SlideShare a Scribd company logo
The Iron ‐ Iron Carbide (Fe‐Fe3C) Phase Diagram
Peritectic L + δ = γ
at T=1493oC and 0.18wt%C
Eutectic L = γ + Fe3C
at T=1147oC and 4.3wt%C 
Eutectoid γ = α + Fe3C
at T=727oC and 0.77wt%C 
Phases Present
L
Reactions
δ ferrite delta
Bcc structure
Paramagnetic
γ austenite
Fcc structure
Non‐magnetic
ductile
α ferrite
Bcc structure
Ferromagnetic
Fairly ductile
Fe3C cementite
Orthorhombic
Hard, brittle
Max. solubility of C 
in ferrite=0.022%
in austenite=2.11%
Phases in Fe–Fe3C Phase Diagram
¾ α‐ferrite ‐ solid solution of C in BCC Fe
• Stable form of iron at room temperature.  
• Transforms to FCC g‐austenite at 912 °C
¾ γ‐austenite ‐ solid solution of C in FCC Fe
• Transforms to BCC δ‐ferrite at 1395 °C 
• Is not stable below the eutectic temperature (727 ° C) 
unless cooled rapidly.
¾ δ‐ferrite solid solution of C in BCC Fe
• It is stable only at T, >1394 °C. It melts at 1538 °C
¾ Fe3C (iron carbide or cementite)
• This intermetallic compound is metastable at room T. It 
decomposes (very slowly, within several years) into α‐Fe 
and C (graphite) at 650 ‐ 700 °C 
¾ Fe‐C liquid solution 
Comments on Fe–Fe3C system
C is an interstitial impurity in Fe.  It forms a solid solution with α, γ,
δ phases of iron
Maximum solubility in BCC α‐ferrite is 0.022 wt% at 727 °C. BCC: 
relatively small interstitial positions
Maximum solubility in FCC austenite is 2.14 wt% at 1147 °C ‐ FCC 
has larger interstitial positions
Mechanical  properties:    Cementite (Fe3C  is  hard  and  brittle: 
strengthens  steels).  Mechanical  properties  also  depend  on 
microstructure: how ferrite and cementite are mixed.
Magnetic  properties:    α ‐ferrite  is  magnetic  below  768  °C, 
austenite is non‐magnetic
Classification.
Three types of ferrous alloys:
Iron: < 0.008 wt % C in α‐ferrite at room T
Steels: 0.008 ‐ 2.14 wt % C (usually < 1 wt % )
α‐ferrite +  Fe3C at room T 
Cast iron: 2.14 ‐ 6.7 wt % (usually < 4.5 wt %)
3
1
3
Eutectoid steel
Alloy of eutectoid composition (0.76 wt % C) is cooled slowly: forms 
pearlite,  layered  structure  of  two  phases:    α‐ferrite  and  cementite
(Fe3C)
Microstructure of eutectoid steel 
Mechanically, pearlite has properties 
intermediate to soft, ductile ferrite and hard, 
brittle cementite.
Hypoeutectoid steel
Hypoeutectoid alloys 
contain proeutectoid
ferrite (formed 
above the eutectoid 
temperature) plus 
the eutectoid perlite
that contain 
eutectoid ferrite and 
cementite. 
Hypereutectoid steel
Hypereutectoid alloys 
contain proeutectoid
cementite (formed 
above the eutectoid 
temperature) plus 
perlite that contain 
eutectoid ferrite and 
cementite. 
How to calculate the relative amounts of proeutectoid phase 
(α or Fe3C) and pearlite?
Use the lever rule and a tie line that extends from the eutectoid 
composition (0.75 wt% C) to α (0.022 wt% C) for hypoeutectoid
alloys and to Fe3C (6.7 wt% C) for hypereutectoid alloys.
Example: hypereutectoid alloy, composition C1
( )
( )
( )
( )
( )
( )
76
.
0
7
.
6
76
.
0
Cementite
id
Proeutecto
of
Fraction 
76
.
0
7
.
6
7
.
6
Pearlite
of
Fraction 
1
3
1
‐
‐
=
+
=
=
‐
‐
=
+
=
=
C
X
V
V
W
C
X
V
X
W
C
Fe
P
Example
For alloys of two hypothetical metals A and B, there exist an α, A‐rich 
phase and a β, B‐rich phase. From the mass fractions of both phases of 
two different alloys, which are at the same temperature, determine 
the composition of the phase boundary (or solubility limit) for both α
and β at this temperature.
Alloy 
Composition
Fraction of α
phase
Fraction of β
phase
60wt%A –
40wt%B
0.57 0.43
30wt%A –
70wt%B
0.14 0.86
The problem is to solve for compositions at the phase boundaries
for both α and β phases (i.e., Cα and Cβ).  We may set up two 
independent lever rule expressions, one for each composition, in
terms of Cα and Cβ as follows:
α
β
β
α
β
o
β
α
C
C
C
=
C
C
C
C
=
.
=
W
−
−
−
− 60
57
0 1
1
α
β
β
α
β
o
β
α
C
C
C
=
C
C
C
C
=
.
=
W
−
−
−
− 30
14
0 2
2
In these expressions, compositions are given in weight percent A.  
Solving for Cα and Cβ from these equations, yield
Cα = 90 (or 90 wt% A‐10 wt% B)
Cβ = 20.2 (or 20.2 wt% A‐79.8 wt% B)
Heat Treatment of Steels
On slowly cooling the steels, the properties of the steel are 
