SlideShare a Scribd company logo
1 of 8
Download to read offline
11. SOME IMPORTANT QUESTION - ANSWER FOR IGNOU BIOCHEMISTRY [CHE 9]
METABOLIC REGULATION
Q. 1. Describe the regulation of pyruvate dehydrogenase. [Pyruvate dehydrogenase क
े
regulation का वर्णन करें I]
Ans. The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of
pyruvate with the formation of acetyl-CoA, CO2 and NADH (H+).
Pyruvate + CoA + NAD+ ---> acetyl CoA + CO2 + NADH + H+
The PDC occupies a key position in the oxidation of glucose by linking the glycolytic pathway to
the oxidative pathway of the tricarboxylic acid cycle. In mammals, PDC plays the role of a
gatekeeper in the metabolism of pyruvate to maintain glucose homeostasis during the fed and
fasting states. That is why the PDC is tightly regulated in tissues under different metabolic
conditions and this is brought about in three ways :
● Regulation by product inhibition
● Regulation by energy charge
● Regulation by reversible covalent modifications
Regulation by product inhibition - The end product of the PDC catalyzed reaction acetyl CoA
inhibits the activity of PDC. Under some biosynthetic requirements α-ketoglutarate is removed
from the TCA cycle and this results in hindrance in oxaloacetate regeneration which is essential
for smooth running of TCA cycle. The shortage of oxaloacetate results in less synthesis of
citrate which in turn leads to accumulation of acetyl CoA. Now this increased amount of acetyl
CoA inhibits PDC (which inhibits the conversion of pyruvate to acetyl CoA) and activates
pyruvate carboxylase which converts the pyruvate (coming from glycolysis) to oxaloacetate,
thereby replenishing oxaloacetate which starts consuming the accumulated acetyl CoA. Thus
the oxaloacetate becomes available for smooth running of the TCA cycle and thus the inhibitory
effect of acetyl CoA is lifted due to the lowered concentration of acetyl CoA and PCC starts
working normally. The activity of pyruvate carboxylase is also lowered due to decreased
requirement of oxaloacetate from pyruvate. Likewise, NADH (another product of PDC reaction)
also inhibits PDC activity. NADH binds to E2 of PDC and thus inhibits PDC resulting in slowing
down acetyl CoA and NADH production and the running of TCA cycle. Under the increased
requirements of reduced coenzyme, the NAD+ activates PDC to produce more acetyl CoA and
NADH.
Regulation by energy charge - Energy charge ([ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]) also works
like NADH to regulate the PDC. When the energy charge becomes high then GTP (equivalent to
ATP) interacts with E1 of PDC to inhibit it and thus ATP production is decreased and so energy
charge is also lowered. Upon the requirements of ATP, the AMP activates E1 to increase ATP
production.
Regulation by reversible covalent modification - is another mechanism to regulate the activity of
PDC and is also called photophosphorylation - dephosphorylation mechanism. When ATP
increases the protein kinase present in PDC, phosphorylates a specific residue of E1 to give
pyruvate dehydrogenase phosphate making the enzyme inactive and hence low production of
acetyl CoA as well as ATP. When ADP becomes high and pyruvate is available through
1
glycolysis, the protein phosphatase hydrolyses the pyruvate dehydrogenase phosphate to
reactivate the enzyme.
[Pyruvate dehydrogenase complex (PDC) pyruvate का oxidative decarboxylation catalyze करता
है जिससे acetyl-CoA, CO2 और NADH (H+) बनते हैं I
Pyruvate + CoA + NAD+ ---> acetyl CoA + CO2 + NADH + H+
Glucose क
े oxidation में PDC का मुख्य स्थान होता है क्योंकि यह glycolytic pathway को TCA cycle क
े
oxidative pathway से जोड़ता है I स्तनधारियों में PDC pyruvate की metabolism में एक द्वारपाल की
भूमिका निभाता है जिससे पोषित और उपवास की अवस्था में glucose की समस्थिति (homeostasis) बनी रहे I
इसीलिए ऊतकों (tissues) में विभिन्न चयापचय की स्थितियों में PDC का सख़्ती से नियंत्रण होता है और यह
नियंत्रण तीन तरीकों से होता है :
● Regulation by product inhibition
● Regulation by energy charge
● Regulation by reversible covalent modifications
Regulation by product inhibition - PDC द्वारा catalyzed reaction का अन्तिम उत्पाद acetyl CoA PDC
की activity को कम करता है I क
ु छ जैव संश्लेषण अवश्यकताओं हेतु α-ketoglutarate का TCA cycle से
उपयोग होने पर oxaloacetate क
े पुनःपूर्ति में रुकावट आ जाती है और यह oxaloacetate TCA cycle को
सुचारुरूप से चलाने हेतु आवश्यक होता है I तो oxaloacetate की कमी से citrate का संश्लेषण भी कम हो जाता
है और परिणामस्वरुप acetyl CoA का एकत्रण होने लगता है I acetyl CoA की बढ़ी हुई मात्रा PDC को inhibit
करती है जिससे pyruvate का acetyl CoA में परिवर्तन रुक जाता है किन्तु यह pyruvate carboxylase को
सक्रिय कर देता है जो glycolysis द्वारा प्राप्त pyruvate को oxaloacetate में परिवर्तित कर देता है I इस तरह
oxaloacetate की पुनःपूर्ति हो जाती है जिससे एकत्रित acetyl CoA पुनः TCA cycle में इस्तेमाल होने लगता है
और TCA cycle सुचारुरूप से चलने लगती है और acetyl CoA का निरोधात्मक प्रभाव (inhibitory effect) रुक
जाता है और PDC सामान्य रूप से अपना काम करने लगता है I साथ ही Pyruvate carboxylase की सक्रियता
भी कम हो जाती है क्योंकि pyruvate से oxaloacetate बनाने की आवश्यकता भी कम हो जाती है I इसी प्रकार
PDC क
े reaction का एक और उत्पाद NADH भी PDC की सक्रियता को रोकता है I NADH PDC क
े E2 से
जुड़कर PDC को inhibit करता है, जिससे acetyl CoA और NADH का उत्पादन और TCA cycle का चलना
धीमा हो जाता है I जब reduced coenzyme NADH की आवश्यकता बढ़ती है तो NAD+ PDC को अधिक
acetyl CoA और NADH बनाने हेतु सक्रिय कर देता है I
Regulation by energy charge - Energy charge ([ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]) भी NADH
की ही तरह PDC को नियंत्रित करता है I जब energy charge अधिक होता है तो GTP (ATP का समकक्ष) PDC
क
े E1 से पारस्परिक क्रिया करक
े PDC को inhibit करता है और इसप्रकार ATP का उत्पादन कम हो जाता है और
energy charge भी कम हो जाता है I ATP की आवश्यकता बढ़ने पर AMP E1 को सक्रिय कर देता है जिससे
ATP का उत्पादन बढ़ जाता है I
Regulation by reversible covalent modification - यह PDC क
े नियंत्रण की एक और विधि है जिसे
photophosphorylation - dephosphorylation mechanism भी कहते हैं I जब ATP की मात्रा बढ़ जाती है तो
PDC में उपस्थित protein kinase E1 क
े एक विशिष्ट अवशेष का फास्फोरिलीकरण कर PDC को निष्क्रिय कर
देता है जिससे acetyl CoA और ATP दोनों का उत्पादन कम हो जाता है I लेकिन जब ADP अधिक हो जाता है
और glycolysis क
े माध्यम से pyruvate भी उपलब्ध होता है तो enzyme protein phosphatase pyruvate
dehydrogenase phosphate को hydrolyze करक
े PDC को पुनः सक्रिय कर देता है I]
2
Q. 2. Describe the regulation of tricarboxylic acid cycle.[Tricarboxylic acid cycle क
े नियंत्रण
का वर्णन करें I]
Ans. The TCA cycle has a central position in the final oxidation of acetyl moiety of acetyl CoA
coming from catabolism of carbohydrates, fats and some amino acids. Further, the cycle
provides precursors for some anabolic processes. Hence, its control is very important to provide
efficient and required energy production and precursors for biosynthetic pathways.
[Carbohydrates, fats और क
ु छ amino acids की catabolism से उत्पन्न acetyl CoA की acetyl moiety क
े
अंतिम oxidation में TCA cycle की क
ें द्रीय स्थिति होती है I साथ ही, यह cycle क
ु छ anabolic प्रक्रियाओं क
े
लिए अग्रदूत (precursors) उपलब्ध कराती है I इसलिए आवश्यक ऊर्जा और जैव संश्लेषण मार्गोँ (pathways) क
े
लिए अग्रदूत उपलब्ध कराने हेतु इसका नियंत्रण भी बहुत महत्वपूर्ण होता है I]
There are three control points of TCA cycle (TCA cycle क
े तीन नियंत्रण बिंदु):
* Citrate synthase
* Isocitrate dehydrogenase
* α-ketoglutarate dehydrogenase complex
Citrate synthase: is inhibited by high energy charge (increased ATP in adenylate pool) and
NADH. The presence of ATP increases the Km of citrate synthase for acetyl CoA resulting in
decreased formation of citrate. A low NADH/NAD+ ratio favours the formation of citrate.
