppt for class 9
Motion ppt for class 9Motion ppt for class 9
Motion ppt for class 9
Mridul Verma
 
MOTION FOR CLASS 9
MOTION FOR CLASS 9MOTION FOR CLASS 9
MOTION FOR CLASS 9
sidhharthchandan dalai
 
Chapter no. 6 linear mo
Chapter no. 6 linear moChapter no. 6 linear mo
Chapter no. 6 linear mo
Pralhad Kore
 
PHYSICS KSSM FORM 4 (2.2 motion graphs)
PHYSICS KSSM FORM 4 (2.2 motion graphs)PHYSICS KSSM FORM 4 (2.2 motion graphs)
PHYSICS KSSM FORM 4 (2.2 motion graphs)
jelika8807
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-studentTommy Moss
 
Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equations
Nurul Fadhilah
 
Motion part - 3
Motion   part - 3Motion   part - 3
Motion part - 3
uni.raj.
 
Physics F3 (IGCSE) speed, velocity and acceleration
Physics F3 (IGCSE)   speed, velocity and acceleration Physics F3 (IGCSE)   speed, velocity and acceleration
Physics F3 (IGCSE) speed, velocity and acceleration
Nurul Fadhilah
 
Unit 4 mm9400 ver1.1 (2014)
Unit 4 mm9400 ver1.1 (2014)Unit 4 mm9400 ver1.1 (2014)
Unit 4 mm9400 ver1.1 (2014)
all_engineering
 
Kinematics of Linear Motion​
Kinematics of Linear Motion​Kinematics of Linear Motion​
Kinematics of Linear Motion​
Reema
 
Introduction to linear kinematics
Introduction to linear kinematicsIntroduction to linear kinematics
Introduction to linear kinematicsPontsho Mahlatsi
 
Tips to study IX - Science - Moving Objects
Tips to study IX - Science - Moving ObjectsTips to study IX - Science - Moving Objects
Tips to study IX - Science - Moving Objects
Ednexa
 
Graphical representation of motion ppt
Graphical representation of motion pptGraphical representation of motion ppt
Graphical representation of motion ppt
Raven Olive
 
Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)
KarthiKeyan1512
 
Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight line
MV Rajakumar
 
Motion
MotionMotion
Motion
Ved Vyapak
 

What's hot (20)

Ppt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit guptaPpt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit gupta
 
Motion ppt
Motion pptMotion ppt
Motion ppt
 
CBSE Class 9 Science Chapter 8- Motion
CBSE Class 9 Science Chapter 8- MotionCBSE Class 9 Science Chapter 8- Motion
CBSE Class 9 Science Chapter 8- Motion
 
Motion ppt for class 9
Motion ppt for class 9Motion ppt for class 9
Motion ppt for class 9
 
MOTION FOR CLASS 9
MOTION FOR CLASS 9MOTION FOR CLASS 9
MOTION FOR CLASS 9
 
Chapter no. 6 linear mo
Chapter no. 6 linear moChapter no. 6 linear mo
Chapter no. 6 linear mo
 
PHYSICS KSSM FORM 4 (2.2 motion graphs)
PHYSICS KSSM FORM 4 (2.2 motion graphs)PHYSICS KSSM FORM 4 (2.2 motion graphs)
PHYSICS KSSM FORM 4 (2.2 motion graphs)
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-student
 
Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equations
 
Science ppt
Science pptScience ppt
Science ppt
 
Motion part - 3
Motion   part - 3Motion   part - 3
Motion part - 3
 
Physics F3 (IGCSE) speed, velocity and acceleration
Physics F3 (IGCSE)   speed, velocity and acceleration Physics F3 (IGCSE)   speed, velocity and acceleration
Physics F3 (IGCSE) speed, velocity and acceleration
 
Unit 4 mm9400 ver1.1 (2014)
Unit 4 mm9400 ver1.1 (2014)Unit 4 mm9400 ver1.1 (2014)
Unit 4 mm9400 ver1.1 (2014)
 