dependent mainly on the percentage carbon.
Different percentage carbon implies different percentage of 
microconstituents and phases
•pearlite and ferrite pro‐eutectoid for the hypo‐eutectoid 
steels 
•pearlite and cementite pro‐eutectoid for the hyper‐eutectoid 
steels.
The temperature is high enough and the time at high temperature 
is long enough, for the atoms to diffuse and attain equilibrium 
conditions  
Why Heat Treatment?
By varying the manner in which plain‐carbon are heated and cooled, 
different combinations of mechanical properties of the steel can be 
obtained.
The resulting mechanical properties are due to changes in the 
microstructure.
Properties can be tailored by changing the microstructure.
The development of the microstructure is not instantaneously and is 
ruled by the diffusion of atoms.
Heat Treatment: Heating and cooling procedure to manipulate 
structural changes (affect materials properties).
Isothermal Transformation
• Consider a rapid cooling from “A” to “T1” in the diagram for 
an eutectoid steel and keeping the steel at this temperature 
for the eutectoid reaction to occur.
• The eutectoid reaction will take place isothermally
γ(0.78 wt%C) → α(0.02%C) + Fe3C(6.70%C)
• Austenite, on time, will transform to ferrite and cementite. 
• Carbon diffuses away from ferrite to cementite
• Temperature affects the rate of diffusion of carbon..
At temperature “T1” the 
transformation will occur 
gradually, following a “S” shape 
curve
)
exp(
1 n
kt
y −
−
=
Avrami equation
A
T1
Avrami relationship ‐ Describes the fraction of a transformation that 
occurs as a function of time. This describes most solid‐state 
transformations that involve diffusion, thus martensitic transformations 
are not described.
For most reactions rate 
increases with 
temperature:
RT
Q
Ae
r /
−
=
Rate of transformation
5
.
0
1
t
r =
The rate of a phase transformation is the product of the growth rate 
and nucleation rate contributions, giving a maximum transformation 
rate at a critical temperature (a). Consequently, there is a minimum 
time (tmin) required for the transformation, given by the “C‐curve”.
Time‐Temperature‐Transformation Diagram
¾TTT diagrams are isothermal transformations (constant T – the 
material is cooled quickly to a given temperature THEN the 
transformation occurs)
¾The thickness of the ferrite and cementite layers in pearlite is ~ 
8:1.  The absolute  layer  thickness  depends  on  temperature  of 
transformation.    The  higher  the  temperature,  the  thicker  the 
layers.
¾At  higher  T.  S‐shaped  curves  shifted  to  longer  times ⇒
transformation  dominated  by  slow  nucleation  and  high  atomic 
diffusion. Grain growth is controlled by atomic diffusion.
¾At higher temperatures, the high diffusion rates allow for larger 
grain growth and formation of thick layered structure of pearlite
(coarse pearlite).
¾At low temperatures, the transformation is controlled by a rapid
nucleation but slow atomic diffusion. Nucleation is controlled by 
supercooling.
¾Slow diffusion at low temperatures leads to fine‐grained 
microstructure with thin‐layered structure of pearlite (fine 
pearlite). 
¾At compositions other than eutectoid, a proeutectoid phase 
(ferrite or cementite) coexists with pearlite.
¾If transformation temperature is low enough (≤540°C) below the 
nose of the TTT curve the diffusion rates are greatly reduced
¾Under such conditions is not possible to form pearlite and a 
different phase, bainite, is formed.
Coarse pearlite Fine pearlite
TTT Curve - Eutectiod Steel
Equilibrium Phase Change Temperature
100
200
300
400
500
600
700
Temp
eratur
e
C
0.1 1 10 100 1000 10,000 seconds
Start Time
Finish Time
Ps
Pf
Bs Bf
Mf
Ms
Pearlite
Bainite
Martensite
Problem:
Determine the activation energy for recrystallization of cold worked copper,
given the fraction of recrystallization with time at different temperatures.
RT
Q
Ae
r /
−
=
Bainite – another product of austenite
transformation
• Needles or plates – needles of ferrite separated by
elongated particles of the Fe3C phase
• Bainite forms as shown on the T-T-T diagram at
temperatures below those where pearlite forms
• Pearlite forms – 540 to 727 0C
• Bainite forms – 215 to 540 0C