[Citrate synthase high energy charge (यानि adenylate pool में ATP की अधिकता) और NADH द्वारा
inhibit होता है I ATP की उपस्थिति में citrate synthase का acetyl CoA क
े लिए Km बढ़ जाता है जिससे
citrate का बनना कम हो जाता है I NADH/NAD+ का कम अनुपात citrate क
े बनने का समर्थन करता है I]
Isocitrate dehydrogenase : The conversion of isocitrate to α-ketoglutarate is catalyzed by this
enzyme and it is negatively regulated by NADH and ATP and positively regulated by NAD+ and
ADP.
[Isocitrate का α-ketoglutarate में परिवर्तन Isocitrate dehydrogenase enzyme द्वारा catalyze होता है
और यह enzyme NADH एवं ATP द्वारा नकारात्मक रूप से नियंत्रित होता है और NAD+ एवं ADP द्वारा
सकारात्मक रूप से नियंत्रित होता है I]
α-ketoglutarate dehydrogenase complex: catalyzes the third control point in TCA cycle i.e. the
conversion of α-ketoglutarate to succinyl CoA. This enzyme is inhibited by succinyl CoA, NADH
and high ATP concentration. When this enzyme is inhibited α-ketoglutarate accumulates.
However, α-ketoglutarate can be converted to glutamate needed for protein synthesis and
amino acid synthesis. The enzyme is activated by low ATP and NADH.
[α-ketoglutarate dehydrogenase complex α-ketoglutarate क
े succinyl CoA में परिवर्तन को catalyze
करता है जोकि TCA cycle में तीसरा नियंत्रण बिंदु है I यह enzyme succinyl CoA, NADH और ATP क
े
अधिक concentration द्वारा inhibit होता है I जब यह enzyme inhibit होता है तो ketoglutarate एकत्रित
होता है I हालांकि, α-ketoglutarate को protein और amino acid क
े संश्लेषण क
े लिए आवश्यक glutamate में
परिवर्तित किया जा सकता है I यह enzyme ATP और NADH क
े कम होने पर activate हो जाता है I]
3
Q.3. Describe briefly the fate of acetyl CoA. [Acetyl CoA की नियति या भाग्य (fate) क
े बारे में
संक्षेप में बतायें I]
Ans. Acetyl CoA is a molecule that participates in many biochemical reactions in protein,
carbohydrates and lipid metabolism and it is generated by the combustion of glucose, fatty
acids, proteins or amino acids. Under normal conditions acetyl CoA is mainly channeled into the
Krebs cycle for energy production. In an overnutrition state, acetyl CoA can be used to store
excess energy by forming fatty acids. Acetyl-CoA is also the source for cholesterol synthesis. In
a starved state, acetyl-CoA is converted into ketone bodies which serve as an alternative source
of energy when glucose is not readily available. The brain converts the ketone bodies to acetyl
CoA that can then enter the citric acid cycle for ATP production, Acetyl CoA is also the substrate
used for protein acetylation.
[Acetyl CoA एक ऐसा molecule है जो carbohydrates, fats और proteins क
े चयापचय की कई जैव
रासायनिक प्रतिक्रियाओं में भाग लेता है और इसका उत्पादन glucose, fatty acids, proteins या amino
acids क
े दहन (combustion) से होता है I सामान्य परिस्थितियों में acetyl CoA मुख्य रूप से ऊर्जा उत्पादन हेतु
Krebs cycle में पहुँचता है I अतिपोषण की स्थिति ( overnutrition state) में acetyl CoA का उपयोग fatty
acids क
े संश्लेषण क
े रूप में ऊर्जा क
े भंडारण में होता है I Acetyl-CoA cholesterol संश्लेषण का भी स्रोत है I
भुखमरी की हालत में acetyl-CoA ketone bodies में परिवर्तित हो जाता है जो कि ऊर्जा का एक वैकल्पिक स्रोत
है, यदि ग्लूकोस आसानी से उपलब्ध नहीं हो I Brain ketone bodies को acetyl CoA में परिवर्तित करता है जो
citric acid cycle द्वारा ATP उत्पन्न कर सकता है I Acetyl CoA protein acetylation में substrate का भी
कार्य करता है I]
Q.4. Can human beings convert glucose into fatty acids and fatty acids into glucose?
Explain.
Ans. Human beings can not convert fatty acids into glucose because fatty acid oxidation gives
acetyl-CoA, and humans have no pathway to convert acetyl-CoA to oxaloacetate and acetyl
CoA cannot be converted into pyruvate because the conversion of pyruvate to acetyl CoA is
irreversible. Thus due to inability to form oxaloacetate or pyruvate from acetyl CoA human
beings are unable to convert fatty acids into glucose via gluconeogenesis. Plants, on the other
hand, can convert acetyl-CoA to oxaloacetate through the glyoxylate cycle. The key enzyme of
glyoxylate cycle, isocitrate lyase is not found in human beings. However, the reverse i.e.
conversion of glucose to fatty acids is possible in human beings. The pyruvate, generated from
the breakdown of glucose via glycolysis, is converted into acetyl CoA by pyruvate
dehydrogenase complex which is the starting material for fatty acid synthesis.
Glucose→ pyruvate → Acetyl CoA → malonyl CoA → fatty acids
[मानव शरीर fatty acids को ग्लूकोस में परिवर्तित नहीं कर सकता क्योंकि fatty acid क
े oxidation से
acetyl-CoA प्राप्त होता है और मानव शरीर में ऐसा कोई pathway नहीं होता जिसक
े द्वारा acetyl-CoA को
4
oxaloacetate में परिवर्तित किया जा सक
े और न ही acetyl CoA को pyruvate में परिवर्तित किया जा सकता है
क्योंकि pyruvate का acetyl CoA में परिवर्तन अपरिवर्तनीय (irreversible) होता है I इसलिए acetyl CoA को
oxaloacetate या pyruvate में परिवर्तित नहीं कर पाने क
े कारण मानव शरीर fatty acids को
gluconeogenesis द्वारा ग्लूकोस में परिवर्तित नहीं कर सकता I किन्तु पौधे acetyl-CoA को oxaloacetate में
glyoxylate cycle द्वारा परिवर्तित कर सकते हैं I Glyoxylate cycle का मुख्य enzyme isocitrate lyase
मनुष्यों में नहीं पाया जाता है I हालांकि, इसका उल्टा यानि ग्लूकोस का fatty acids में परिवर्तन मनुष्यों में संभव
है I glycolysis द्वारा ग्लूकोस क
े टूटने से प्राप्त pyruvate enzyme pyruvate dehydrogenase complex
द्वारा acetyl CoA में बदल जाता है और इस acetyl CoA से fatty acids का संश्लेषण होता है I]
Glucose→ pyruvate → Acetyl CoA → malonyl CoA → fatty acids
Q. 5. Write an overview on regulation and coordination of metabolic pathways.
Ans. So many metabolic pathways operate in the living systems to ensure a suitable supply of
fuel for all the body tissues and this needs good coordination among these pathways.
Inside the cells glucose is converted into glucose 6- phosphate (Gl 6-P) but its fate depends on
the metabolic state of the cells. If the supply of ATP, pyruvate and citrate is in excess then Gl
6-P is not metabolized via glycolytic pathway due to inhibition of phosphofructokinase (PFK) and
it is converted into Gl 1-P and glycogen as reserve carbohydrates. However, if there is an
increased demand of ATP and precursors for biosynthesis of other biomolecules then the
inhibition of PFK is reversed and Gl 6-P enters glycolysis and glycogen is mobilized to give
more Gl 6-P. Likewise, if there is a demand of NADPH for fatty acids biosynthesis or of ribose
5-phosphate for nucleotide and nucleic acid synthesis then Gl 6-P is degraded via pentose
phosphate pathway to provide NADPH and ribose 5-P.
During strenuous exercise the extra demand of ATP by the actively contracting muscles is met
by running the anaerobic glycolysis more by converting pyruvate to lactate and regenerating
NAD+ from NADH. The lactate is transported to the liver where it is converted into pyruvate
when needed.
The interconversion of pyruvate and alanine serves as a link between carbohydrate and amino
acid metabolism. The pyruvate generated from any source is converted into acetyl CoA but this
conversion is inhibited if there is accumulation of acetyl CoA. Another fate of pyruvate is its
conversion into oxaloacetate by pyruvate carboxylase to replenish oxaloacetate for smooth
running of TCA cycle or for gluconeogenesis. The TCA cycle plays a central role in complete
oxidation of carbohydrates, fatty acids and some amino acids.
Acetyl CoA too has many fates such as its entry into TCA cycle, synthesis of fatty acids,
synthesis of cholesterol or conversion into ketone bodies under prolonged fasting conditions or
starvation depending upon the requirements of the body. Ketone bodies serve as an energy
source under the conditions of glucose depletion.
