Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
BBMP 1103   Mathematic ManagementExam Preparation Workshop Sept 2011     Part 8 - Lagrange Multiplier       Presented By: ...
8. Focus on Lagrange Multiplier    Find the minimum value for f ( x, y) 5x 2 6 y 2   xy    over a constraint of x + 2y = 2...
Step: 2 – Form the Lagrange function f ( x, y, )     F ( x, y, )   f ( x, y)      g ( x, y)     F ( x, y, ) (5x 2 6 y 2   ...
Step: 4 – Solve the 3 equations     (i) x 2 => 20x 2 y 2             0 … (iv)     (iv) - (ii) => 21x 14 y      0          ...
2             y   2 y 24 0           3          8            y 24          3          y 9Substitute into (v):             ...
Question: 17 (January 2011)Suggested Answers:       x + 2y = 20       x + 2y – 20 = 0 Hence, g(x,y) = x + 2y – 20      F  ...
Fy      16y x 2            0    … (ii)   F       x 2y 20 0               … (iii)(i) X 2 => 8 x 2 y 2               0   … (...
Question: 18 (January 2010)
Question: 19 (September 2006)Prepared by Dr Richard Ng (2011)   Page 9
End of                                     Exam                                   WorkshopPrepared by Dr Richard Ng (2011)...
Upcoming SlideShare
Loading in …5
×

BBMP1103 - Sept 2011 exam workshop - part 8

5,412 views

Published on

Prepared by Dr. Richard Ng

Published in: Education, Career
  • Be the first to comment

  • Be the first to like this

BBMP1103 - Sept 2011 exam workshop - part 8

  1. 1. BBMP 1103 Mathematic ManagementExam Preparation Workshop Sept 2011 Part 8 - Lagrange Multiplier Presented By: Dr Richard Ng 26 Nov 2011 2ptg – 4ptg
  2. 2. 8. Focus on Lagrange Multiplier Find the minimum value for f ( x, y) 5x 2 6 y 2 xy over a constraint of x + 2y = 24 Answers: Step: 1 – Express constraint in the form of g(x,y) = 0 x + 2y = 24 x + 2y – 24 = 0 g(x,y) = x + 2y – 24Prepared by Dr Richard Ng (2011) Page 2
  3. 3. Step: 2 – Form the Lagrange function f ( x, y, ) F ( x, y, ) f ( x, y) g ( x, y) F ( x, y, ) (5x 2 6 y 2 xy) [ x 2 y 24] F ( x, y, ) 5x 2 6 y 2 xy x 2 y 24Step: 3 – Find Fx , Fy , F and equate to zero Fx 10x y 0 … (i) Fy 12y x 2 0 … (ii) F x 2y 24 0 … (iii)
  4. 4. Step: 4 – Solve the 3 equations (i) x 2 => 20x 2 y 2 0 … (iv) (iv) - (ii) => 21x 14 y 0 21x 14 y 2 x y … (v) 3 Substitute (v) into (iii): 2 y 2 y 24 0 3
  5. 5. 2 y 2 y 24 0 3 8 y 24 3 y 9Substitute into (v): 2 x (9) 3 x 6Hence, the minimum value is = (6, 9)
  6. 6. Question: 17 (January 2011)Suggested Answers: x + 2y = 20 x + 2y – 20 = 0 Hence, g(x,y) = x + 2y – 20 F f ( x, y) g ( x, y) F [2 x 2 8 y 2 xy] [ x 2 y 20] Fx 4x y 0 … (i)
  7. 7. Fy 16y x 2 0 … (ii) F x 2y 20 0 … (iii)(i) X 2 => 8 x 2 y 2 0 … (iv)(iv) – (ii) => 9 x 18y 0 x 2y … (v)Substitute (v) into (iii): (2 y) 2 y 20 0 4y 20 y 5 x 2y 2(5) 10Hence, the minimum value is => (10, 5)
  8. 8. Question: 18 (January 2010)
  9. 9. Question: 19 (September 2006)Prepared by Dr Richard Ng (2011) Page 9
  10. 10. End of Exam WorkshopPrepared by Dr Richard Ng (2011) Page 10

×