Kinematics of Linear Motion​
Kinematics of Linear Motion​Kinematics of Linear Motion​
Kinematics of Linear Motion​
 
Introduction to linear kinematics
Introduction to linear kinematicsIntroduction to linear kinematics
Introduction to linear kinematics
 
Tips to study IX - Science - Moving Objects
Tips to study IX - Science - Moving ObjectsTips to study IX - Science - Moving Objects
Tips to study IX - Science - Moving Objects
 
Graphical representation of motion ppt
Graphical representation of motion pptGraphical representation of motion ppt
Graphical representation of motion ppt
 
Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)
 
Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight line
 
Motion
MotionMotion
Motion
 

Similar to Motion science ppt

IX-8-Motion.ppt
IX-8-Motion.pptIX-8-Motion.ppt
IX-8-Motion.ppt
HARESH495023
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
harveenkaur64
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
harveenkaur64
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
LokeshT29
 
Ch 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdfCh 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdf
bablivashisht
 
CBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBookCBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBook
Miso Study
 
CBSE Class 9th Sample eBook
CBSE Class 9th Sample eBookCBSE Class 9th Sample eBook
CBSE Class 9th Sample eBook
Miso Study
 
CH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdfCH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdf
AmitSing9
 
Motion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sirMotion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sir
raghvendra0123
 
NCERT class 9th science chapter 8
NCERT class 9th science chapter 8NCERT class 9th science chapter 8
NCERT class 9th science chapter 8
Santosh Upadhyay
 
CH 8 MOTION.pdf
CH 8 MOTION.pdfCH 8 MOTION.pdf
CH 8 MOTION.pdf
LUXMIKANTGIRI
 
sanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdfsanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdf
MOHDHAMZAKHAN6
 
Motion for class 9th
Motion for class 9thMotion for class 9th
Motion for class 9th
Sanchit Kumar
 

Similar to Motion science ppt (14)

IX-8-Motion.ppt
IX-8-Motion.pptIX-8-Motion.ppt
IX-8-Motion.ppt
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
 
presentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptxpresentation_equation_of_motion_1663608809_139366.pptx
presentation_equation_of_motion_1663608809_139366.pptx
 
Ch 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdfCh 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdf
 
CBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBookCBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBook
 
CBSE Class 9th Sample eBook
CBSE Class 9th Sample eBookCBSE Class 9th Sample eBook
CBSE Class 9th Sample eBook
 
CH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdfCH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdf
 
Motion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sirMotion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sir
 
NCERT class 9th science chapter 8
NCERT class 9th science chapter 8NCERT class 9th science chapter 8
NCERT class 9th science chapter 8
 
CH 8 MOTION.pdf
CH 8 MOTION.pdfCH 8 MOTION.pdf
CH 8 MOTION.pdf
 
sanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdfsanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdf
 
sanchitppt-161014144249.pdf
sanchitppt-161014144249.pdfsanchitppt-161014144249.pdf
sanchitppt-161014144249.pdf
 
Motion for class 9th
Motion for class 9thMotion for class 9th
Motion for class 9th
 

Recently uploaded

Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 

Recently uploaded (20)

Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 

Motion science ppt

  • 1.
  • 2.
  • 3. MOTION CLASS :- IX D NAME :- PRAKRITI SINGH ROLL NO :- 20
  • 4. 1) Describing motion :- i) Motion :- is the change in position of a body with time. Motion can be described in terms of the distance moved or the displacement. ii) Distance moved :- is the actual length of the path travelled by a body. iii) Displacement :- is the length of the shortest path travelled by a body from its initial position to its final position. E.g. If a body starts moving in a straight line from origin O and moves through C and B and reaches A and then moves back and reaches C through B, then Distance travelled = 60 + 35 = 95 km Displacement = 25 km O C B
  • 5. 2) Uniform motion and Non uniform motion :-i) Uniform motion :- If a body travels equal distances in equal intervals of time, it is said to be in uniform motion. ii) Non uniform motion :- If a body travels unequal distances in equal intervals of time, it is said to be in non uniform motion. iii) Speed :- of a body is the distance travelled by the body in unit time. Distance Speed = ------------ Time If a body travels a distance s in time t then its speed v is s v = --- t The SI unit of speed is meter per second m/s or ms -1 Since speed has only magnitude it is a scalar quantity. iv) Average speed :- is the ratio of the total distance travelled to the total time taken. Total distance travelled Average speed = --------------------------------
  • 6. 3) Speed with direction :- The rate of motion of a body is more meaningful if we specify its direction of motion along with speed. The quantity which specifies both the direction of motion and speed is velocity. i) Velocity :- of a body is the displacement of the body per unit time. Displacement Velocity = ------------------ Time taken Since velocity has both magnitude and direction, it is a vector quantity. ii) Average velocity :- is the ratio of the total displacement to the total time taken. Total displacement Average velocity = -------------------------- Total time taken Average velocity is also the mean of the initial velocity u and final velocity v. Initial velocity + Final velocity u + v Average velocity = ---------------------------------------- v =
  • 7. 4) Rate of change of velocity :- During uniform motion of a body in a straight line the velocity remains constant with time. In this case the change in velocity at any time interval is zero ( no change in velocity). During non uniform motion the velocity changes with time. In this case the change in velocity at any time interval is not zero. It may be positive (+ ve) or negative (- ve). The quantity which specifies changes in velocity is acceleration. Acceleration :- is the change in velocity of a body per unit time.( or the rate of change of velocity.) Change in velocity Acceleration = ------------------------- Time If the velocity of a body changes from initial value u to final value v in time t, then acceleration a is v - u a = -------- t The SI unit of acceleration is ms - 2 Uniform acceleration :- If the change in velocity is equal in equal intervals of time it is uniform acceleration. Non uniform acceleration :- If the change in velocity is unequal in equal intervals of time it is non uniform acceleration.
  • 8. 5) Graphical representation of motion :- a) Distance – Time graphs :- The change in the position of a body with time can be represented on the distance time graph. In this graph distance is taken on the y – axis and time is taken on the x – axis. i) The distance time graph for uniform speed is a straight line ( linear ). This is because in uniform speed a body travels equal distances in equal intervals of time. We can determine the speed of the body from the distance – time graph. For the speed of the body between the points A and B, distance is (s 2 – s1) and time is (t2 – t1). s (s2 – s1) v = ---- v = ----------- t (t2 – t1) 20 – 10 10 = --------- = ---- 10 – 5 5 = 2 ms -1 A B 10 20 30 t1 t2 s1 s2 C Time (s) Distance(m) X Y 5 10 15 20 Distance – time graph for a body moving with uniform speed 0
  • 9. ii) The distance – time graph for non uniform motion is non linear. This is because in non uniform speed a body travels unequal distances in equal intervals of time. 20 40 Time (s) Distance(m) X 10 30 50 10 15 20 Distance – time graph for a body moving with non uniform speed Y