Thus the metabolic pathways are properly regulated and well coordinated with other pathways
with constant exchange of precursors, energy and information in the form of relative
concentrations of various key molecules like ATP/ADP, NADH / NAD+, NADPH /NADP+ ratios.
[Living systems में कई metabolic pathways चलते रहते हैं ताकि समस्त शरीर क
े ऊतकों को समुचित ईंधन
की आपूर्ति हो सक
े और इसक
े लिए इन pathways क
े बीच अच्छे समन्वय की आवश्यकता होती है I
Cells क
े अंदर glucose परिवर्तित होता है glucose 6- phosphate (Gl 6-P) में किन्तु इसका भाग्य cells की
चयापचय स्थिति (metabolic state) पर निर्भर करता है I यदि ATP, pyruvate और citrate की आपूर्ति
अधिकता में है तो Gl 6-P का चयापचय glycolytic pathway द्वारा नहीं होता जिसका कारण होता है
phosphofructokinase (PFK) का बाधित होना I इसलिए यह Gl 1-P और glycogen में reserve
5
carbohydrates क
े रूप में परिवर्तित हो जाता है I हालांकि, यदि ATP और अन्य biomolecules क
े जैव संश्लेषण
हेतु आवश्यक अग्रदूतों की मांग बढ़ती है तो PFK का अवरोधन (inhibition) उलट जाता है और Gl 6-P
glycolysis में प्रवेश कर जाता है और glycogen से और अधिक Gl 6-P बनता है I इसी प्रकार यदि fatty acids
क
े संश्लेषण हेतु NADPH की मांग बढ़ती है या nucleotides और nucleic acid क
े संश्लेषण हेतु ribose
5-phosphate की मांग बढ़ती है तों Gl 6-P pentose phosphate pathway क
े माध्यम से टूटकर NADPH
और ribose 5-P उपलब्ध कराता है I अत्याधिक exercise क
े दौरान सक्रियता से contract होने वाले muscles
द्वारा ATP की अतिरिक्त मांग anaerobic glycolysis क
े माध्यम से pyruvate को lactate में परिवर्तन और
NADH से NAD+ क
े पुनरूत्पादन द्वारा पूरी होती है I इस प्रकार बना lactate liver में ट्रांसपोर्ट हो जाता है और
आवश्यकता पड़ने पर pyruvate में परिवर्तित होता है I
Pyruvate और alanine का अंतर्रू पांतरण ( interconversion) carbohydrate और amino acid metabolism
क
े बीच एक कड़ी का काम करता है I सभी स्रोतों से उत्पादित pyruvate acetyl CoA में परिवर्तित होता है लेकिन
इस परिवर्तन में acetyl CoA क
े एकत्रण से रूकावट आती है I Pyruvate का एक और fate (नियति) होता है और
वो है इसका oxaloacetate में pyruvate carboxylase द्वारा परिवर्तन ताकि TCA cycle ठीक से चले और
gluconeogenesis भी हो सक
े I Carbohydrates, fatty acids और क
ु छ amino acids क
े पूर्ण oxidation में
TCA cycle एक क
ें द्रीय भूमिका निभाती है I
Acetyl CoA क
े भी कई fates (नियति) होते हैं जैसे - शरीर की आवश्यकता अनुसार इसका TCA cycle में प्रवेश,
fatty acids और cholesterol की synthesis और इसका लम्बे उपवास या भुखमरी में ketone bodies में
परिवर्तन I ग्लूकोस की कमी होने पर Ketone bodies ऊर्जा क
े स्रोत क
े रूप में कार्य करती हैं I
इस प्रकार metabolic pathways उचित रूप से नियंत्रित होते हैं और दूसरे pathways से precursors, ऊर्जा और
विभिन्न मुख्य molecules जैसे - ATP/ADP, NADH / NAD+, NADPH /NADP+ ratios, क
े relative
concentrations की सूचना क
े लगातार विनिमय (exchange) हेतु अच्छी तरह समन्वित (coordinated) रहते
हैं I]
Q. 6. Describe regulation of glycogen metabolism.[glycogen क
े चयापचय क
े नियंत्रण का वर्णन
करें I]
Ans. In the human body, glycogen is a branched polymer of glucose stored mainly in the liver
and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to
the muscle cells during muscle contraction. The breakdown and synthesis of glycogen is well
regulated in human body.
Glycogen is broken down by enzyme glycogen phosphorylase. The enzyme glycogen
phosphorylase catalyzes the reaction:
(Glycogen)n + orthophosphate --------> (Glycogen)n-1 + α-D-Glucose-1-phosphate
The enzyme glycogen phosphorylase has two forms viz. form a (active) and from b (inactive).
The inactive form b is converted into active form a by the enzyme phosphorylase kinase in
presence of ATP and Mg++ which phosphorylates the side chain of serine present in the
inactive form b( covalent modification). The active form a degrades glycogen. When degradation
of glycogen is not required then the active form a is converted back to inactive form b by
enzyme phosphorylase phosphatase which dephosphorylates the side chain of serine residue.
Likewise, the enzyme glycogen synthase, which catalyzes glycogen synthesis, is converted into
an inactive form by phosphorylation (as opposed to glycogen phosphorylase which gets
activated by phosphorylation) and it is activated by dephosphorylation. In this way by activation
and inactivation of these enzymes the glycogen metabolism is regulated.
[मानव शरीर में glycogen glucose units से बना एक branched polymer होता है जो मुख्य रूप से liver और
skeletal muscles में संचित रहता है जो उपवास की अवस्था में और muscle contraction क
े दौरान muscle
6
cells को blood क
े माध्यम से ग्लूकोस की आपूर्ति करता है I मानव शरीर में glycogen का breakdown और
synthesis बहुत अच्छी तरह नियंत्रित होता है I
Enzyme glycogen phosphorylase द्वारा catalyze किया जाने वाला reaction है :
(Glycogen)n + orthophosphate → (Glycogen)n-1 + α-D-Glucose-1-phosphate
Glycogen phosphorylase enzyme क
े दो रूप होते हैं - form a (active) और from b (inactive) I
Phosphorylase kinase enzyme ATP और Mg++ की उपस्थिति में inactive form b की serine residue
की side chain को phosphorylate करता है जिससे inactive form b active form a में बदल जाता है (यह
covalent modification कहलाता है) I Enzyme का active form a glycogen को degrade करता है I जब
glycogen क
े degradation की ज़रूरत नहीं होती है तो phosphorylase phosphatase enzyme active
form a क
े serine residue की side chain को dephosphorylate करक
े इसे inactive form b में बदल देता है I
इसी प्रकार, glycogen क
े संश्लेषण (synthesis) को catalyze करने वाला enzyme glycogen synthase
phosphorylation द्वारा एक inactive form में परिवर्तित हो जाता है (जबकि glycogen phosphorylase
phosphorylation द्वारा activate होता है) और dephosphorylation द्वारा activate होता है I इस तरह, इन
enzymes (glycogen phosphorylase और glycogen synthase) क
े activation और inactivation द्वारा
glycogen metabolism नियंत्रित होती है I]
Q. 7. Fill in the blanks:
(i) The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of
________.
(ii) The end product of the PDC catalyzed reaction is ________.
(iii) Pyruvate carboxylase catalyzes the conversion of pyruvate to _______.
(iv) Pyruvate carboxylase is activated by ________.
(v) ______ binds to E2 of PDC to inhibit PDC.
(vi) When the energy charge becomes ____ then GTP (equivalent to ATP) interacts with E1 of
PDC to inhibit it.
(vii) Regulation of PDC by reversible covalent modification is accomplished by _______ of E1 of
PDC resulting in its inactivation.
(viii) Citrate synthase is inhibited by high energy charge and _____.
(ix) The presence of ATP ______ the Km of citrate synthase for acetyl CoA resulting in
decreased formation of citrate.
(x) Isocitrate dehydrogenase is negatively regulated by _____ and ATP and positively regulated
by NAD+ and _____.
(xi) α-ketoglutarate dehydrogenase complex is inhibited by _______, NADH and high ATP
concentration.
(xii) Acetyl-CoA is converted into ketone bodies under the conditions of ______.
(xiii) ______ is the source of fatty acids and cholesterol synthesis.
(xiv) The key enzyme of glyoxylate cycle, isocitrate lyase is not found in _______.
(xv) Human beings can not convert _____ into glucose.
(xvi) Glycogen is broken down by enzyme __________.
(xvii) Glycogen is synthesized by enzyme _____.
7
Ans. (i) pyruvate, (ii) acetyl CoA, (iii) oxaloacetate, (iv) acetyl CoA, (v) NADH, (vi) high, (vii)
phosphorylation, (viii) NADH, (ix) increases, (x) NADH, ADP, (xi) succinyl CoA, (xii) starvation,
(xiii) acetyl CoA, (xiv) humans, (xv) fatty acids, ((xvi) glycogen phosphorylase, (xvii) gycogen
synthase
REFERENCES:
1. IGNOU, CHE - 9 Biochemistry, Block 3
2. Lehninger Principles of biochemistry, seventh edition ; David L. Nelson & Michael M. Cox.
Disclaimer : The pictures given in the text have been downloaded from Google images and I am
thankful to the persons who have uploaded these pictures.
Dr. P. K. Nigam (Retired Biochemist)
8

