Monte Carlo simulation is a statistical technique that uses random numbers and probability to simulate real-world processes. It was developed in the 1940s by scientists working on nuclear weapons research. Monte Carlo simulation provides approximate solutions to problems by running simulations many times. It allows for sensitivity analysis and scenario analysis. Some examples include estimating pi by randomly generating points within a circle, and approximating integrals by treating the area under a curve as a target for random darts. The technique provides probabilistic results and allows modeling of correlated inputs.