  • 10. b) Velocity – time graphs :- The change in the velocity of a body with time can be represented on the velocity time graph. In this graph velocity is taken on the y – axis and time is taken on the x – axis. i) If a body moves with uniform velocity, the graph will be a straight line parallel to the x – axis . This is because the velocity does not change with time. To determine the distance travelled by the body between the points A and B with velocity 20 km h-1 s v = --- t s = v x t v = 20 km h-1 = AC or BD t = t2 – t1 = DC = AC (t2 – t1) s = AC X CD s = area of the rectangle ABDC 20 40 Time (s) Velocity(kmh-1 ) X 10 30 50 10 15 20 t1 t2 A B C D Velocity – time graph for a body moving with uniform velocity Y
  • 11. ii) If a body whose velocity is increasing with time, the graph is a straight line having an increasing slope. This is because the velocity increases by equal amounts with equal intervals of time. The area under the velocity – time graph is the distance (magnitude of displacement) of the body. The distance travelled by a body between the points A and E is the area ABCDE under the velocity – time graph. s = area ABCDE = area of rectangle ABCD + area of triangle ADE 1 s = AB X BC + --- ( AD X DE ) 2 A B 10 20 30 t1 t2 C Time (s) Velocity(ms-1 ) X Y 10 20 30 40 Velocity – time graph for a body moving with uniform acceleration D E 0
  • 12. iii) If a body whose velocity is decreasing with time, the graph is a straight line having an decreasing slope. This is because the velocity decreases by equal amounts with equal intervals of time. iv) If a body whose velocity is non uniform, the graph shows different variations. This is because the velocity changes by unequal amounts in equal intervals of time. 20 40 Time (s) Velocity(ms-1 ) X 10 30 50 10 15 20 20 40 Time (s) Velocity(ms-1 ) X 10 30 50 10 15 20 Velocity – time graph for a uniformly decelerated motion Velocity – time graph for non uniform acceleration Y Y
  • 13. 6) Equations of motions by graphical method :- The motion of a body moving with uniform acceleration can be described with the help of three equations called equations of motion. The equations of motion are :- i) v = u + at ii) s = ut + ½ at2 iii) 2as = v2 – u2 where u - is the initial velocity v - is the final velocity a - is acceleration t - is the time s - is the distance traveled
  • 14. a) Equation for velocity – time relation ( v = u + at ) :- Consider a velocity – time graph for a body moving with uniform acceleration ‘a’. The initial velocity is u at A and final velocity is v at B in time t. Perpendicular lines BC and BE are drawn from point B to the time and velocity axes so that the initial velocity is OA and final velocity is BC and time interval is OC. Draw AD parallel to OC. We observe that BC = BD + DC = BD + OA Substituting BC = v and OA = u We get v = BD + u or BD = v - u Change in velocity Acceleration = ------------------------------------- Time BD BD v - u a = ----- = ---------- or a = --------- AD OC t v – u = at or v = u + at Time (s) Velocity(ms-1 ) XO Velocity – time graph for a uniformly accelerated motion Y t u v A B C D E
  • 15. b) Equation for position – time relation (s = ut + ½ at2 ) :- Consider a velocity – time graph for a body moving with uniform acceleration ‘a’ travelled a distance s in time t. The distance traveled by the body between the points A and B is the area OABC. s = area OABC ( which is a trapezium ) = area of rectangle OABC + area of triangle ABD 1 = OA X OC + --- ( AD X BD ) 2 Substituting OA = u, OC = AD = t, BD = v – u = at We get 1 s = u x t + -- ( t x at ) 2 or s = ut + ½ at2 Time (s) Velocity(ms-1 ) O Velocity – time graph for a uniformly accelerated motion t u v A B C D E
  • 16. c) Equation for position – velocity relation (2as = v2 –u2 ) :- Consider a velocity – time graph for a body moving with uniform acceleration ‘a’ travelled a distance s in time t. The distance travelled by the body between the points A and B is the area OABC. s = area of trapezium OABC (OA + BC) X OC s = ---------------------- 2 Substituting OA = u, BC = v and OC = t ( u + v ) X t We get s = ----------------- 2 From velocity – time relation ( v – u ) t = ----------- a ( v + u ) X ( v – u ) s = ----------------------- or 2as = v2 – u 2 2a Time (s) Velocity(ms-1 ) O Velocity – time graph for a uniformly accelerated motion t u v A B C D E
  • 17. 7) Circular motion :- The motion of a body in a circular path is called circular motion. Uniform circular motion :- If a body moves in a circular path with uniform speed, its motion is called uniform circular motion. Uniform circular motion is accelerated motion because in a circular motion a body continuously changes its direction. The circumference of a circle of radius r is given by 2лr. If a body takes time t to go once around the circular path, then the velocity v is given by 2лr v = ---- t