More Related Content

Similar to Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hinglish)

Citric acid cycle and anaplerosis
Citric acid cycle and anaplerosisCitric acid cycle and anaplerosis
Citric acid cycle and anaplerosisMario Sanchez
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleRoshanKumarMahat
 
Basic notes of Metabolism of Carbohydrates-1.docx
Basic notes of Metabolism of Carbohydrates-1.docxBasic notes of Metabolism of Carbohydrates-1.docx
Basic notes of Metabolism of Carbohydrates-1.docxDr. Santhosh Kumar. N
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cyclebySSs
 
6 tricarboxylic acid cycle (2)
6 tricarboxylic acid cycle (2)6 tricarboxylic acid cycle (2)
6 tricarboxylic acid cycle (2)kingjacob5000
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )OMEED AKBAR
 
Krebs cycle/Citric acid cycle
Krebs cycle/Citric acid cycleKrebs cycle/Citric acid cycle
Krebs cycle/Citric acid cycleIshaTariq8
 
The citric acid cycle
The citric acid cycle  The citric acid cycle
The citric acid cycle AKASHDHUWARE1
 
Citric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycleCitric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cyclekiransharma204
 
Carbohydrates metabolism, part 2
Carbohydrates metabolism, part 2Carbohydrates metabolism, part 2
Carbohydrates metabolism, part 2enamifat
 
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)YESANNA
 

Similar to Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hinglish) (20)

Citric acid cycle and anaplerosis
Citric acid cycle and anaplerosisCitric acid cycle and anaplerosis
Citric acid cycle and anaplerosis
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycle
 