Martensite
Athermal transformation Massive martensite
Plate martensite
Body centered tetragonal (BCT)
structure.
“Ms” stands for “Martensite Start
Temperature” and
“Mf” stands for “Martensite
Finished Temperature”.
Due to the fast cooling, diffusion of
carbon is restricted. To make room
for the carbon atoms, the lattice
stretches along one crystal direction.
Martensite is a metastable phase.
Martensite is a supersaturated solution of
carbon in iron.
Due to the high lattice distortion,
martensite has high residual stresses.
The high lattice distortion induces high
hardness and strength to the steel.
However, ductility is loss (martensite is too
brittle) and a post heat treatment is
necessary.
FCC BCC BCT
Heat treatment
Examples
(a) rapidly cool to 350oC; hold 104s and
then quench to room temp.
(b) rapidly cool to 250oC; hold 100s and
then quench to room temp.
(c) rapidly cool to 650oC; hold 20s and
rapidly cool to 400oC, hold 103s, and
and then quench to room temp.
(a)
(b)
(c)
50% pearlite + 50% bainite
100% martensite
100% bainite
Austenite
Diffusionless process
Reheat
Body-centered
tetragonal
Temper embrittlement : reduction of toughness after tempering
Continuous Cooling Transformation + cooling curve
Control of final
structures
Common Industrial Heat Treatments
o Annealing (slow cooling from austenitizing temperature.
Product: coarse pearlite)
o Normalizing (air cooling from austenitizing temperature.
Product: fine pearlite)
o Quench & Temper. Quench (fast – water or oil – cooling
from austenitizing temperature. Product: martensite).
Tempering (heating to T < A1 to increase ductility of
quenched steels)
o Martempering. (Quench to T above Ms and soak until all
the steel section is at that temperature, then quench to
ambient temperature. Product: Martensite)
o Austempering. (Quench to T above Ms and soak until phase
transformation takes place. Product: Bainite
Stages of annealing:
• Heating to required temperature
• Holding (“soaking”) at constant temperature
• Cooling
The time at the high temperature (soaking time) is long
enough to allow the desired transformation to occur.
Cooling is done slowly to avoid warping/cracking of due
to the thermal gradients and thermo-elastic stresses
within the or even cracking the metal piece.
Annealing
Purposes of annealing:
•Relieve internal stresses
•Increase ductility, toughness, softness
•Produce specific microstructure
Process Annealing - effects of work-hardening (recovery and
recrystallization) and increase ductility. Heating is limited to avoid
excessive grain growth and oxidation.
Stress Relief Annealing – minimizes stresses due to
Plastic deformation during machining
o Nonuniform cooling
o Phase transformations between phases with different densities
Annealing temperatures are relatively low so that useful effects of
cold working are not eliminated.
Examples of heat treatment
• Lower critical temperature A1 below which austenite does not exist
• Upper critical temperature lines, A3 and Acm above which all
material is austenite
• Austenitizing – complete transformation to austenite
Full annealing: austenizing and slow cooling (several
hours). Produces coarse pearlite (and possible proeutectoid
phase) that is relatively soft and ductile. It is used to soften
pieces which have been hardened by plastic deformation,
and which need to undergo subsequent machining/forming.
Temperatures for full annealing:
Hypoeutectoid steel : A3 + 50oC
Hypereutectoid steel : A1,3 + 50oC
Normalizing
Annealing heat treatment just above the upper critical
temperature to reduce grain sizes (of pearlite and proeutectoid
phase) and make more uniform size distributions.
The interlamellar distance of pearlite decreases as the cooling
rate increases.
•Slow cooling (annealing – furnace cooling) – coarse
pearlite – interlamellar spacing of 4.5μm – hardness of
200BHN
•Medium to slow cooling (normalizing – still air cooling) –
normal pearlite – interlamellar spacing of 3.0μm –
hardness of 220BHN
•Medium to Fast (normalizing – forced air cooling) – fine
pearlite – interlamellar spacing of 2.0μm – hardness of
300BHN
Normalizing
temperatures:
Hypoeutectoid steel :
A3 + 50oC
Hypereutectoid steel :
Acm + 50oC
Spheroidizing: prolonged heating just below the eutectoid
temperature, which results in the soft spheroidite structure.
This achieves maximum softness needed in subsequent forming
operations.
Pearlite or
bainite
Heating
18~24h
below the eutectoid temp.
Spheroidite
Reduction of α /Fe3C GB area
Hardness and ductility
Quenching
The most common method to harden a steel.
It consists of heating to the austenizing temperature (hypoeutectoid steel) and
cooling fast enough to avoid the formation of ferrite, pearlite or bainite, to
obtain pure martensite.
Martensite (α’) has a distorted BCT structure. It is the hardest of the
structures studied. The higher hardness is obtained at 100% martensite.
Martensite hardness depends solely of the carbon content of the steel. The
higher the carbon content, the higher the hardness.
Martensite is very brittle and can not be used directly after quench for any
application.
Martensite brittleness can be reduced by applying a post-heat treatment
known as - tempering.
Austenizing temperature:
Hypoeutectoid steel : A3 + 50oC
Hypereutectoid steel : A1,3 + 50oC
T(oC)
Time (t)
a
b
c
(a) Cooling in oil
(b) Cooling in water
(c) Cooling in brine
Cooling depends on the geometry and mass of the component.
External surfaces are cooled faster than the inner core of the
component.
• Martensite is too brittle to serve engineering purpose
• Tempering is necessary to increase ductility and toughness of
martensite. Some hardness and strength is lost.
• Tempering consist on reheating martensitic steels (solution
supersaturated of carbon) to temperatures between 150-500º C to
force some carbide precipitation.
1st stage 80-160º C
α’ α”(low C martensite) + εcarbide (Fe2.3C)
2nd stage 230-280º C
γretained bainite
3rd stage 160-400º C
α”+ εcarbide α + Fe3C(tempered martensite)
3rd stage (cont) 400-700oC
Growth and spherodization of cementite and other carbides
Tempering of Martensitic Steels
Martempering
A process to prevent the formation of
quench cracks in the steel.
Cooling is carried out, as fast as
possible, to a temperature over the
MS of the steel.
The steel is maintained at T>MS until
the inner core and outer surface of
the steel component is at the same
temperature.
T (oC)
Log (time)
Surface
Inner
Core
MS
MF
The steel is then cooled below the MF to obtain 100%
martensite. There is a need to increase the ductility of this steel
by tempering.
T
T (oC)
Log (time)
Surface
Inner
Core
MS
MF
Bainite
Austempering
A process to prevent the
formation of quench cracks in
the steel.
Cooling is carried out, as fast
as possible, to a temperature
over the MS of the steel.
The steel is maintained at
T>MS until the austenite
transforms to 100% bainite.
There is no need of tempering
post treatment.
T
Hardenability is the ability of the Fe-C alloy to transform to
martensite during cooling. It depends on alloy composition
and quenching media.
Hardenability should not be confused with “hardness”. A
qualitative measure of the rate at which hardness decreases
with distance from the surface because of decreased
martensite content.
High hardenability means the ability of the alloy to produce a
high martensite content throughout the volume of specimen.
Hardenability is measured by the Jominy end-quench test performed in a
standard procedure (cylindrical specimen, austenitization conditions,
quenching conditions - jet of water at specific flow rate and temperature).
Hardenability
Hardenability
Hardenability Ability to be hardened by the formation
of martensite as a result of heat treatment
Jominy End-Quench Test
Jominy End-Quench Test
Distance from quenched end
Rockwell Hardness
Different Cooling rate !!
Different Cooling rate !!
Hardness versus Cooling Rate
Hardenability Curve
Cooling rate
Distance from quench end
Continuous Cooling Transformation
High carbon content, better hardenability
High carbon content, better hardenability
Larger specimen, lower cooling rate
Larger specimen, lower cooling rate
Closer to the center, lower the cooling rate
Closer to the center, lower the cooling rate
Use the hardenability data in the
generation of hardness profile
Use the hardenability data in the
generation of hardness profile
Example