Tca cycle b.pharm
Tca cycle b.pharmTca cycle b.pharm
Tca cycle b.pharm
 
Basic notes of Metabolism of Carbohydrates-1.docx
Basic notes of Metabolism of Carbohydrates-1.docxBasic notes of Metabolism of Carbohydrates-1.docx
Basic notes of Metabolism of Carbohydrates-1.docx
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
6 tricarboxylic acid cycle (2)
6 tricarboxylic acid cycle (2)6 tricarboxylic acid cycle (2)
6 tricarboxylic acid cycle (2)
 
Lecture 12.pptx
Lecture 12.pptxLecture 12.pptx
Lecture 12.pptx
 
TCA.pptx
TCA.pptxTCA.pptx
TCA.pptx
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )
 
Krebs cycle/Citric acid cycle
Krebs cycle/Citric acid cycleKrebs cycle/Citric acid cycle
Krebs cycle/Citric acid cycle
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
TCA cycle 2
TCA cycle 2TCA cycle 2
TCA cycle 2
 
Citric Acid Cycle
Citric Acid Cycle Citric Acid Cycle
Citric Acid Cycle
 
The citric acid cycle
The citric acid cycle  The citric acid cycle
The citric acid cycle
 
Citric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycleCitric Acid Cycle | Krebs Cycle | TCA cycle
Citric Acid Cycle | Krebs Cycle | TCA cycle
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Carbohydrates metabolism, part 2
Carbohydrates metabolism, part 2Carbohydrates metabolism, part 2
Carbohydrates metabolism, part 2
 
TCA CYCLE.pptx
TCA CYCLE.pptxTCA CYCLE.pptx
TCA CYCLE.pptx
 
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
PYRUVATE DEHYDROGENASE COMPLEX (PDH-MULTI-ENZYME COMPLEX)
 

More from PrabhatNigam6

DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control, standa...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control,  standa...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control,  standa...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control, standa...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...PrabhatNigam6
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...PrabhatNigam6
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...PrabhatNigam6
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...PrabhatNigam6
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...PrabhatNigam6
 
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...PrabhatNigam6
 
Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...PrabhatNigam6
 
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)PrabhatNigam6
 
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)PrabhatNigam6
 
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)PrabhatNigam6
 
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)PrabhatNigam6
 
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...PrabhatNigam6
 

More from PrabhatNigam6 (20)

DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Electrolyte & water bala...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - Immunochemistry (U. P. ...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - RIA, ELISA, PCR (U. P. ...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY - UV-VIS Spectroscopy / s...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control, standa...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control,  standa...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control,  standa...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Quality control, standa...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Chromatography (U. P. St...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Radioisotopes & their us...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Proteins (U. P. State Me...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
 
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
 
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
 
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...
 
Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...
 
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
 
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
 
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
 
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
 
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
 

Recently uploaded

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 

Recently uploaded (20)

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hinglish)