More Related Content

Similar to MENG-6B.pdf

Harsh radadiya
Harsh radadiyaHarsh radadiya
Harsh radadiya
HARSHRADADIYA2
 
Iron Iron-Carbide Diagram(MSM)
Iron Iron-Carbide Diagram(MSM)Iron Iron-Carbide Diagram(MSM)
Iron Iron-Carbide Diagram(MSM)
University of Windsor
 
Iron carbon diagram
Iron  carbon diagramIron  carbon diagram
Iron carbon diagram
Rahul Sen
 
IRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.pptIRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.ppt
sharonmarishkawilfre
 
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENTIRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
Iron iron carbon dia
Iron iron carbon diaIron iron carbon dia
Iron iron carbon dia
Keval Patil
 
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.pptPart-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
BiranchiBiswal3
 
material science & engineering.ppt
material science & engineering.pptmaterial science & engineering.ppt
material science & engineering.ppt
AwadMElAraby1
 
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
RahulRajelli
 
Lect-4 Iron Carbon Equilibrium Diagram
Lect-4 Iron Carbon Equilibrium DiagramLect-4 Iron Carbon Equilibrium Diagram
Lect-4 Iron Carbon Equilibrium Diagram
rambansal37
 
diagram fasa fe-fe3c.pdf
diagram fasa fe-fe3c.pdfdiagram fasa fe-fe3c.pdf
diagram fasa fe-fe3c.pdf
FirgiawanF
 
Iron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramIron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramGulfam Hussain
 
Phase transformation (Material Science)
Phase transformation (Material Science)Phase transformation (Material Science)
Phase transformation (Material Science)
Myo Zin Aung
 
Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
 Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
annaelctronics
 
Martensitic Transformations in steels
Martensitic Transformations in steelsMartensitic Transformations in steels
Martensitic Transformations in steels
Awais Qadir
 
file_5e98430338f0a.pptx
file_5e98430338f0a.pptxfile_5e98430338f0a.pptx
file_5e98430338f0a.pptx
Great54
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagram
mukeshkumar2062
 
Steel Phase Diagram and Heat Treatment.pptx
Steel Phase Diagram and Heat Treatment.pptxSteel Phase Diagram and Heat Treatment.pptx
Steel Phase Diagram and Heat Treatment.pptx
Yehia El Shazly
 
Fe-C diagram
Fe-C diagramFe-C diagram

Similar to MENG-6B.pdf (20)

Harsh radadiya
Harsh radadiyaHarsh radadiya
Harsh radadiya
 
Iron Iron-Carbide Diagram(MSM)
Iron Iron-Carbide Diagram(MSM)Iron Iron-Carbide Diagram(MSM)
Iron Iron-Carbide Diagram(MSM)
 
Iron carbon diagram
Iron  carbon diagramIron  carbon diagram
Iron carbon diagram
 
IRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.pptIRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.ppt
 
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENTIRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
 
Iron iron carbon dia
Iron iron carbon diaIron iron carbon dia
Iron iron carbon dia
 
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.pptPart-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
 
material science & engineering.ppt
material science & engineering.pptmaterial science & engineering.ppt
material science & engineering.ppt
 
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
Fallsem2021 22 mee1005-eth_vl2021220102807_reference_material_ii_30-aug-2021_...
 
Lect-4 Iron Carbon Equilibrium Diagram
Lect-4 Iron Carbon Equilibrium DiagramLect-4 Iron Carbon Equilibrium Diagram
Lect-4 Iron Carbon Equilibrium Diagram
 
diagram fasa fe-fe3c.pdf
diagram fasa fe-fe3c.pdfdiagram fasa fe-fe3c.pdf
diagram fasa fe-fe3c.pdf
 
Iron carbon diagram
Iron carbon diagramIron carbon diagram
Iron carbon diagram
 
Iron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramIron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gram
 
Phase transformation (Material Science)
Phase transformation (Material Science)Phase transformation (Material Science)
Phase transformation (Material Science)
 
Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
 Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf
 
Martensitic Transformations in steels
Martensitic Transformations in steelsMartensitic Transformations in steels
Martensitic Transformations in steels
 
file_5e98430338f0a.pptx
file_5e98430338f0a.pptxfile_5e98430338f0a.pptx
file_5e98430338f0a.pptx
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagram
 
Steel Phase Diagram and Heat Treatment.pptx
Steel Phase Diagram and Heat Treatment.pptxSteel Phase Diagram and Heat Treatment.pptx
Steel Phase Diagram and Heat Treatment.pptx
 
Fe-C diagram
Fe-C diagramFe-C diagram
Fe-C diagram
 

Recently uploaded

Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 

Recently uploaded (20)

Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 

MENG-6B.pdf