  • 1. 11. SOME IMPORTANT QUESTION - ANSWER FOR IGNOU BIOCHEMISTRY [CHE 9] METABOLIC REGULATION Q. 1. Describe the regulation of pyruvate dehydrogenase. [Pyruvate dehydrogenase क े regulation का वर्णन करें I] Ans. The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of acetyl-CoA, CO2 and NADH (H+). Pyruvate + CoA + NAD+ ---> acetyl CoA + CO2 + NADH + H+ The PDC occupies a key position in the oxidation of glucose by linking the glycolytic pathway to the oxidative pathway of the tricarboxylic acid cycle. In mammals, PDC plays the role of a gatekeeper in the metabolism of pyruvate to maintain glucose homeostasis during the fed and fasting states. That is why the PDC is tightly regulated in tissues under different metabolic conditions and this is brought about in three ways : ● Regulation by product inhibition ● Regulation by energy charge ● Regulation by reversible covalent modifications Regulation by product inhibition - The end product of the PDC catalyzed reaction acetyl CoA inhibits the activity of PDC. Under some biosynthetic requirements α-ketoglutarate is removed from the TCA cycle and this results in hindrance in oxaloacetate regeneration which is essential for smooth running of TCA cycle. The shortage of oxaloacetate results in less synthesis of citrate which in turn leads to accumulation of acetyl CoA. Now this increased amount of acetyl CoA inhibits PDC (which inhibits the conversion of pyruvate to acetyl CoA) and activates pyruvate carboxylase which converts the pyruvate (coming from glycolysis) to oxaloacetate, thereby replenishing oxaloacetate which starts consuming the accumulated acetyl CoA. Thus the oxaloacetate becomes available for smooth running of the TCA cycle and thus the inhibitory effect of acetyl CoA is lifted due to the lowered concentration of acetyl CoA and PCC starts working normally. The activity of pyruvate carboxylase is also lowered due to decreased requirement of oxaloacetate from pyruvate. Likewise, NADH (another product of PDC reaction) also inhibits PDC activity. NADH binds to E2 of PDC and thus inhibits PDC resulting in slowing down acetyl CoA and NADH production and the running of TCA cycle. Under the increased requirements of reduced coenzyme, the NAD+ activates PDC to produce more acetyl CoA and NADH. Regulation by energy charge - Energy charge ([ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]) also works like NADH to regulate the PDC. When the energy charge becomes high then GTP (equivalent to ATP) interacts with E1 of PDC to inhibit it and thus ATP production is decreased and so energy charge is also lowered. Upon the requirements of ATP, the AMP activates E1 to increase ATP production. Regulation by reversible covalent modification - is another mechanism to regulate the activity of PDC and is also called photophosphorylation - dephosphorylation mechanism. When ATP increases the protein kinase present in PDC, phosphorylates a specific residue of E1 to give pyruvate dehydrogenase phosphate making the enzyme inactive and hence low production of acetyl CoA as well as ATP. When ADP becomes high and pyruvate is available through 1
  • 2. glycolysis, the protein phosphatase hydrolyses the pyruvate dehydrogenase phosphate to reactivate the enzyme. [Pyruvate dehydrogenase complex (PDC) pyruvate का oxidative decarboxylation catalyze करता है जिससे acetyl-CoA, CO2 और NADH (H+) बनते हैं I Pyruvate + CoA + NAD+ ---> acetyl CoA + CO2 + NADH + H+ Glucose क े oxidation में PDC का मुख्य स्थान होता है क्योंकि यह glycolytic pathway को TCA cycle क े oxidative pathway से जोड़ता है I स्तनधारियों में PDC pyruvate की metabolism में एक द्वारपाल की भूमिका निभाता है जिससे पोषित और उपवास की अवस्था में glucose की समस्थिति (homeostasis) बनी रहे I इसीलिए ऊतकों (tissues) में विभिन्न चयापचय की स्थितियों में PDC का सख़्ती से नियंत्रण होता है और यह नियंत्रण तीन तरीकों से होता है : ● Regulation by product inhibition ● Regulation by energy charge ● Regulation by reversible covalent modifications Regulation by product inhibition - PDC द्वारा catalyzed reaction का अन्तिम उत्पाद acetyl CoA PDC की activity को कम करता है I क ु छ जैव संश्लेषण अवश्यकताओं हेतु α-ketoglutarate का TCA cycle से उपयोग होने पर oxaloacetate क े पुनःपूर्ति में रुकावट आ जाती है और यह oxaloacetate TCA cycle को सुचारुरूप से चलाने हेतु आवश्यक होता है I तो oxaloacetate की कमी से citrate का संश्लेषण भी कम हो जाता है और परिणामस्वरुप acetyl CoA का एकत्रण होने लगता है I acetyl CoA की बढ़ी हुई मात्रा PDC को inhibit करती है जिससे pyruvate का acetyl CoA में परिवर्तन रुक जाता है किन्तु यह pyruvate carboxylase को सक्रिय कर देता है जो glycolysis द्वारा प्राप्त pyruvate को oxaloacetate में परिवर्तित कर देता है I इस तरह oxaloacetate की पुनःपूर्ति हो जाती है जिससे एकत्रित acetyl CoA पुनः TCA cycle में इस्तेमाल होने लगता है और TCA cycle सुचारुरूप से चलने लगती है और acetyl CoA का निरोधात्मक प्रभाव (inhibitory effect) रुक जाता है और PDC सामान्य रूप से अपना काम करने लगता है I साथ ही Pyruvate carboxylase की सक्रियता भी कम हो जाती है क्योंकि pyruvate से oxaloacetate बनाने की आवश्यकता भी कम हो जाती है I इसी प्रकार PDC क े reaction का एक और उत्पाद NADH भी PDC की सक्रियता को रोकता है I NADH PDC क े E2 से जुड़कर PDC को inhibit करता है, जिससे acetyl CoA और NADH का उत्पादन और TCA cycle का चलना धीमा हो जाता है I जब reduced coenzyme NADH की आवश्यकता बढ़ती है तो NAD+ PDC को अधिक acetyl CoA और NADH बनाने हेतु सक्रिय कर देता है I Regulation by energy charge - Energy charge ([ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]) भी NADH की ही तरह PDC को नियंत्रित करता है I जब energy charge अधिक होता है तो GTP (ATP का समकक्ष) PDC क े E1 से पारस्परिक क्रिया करक े PDC को inhibit करता है और इसप्रकार ATP का उत्पादन कम हो जाता है और energy charge भी कम हो जाता है I ATP की आवश्यकता बढ़ने पर AMP E1 को सक्रिय कर देता है जिससे ATP का उत्पादन बढ़ जाता है I Regulation by reversible covalent modification - यह PDC क े नियंत्रण की एक और विधि है जिसे photophosphorylation - dephosphorylation mechanism भी कहते हैं I जब ATP की मात्रा बढ़ जाती है तो PDC में उपस्थित protein kinase E1 क े एक विशिष्ट अवशेष का फास्फोरिलीकरण कर PDC को निष्क्रिय कर देता है जिससे acetyl CoA और ATP दोनों का उत्पादन कम हो जाता है I लेकिन जब ADP अधिक हो जाता है और glycolysis क े माध्यम से pyruvate भी उपलब्ध होता है तो enzyme protein phosphatase pyruvate dehydrogenase phosphate को hydrolyze करक े PDC को पुनः सक्रिय कर देता है I] 2
  • 3. Q. 2. Describe the regulation of tricarboxylic acid cycle.[Tricarboxylic acid cycle क े नियंत्रण का वर्णन करें I] Ans. The TCA cycle has a central position in the final oxidation of acetyl moiety of acetyl CoA coming from catabolism of carbohydrates, fats and some amino acids. Further, the cycle provides precursors for some anabolic processes. Hence, its control is very important to provide efficient and required energy production and precursors for biosynthetic pathways. [Carbohydrates, fats और क ु छ amino acids की catabolism से उत्पन्न acetyl CoA की acetyl moiety क े अंतिम oxidation में TCA cycle की क ें द्रीय स्थिति होती है I साथ ही, यह cycle क ु छ anabolic प्रक्रियाओं क े लिए अग्रदूत (precursors) उपलब्ध कराती है I इसलिए आवश्यक ऊर्जा और जैव संश्लेषण मार्गोँ (pathways) क े लिए अग्रदूत उपलब्ध कराने हेतु इसका नियंत्रण भी बहुत महत्वपूर्ण होता है I] There are three control points of TCA cycle (TCA cycle क े तीन नियंत्रण बिंदु): * Citrate synthase * Isocitrate dehydrogenase * α-ketoglutarate dehydrogenase complex Citrate synthase: is inhibited by high energy charge (increased ATP in adenylate pool) and NADH. The presence of ATP increases the Km of citrate synthase for acetyl CoA resulting in decreased formation of citrate. A low NADH/NAD+ ratio favours the formation of citrate. [Citrate synthase high energy charge (यानि adenylate pool में ATP की अधिकता) और NADH द्वारा inhibit होता है I ATP की उपस्थिति में citrate synthase का acetyl CoA क े लिए Km बढ़ जाता है जिससे citrate का बनना कम हो जाता है I NADH/NAD+ का कम अनुपात citrate क े बनने का समर्थन करता है I] Isocitrate dehydrogenase : The conversion of isocitrate to α-ketoglutarate is catalyzed by this enzyme and it is negatively regulated by NADH and ATP and positively regulated by NAD+ and ADP. [Isocitrate का α-ketoglutarate में परिवर्तन Isocitrate dehydrogenase enzyme द्वारा catalyze होता है और यह enzyme NADH एवं ATP द्वारा नकारात्मक रूप से नियंत्रित होता है और NAD+ एवं ADP द्वारा सकारात्मक रूप से नियंत्रित होता है I] α-ketoglutarate dehydrogenase complex: catalyzes the third control point in TCA cycle i.e. the conversion of α-ketoglutarate to succinyl CoA. This enzyme is inhibited by succinyl CoA, NADH and high ATP concentration. When this enzyme is inhibited α-ketoglutarate accumulates. However, α-ketoglutarate can be converted to glutamate needed for protein synthesis and amino acid synthesis. The enzyme is activated by low ATP and NADH. [α-ketoglutarate dehydrogenase complex α-ketoglutarate क े succinyl CoA में परिवर्तन को catalyze करता है जोकि TCA cycle में तीसरा नियंत्रण बिंदु है I यह enzyme succinyl CoA, NADH और ATP क े अधिक concentration द्वारा inhibit होता है I जब यह enzyme inhibit होता है तो ketoglutarate एकत्रित होता है I हालांकि, α-ketoglutarate को protein और amino acid क े संश्लेषण क े लिए आवश्यक glutamate में परिवर्तित किया जा सकता है I यह enzyme ATP और NADH क े कम होने पर activate हो जाता है I] 3
  • 4. Q.3. Describe briefly the fate of acetyl CoA. [Acetyl CoA की नियति या भाग्य (fate) क े बारे में संक्षेप में बतायें I] Ans. Acetyl CoA is a molecule that participates in many biochemical reactions in protein, carbohydrates and lipid metabolism and it is generated by the combustion of glucose, fatty acids, proteins or amino acids. Under normal conditions acetyl CoA is mainly channeled into the Krebs cycle for energy production. In an overnutrition state, acetyl CoA can be used to store excess energy by forming fatty acids. Acetyl-CoA is also the source for cholesterol synthesis. In a starved state, acetyl-CoA is converted into ketone bodies which serve as an alternative source of energy when glucose is not readily available. The brain converts the ketone bodies to acetyl CoA that can then enter the citric acid cycle for ATP production, Acetyl CoA is also the substrate used for protein acetylation. [Acetyl CoA एक ऐसा molecule है जो carbohydrates, fats और proteins क े चयापचय की कई जैव रासायनिक प्रतिक्रियाओं में भाग लेता है और इसका उत्पादन glucose, fatty acids, proteins या amino acids क े दहन (combustion) से होता है I सामान्य परिस्थितियों में acetyl CoA मुख्य रूप से ऊर्जा उत्पादन हेतु Krebs cycle में पहुँचता है I अतिपोषण की स्थिति ( overnutrition state) में acetyl CoA का उपयोग fatty acids क े संश्लेषण क े रूप में ऊर्जा क े भंडारण में होता है I Acetyl-CoA cholesterol संश्लेषण का भी स्रोत है I भुखमरी की हालत में acetyl-CoA ketone bodies में परिवर्तित हो जाता है जो कि ऊर्जा का एक वैकल्पिक स्रोत है, यदि ग्लूकोस आसानी से उपलब्ध नहीं हो I Brain ketone bodies को acetyl CoA में परिवर्तित करता है जो citric acid cycle द्वारा ATP उत्पन्न कर सकता है I Acetyl CoA protein acetylation में substrate का भी कार्य करता है I] Q.4. Can human beings convert glucose into fatty acids and fatty acids into glucose? Explain. Ans. Human beings can not convert fatty acids into glucose because fatty acid oxidation gives acetyl-CoA, and humans have no pathway to convert acetyl-CoA to oxaloacetate and acetyl CoA cannot be converted into pyruvate because the conversion of pyruvate to acetyl CoA is irreversible. Thus due to inability to form oxaloacetate or pyruvate from acetyl CoA human beings are unable to convert fatty acids into glucose via gluconeogenesis. Plants, on the other hand, can convert acetyl-CoA to oxaloacetate through the glyoxylate cycle. The key enzyme of glyoxylate cycle, isocitrate lyase is not found in human beings. However, the reverse i.e. conversion of glucose to fatty acids is possible in human beings. The pyruvate, generated from the breakdown of glucose via glycolysis, is converted into acetyl CoA by pyruvate dehydrogenase complex which is the starting material for fatty acid synthesis. Glucose→ pyruvate → Acetyl CoA → malonyl CoA → fatty acids [मानव शरीर fatty acids को ग्लूकोस में परिवर्तित नहीं कर सकता क्योंकि fatty acid क े oxidation से acetyl-CoA प्राप्त होता है और मानव शरीर में ऐसा कोई pathway नहीं होता जिसक े द्वारा acetyl-CoA को 4
  • 5. oxaloacetate में परिवर्तित किया जा सक े और न ही acetyl CoA को pyruvate में परिवर्तित किया जा सकता है क्योंकि pyruvate का acetyl CoA में परिवर्तन अपरिवर्तनीय (irreversible) होता है I इसलिए acetyl CoA को oxaloacetate या pyruvate में परिवर्तित नहीं कर पाने क े कारण मानव शरीर fatty acids को gluconeogenesis द्वारा ग्लूकोस में परिवर्तित नहीं कर सकता I किन्तु पौधे acetyl-CoA को oxaloacetate में glyoxylate cycle द्वारा परिवर्तित कर सकते हैं I Glyoxylate cycle का मुख्य enzyme isocitrate lyase मनुष्यों में नहीं पाया जाता है I हालांकि, इसका उल्टा यानि ग्लूकोस का fatty acids में परिवर्तन मनुष्यों में संभव है I glycolysis द्वारा ग्लूकोस क े टूटने से प्राप्त pyruvate enzyme pyruvate dehydrogenase complex द्वारा acetyl CoA में बदल जाता है और इस acetyl CoA से fatty acids का संश्लेषण होता है I] Glucose→ pyruvate → Acetyl CoA → malonyl CoA → fatty acids Q. 5. Write an overview on regulation and coordination of metabolic pathways. Ans. So many metabolic pathways operate in the living systems to ensure a suitable supply of fuel for all the body tissues and this needs good coordination among these pathways. Inside the cells glucose is converted into glucose 6- phosphate (Gl 6-P) but its fate depends on the metabolic state of the cells. If the supply of ATP, pyruvate and citrate is in excess then Gl 6-P is not metabolized via glycolytic pathway due to inhibition of phosphofructokinase (PFK) and it is converted into Gl 1-P and glycogen as reserve carbohydrates. However, if there is an increased demand of ATP and precursors for biosynthesis of other biomolecules then the inhibition of PFK is reversed and Gl 6-P enters glycolysis and glycogen is mobilized to give more Gl 6-P. Likewise, if there is a demand of NADPH for fatty acids biosynthesis or of ribose 5-phosphate for nucleotide and nucleic acid synthesis then Gl 6-P is degraded via pentose phosphate pathway to provide NADPH and ribose 5-P. During strenuous exercise the extra demand of ATP by the actively contracting muscles is met by running the anaerobic glycolysis more by converting pyruvate to lactate and regenerating NAD+ from NADH. The lactate is transported to the liver where it is converted into pyruvate when needed. The interconversion of pyruvate and alanine serves as a link between carbohydrate and amino acid metabolism. The pyruvate generated from any source is converted into acetyl CoA but this conversion is inhibited if there is accumulation of acetyl CoA. Another fate of pyruvate is its conversion into oxaloacetate by pyruvate carboxylase to replenish oxaloacetate for smooth running of TCA cycle or for gluconeogenesis. The TCA cycle plays a central role in complete oxidation of carbohydrates, fatty acids and some amino acids. Acetyl CoA too has many fates such as its entry into TCA cycle, synthesis of fatty acids, synthesis of cholesterol or conversion into ketone bodies under prolonged fasting conditions or starvation depending upon the requirements of the body. Ketone bodies serve as an energy source under the conditions of glucose depletion. Thus the metabolic pathways are properly regulated and well coordinated with other pathways with constant exchange of precursors, energy and information in the form of relative concentrations of various key molecules like ATP/ADP, NADH / NAD+, NADPH /NADP+ ratios. [Living systems में कई metabolic pathways चलते रहते हैं ताकि समस्त शरीर क े ऊतकों को समुचित ईंधन की आपूर्ति हो सक े और इसक े लिए इन pathways क े बीच अच्छे समन्वय की आवश्यकता होती है I Cells क े अंदर glucose परिवर्तित होता है glucose 6- phosphate (Gl 6-P) में किन्तु इसका भाग्य cells की चयापचय स्थिति (metabolic state) पर निर्भर करता है I यदि ATP, pyruvate और citrate की आपूर्ति अधिकता में है तो Gl 6-P का चयापचय glycolytic pathway द्वारा नहीं होता जिसका कारण होता है phosphofructokinase (PFK) का बाधित होना I इसलिए यह Gl 1-P और glycogen में reserve 5
  • 6. carbohydrates क े रूप में परिवर्तित हो जाता है I हालांकि, यदि ATP और अन्य biomolecules क े जैव संश्लेषण हेतु आवश्यक अग्रदूतों की मांग बढ़ती है तो PFK का अवरोधन (inhibition) उलट जाता है और Gl 6-P glycolysis में प्रवेश कर जाता है और glycogen से और अधिक Gl 6-P बनता है I इसी प्रकार यदि fatty acids क े संश्लेषण हेतु NADPH की मांग बढ़ती है या nucleotides और nucleic acid क े संश्लेषण हेतु ribose 5-phosphate की मांग बढ़ती है तों Gl 6-P pentose phosphate pathway क े माध्यम से टूटकर NADPH और ribose 5-P उपलब्ध कराता है I अत्याधिक exercise क े दौरान सक्रियता से contract होने वाले muscles द्वारा ATP की अतिरिक्त मांग anaerobic glycolysis क े माध्यम से pyruvate को lactate में परिवर्तन और NADH से NAD+ क े पुनरूत्पादन द्वारा पूरी होती है I इस प्रकार बना lactate liver में ट्रांसपोर्ट हो जाता है और आवश्यकता पड़ने पर pyruvate में परिवर्तित होता है I Pyruvate और alanine का अंतर्रू पांतरण ( interconversion) carbohydrate और amino acid metabolism क े बीच एक कड़ी का काम करता है I सभी स्रोतों से उत्पादित pyruvate acetyl CoA में परिवर्तित होता है लेकिन इस परिवर्तन में acetyl CoA क े एकत्रण से रूकावट आती है I Pyruvate का एक और fate (नियति) होता है और वो है इसका oxaloacetate में pyruvate carboxylase द्वारा परिवर्तन ताकि TCA cycle ठीक से चले और gluconeogenesis भी हो सक े I Carbohydrates, fatty acids और क ु छ amino acids क े पूर्ण oxidation में TCA cycle एक क ें द्रीय भूमिका निभाती है I Acetyl CoA क े भी कई fates (नियति) होते हैं जैसे - शरीर की आवश्यकता अनुसार इसका TCA cycle में प्रवेश, fatty acids और cholesterol की synthesis और इसका लम्बे उपवास या भुखमरी में ketone bodies में परिवर्तन I ग्लूकोस की कमी होने पर Ketone bodies ऊर्जा क े स्रोत क े रूप में कार्य करती हैं I इस प्रकार metabolic pathways उचित रूप से नियंत्रित होते हैं और दूसरे pathways से precursors, ऊर्जा और विभिन्न मुख्य molecules जैसे - ATP/ADP, NADH / NAD+, NADPH /NADP+ ratios, क े relative concentrations की सूचना क े लगातार विनिमय (exchange) हेतु अच्छी तरह समन्वित (coordinated) रहते हैं I] Q. 6. Describe regulation of glycogen metabolism.[glycogen क े चयापचय क े नियंत्रण का वर्णन करें I] Ans. In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. The breakdown and synthesis of glycogen is well regulated in human body. Glycogen is broken down by enzyme glycogen phosphorylase. The enzyme glycogen phosphorylase catalyzes the reaction: (Glycogen)n + orthophosphate --------> (Glycogen)n-1 + α-D-Glucose-1-phosphate The enzyme glycogen phosphorylase has two forms viz. form a (active) and from b (inactive). The inactive form b is converted into active form a by the enzyme phosphorylase kinase in presence of ATP and Mg++ which phosphorylates the side chain of serine present in the inactive form b( covalent modification). The active form a degrades glycogen. When degradation of glycogen is not required then the active form a is converted back to inactive form b by enzyme phosphorylase phosphatase which dephosphorylates the side chain of serine residue. Likewise, the enzyme glycogen synthase, which catalyzes glycogen synthesis, is converted into an inactive form by phosphorylation (as opposed to glycogen phosphorylase which gets activated by phosphorylation) and it is activated by dephosphorylation. In this way by activation and inactivation of these enzymes the glycogen metabolism is regulated. [मानव शरीर में glycogen glucose units से बना एक branched polymer होता है जो मुख्य रूप से liver और skeletal muscles में संचित रहता है जो उपवास की अवस्था में और muscle contraction क े दौरान muscle 6
  • 7. cells को blood क े माध्यम से ग्लूकोस की आपूर्ति करता है I मानव शरीर में glycogen का breakdown और synthesis बहुत अच्छी तरह नियंत्रित होता है I Enzyme glycogen phosphorylase द्वारा catalyze किया जाने वाला reaction है : (Glycogen)n + orthophosphate → (Glycogen)n-1 + α-D-Glucose-1-phosphate Glycogen phosphorylase enzyme क े दो रूप होते हैं - form a (active) और from b (inactive) I Phosphorylase kinase enzyme ATP और Mg++ की उपस्थिति में inactive form b की serine residue की side chain को phosphorylate करता है जिससे inactive form b active form a में बदल जाता है (यह covalent modification कहलाता है) I Enzyme का active form a glycogen को degrade करता है I जब glycogen क े degradation की ज़रूरत नहीं होती है तो phosphorylase phosphatase enzyme active form a क े serine residue की side chain को dephosphorylate करक े इसे inactive form b में बदल देता है I इसी प्रकार, glycogen क े संश्लेषण (synthesis) को catalyze करने वाला enzyme glycogen synthase phosphorylation द्वारा एक inactive form में परिवर्तित हो जाता है (जबकि glycogen phosphorylase phosphorylation द्वारा activate होता है) और dephosphorylation द्वारा activate होता है I इस तरह, इन enzymes (glycogen phosphorylase और glycogen synthase) क े activation और inactivation द्वारा glycogen metabolism नियंत्रित होती है I] Q. 7. Fill in the blanks: (i) The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of ________. (ii) The end product of the PDC catalyzed reaction is ________. (iii) Pyruvate carboxylase catalyzes the conversion of pyruvate to _______. (iv) Pyruvate carboxylase is activated by ________. (v) ______ binds to E2 of PDC to inhibit PDC. (vi) When the energy charge becomes ____ then GTP (equivalent to ATP) interacts with E1 of PDC to inhibit it. (vii) Regulation of PDC by reversible covalent modification is accomplished by _______ of E1 of PDC resulting in its inactivation. (viii) Citrate synthase is inhibited by high energy charge and _____. (ix) The presence of ATP ______ the Km of citrate synthase for acetyl CoA resulting in decreased formation of citrate. (x) Isocitrate dehydrogenase is negatively regulated by _____ and ATP and positively regulated by NAD+ and _____. (xi) α-ketoglutarate dehydrogenase complex is inhibited by _______, NADH and high ATP concentration. (xii) Acetyl-CoA is converted into ketone bodies under the conditions of ______. (xiii) ______ is the source of fatty acids and cholesterol synthesis. (xiv) The key enzyme of glyoxylate cycle, isocitrate lyase is not found in _______. (xv) Human beings can not convert _____ into glucose. (xvi) Glycogen is broken down by enzyme __________. (xvii) Glycogen is synthesized by enzyme _____. 7
  • 8. Ans. (i) pyruvate, (ii) acetyl CoA, (iii) oxaloacetate, (iv) acetyl CoA, (v) NADH, (vi) high, (vii) phosphorylation, (viii) NADH, (ix) increases, (x) NADH, ADP, (xi) succinyl CoA, (xii) starvation, (xiii) acetyl CoA, (xiv) humans, (xv) fatty acids, ((xvi) glycogen phosphorylase, (xvii) gycogen synthase REFERENCES: 1. IGNOU, CHE - 9 Biochemistry, Block 3 2. Lehninger Principles of biochemistry, seventh edition ; David L. Nelson & Michael M. Cox. Disclaimer : The pictures given in the text have been downloaded from Google images and I am thankful to the persons who have uploaded these pictures. Dr. P. K. Nigam (Retired Biochemist) 8