SlideShare a Scribd company logo
1 of 27
INDETERMINATE
FORMS
OBJECTIVES:
• define, determine, enumerate the
different indeterminate forms of
functions;
• apply the theorems on differentiation
in evaluating limits of indeterminate
forms of functions using L’Hopital’s
Rule.
.
( )( )
( ) 2313-xlim
1x
3x1-x
lim
1x
3x4x
lim
:followsasnumeratorthefactorweexist,tolimit
theforandform,ateindeterminanislimitthe
0
0
11
3)1(4)1(
1x
3x4x
lim
1x
3x4x
limofitlimtheEvaluate:callRe
1x1x
2
1x
22
1x
2
1x
−=−==
−
−
=
−
+−
=
−
+−
=
−
+−
−
+−
→→→
→
→
2
1x
3x4x
lim,thus
2
1x
−=
−
+−
→
used.bewillRulesHopital'L'onTheoremslimit
saidtheevaluateToexample.secondthetoappliedbelonger
nocanproblemsprevioustheinappliedprincipletheObviously,
0
0
0
)0sin(
)0(2
)0(2sin
2x
2xsin
lim
2x
2xsin
limtheevaluatingconsiderusLet
0x
0x
===→
→
.
∞
∞
∞∞
∞⋅
∞
∞
1,,05.
and-4.
03.
:FormsSecondaryB.
2.
and
0
0
1.
:FormsPrimaryA.
:formsateindeterminofKinds
00
.
Theorem 3.6.1 (p. 220) L'Hôpital's Rule for Form 0/0
.
Applying L'Hôpital's Rule (p. 220)
Theorem 3.6.2 (p. 222) L'Hopital's Rule for Form ∞/∞
.
2x
2xsin
lim.1 0x→
EXAMPLE:
Evaluate the following limits.
( )
( )
( )
0
0
0
0sin
02
02sin
2x
2xsin
lim0x
===→
( )
( )
( )
( )
( )
10cos
2
02cos2
12
2x2cos
lim
2x
dx
d
2xsin
dx
d
lim
2x
2xsin
lim
:Rules'Hopital'LgsinuBy
0x0x0x
===
== →→→
1
2x
2xsin
lim
0x
=∴
→
.3ysin-y
3y-ytan
lim.2 0y→
( ) ( )
( ) ( ) 0
0
00
00
0sin3-0
03-0tan
3ysin-y
3y-ytan
lim0y
=
−
−
==→
( )
( )
( )
( )
( )
1
2
2
31
31
03cos-1
30sec
33ycos-1
13ysec
lim
3ysin-y
dx
d
3y-ytan
dx
d
lim
3ysin-y
3y-ytan
lim
:LHRBy
2
2
0y0y0y
=
−
−
=
−
−
=
−
=
−
== →→→
1
3ysin-y
3y-ytan
lim
0y
=∴
→
.
( )
( )2
4
x x4
2xsinln
lim.3
−ππ
→
( )
( )
( )
( )
( )
( )( )4x42
2x2cos
2xsin
1
lim
x4
dx
d
2xsinln
dx
d
lim
x4
2xsinln
lim
:LHRBy
4
x2
4
x
2
4
x −−π
=
−π
=
−π π
→
π
→
π
→
( ) ( )
.ateminerdetinstillisThis
0
0
08
2
2cot
4
48
4
2cot2
x48
2x2cot
lim
4
x






−
π
=











 π
−π−





 π
=
−π−π
→
( )
( ) 0
0
0
2
sinln
4
4
4
2sinln
x4
2xsinln
lim 22
4
x
=





 π
=











 π
−π











 π
=
−ππ
→
( ) 01ln
:Note
=
( ) ∞=∞ln
( ) −∞=0ln
.
[ ]
( )[ ]
( )
32
x2csc4
lim
)4(8
2x2csc2
lim
x48
dx
d
2xcot2
dx
d
lim
:LHRpeatRe
2
4
x
2
4
x
4
x
−
=
−−
−
=
−π−
π
→
π
→
π
→
( )
8
1
1
8
1
4
2csc
8
1
x2csc
8
1
lim
2
2
2
4
x
−=−=










 π
−=−⇒ π
→
( )
( ) 8
1
x4
sin2xln
lim 2
4
x
−=
−
∴
→ ππ
.
x
2
x
e
x
lim.4 +∞→
( )
∞+
∞
=
∞+
=⇒ ∞++∞→
ee
x
lim
2
x
2
x
[ ]
[ ] ( )
( )
∞+
∞+
=
∞+
=== ∞++∞→+∞→+∞→
e
2
1e
2x
lim
e
dx
d
x
dx
d
lim
e
x
lim
:LHRBy
xx
x
2
xx
2
x
[ ]
[ ]
( )
( )
0
2
e
2
1e
12
lim
e
dx
d
2x
dx
d
lim
:LHRpeatRe
xx
x
x
=
∞+
====⇒ ∞++∞→+∞→
0
e
x
lim x
2
x
=∴
+∞→
.
3xtanln
3xcosln
lim.5
6
x
π
→
( )
( ) ∞
∞
=
∞
=
π
π
=





 π





 π
=⇒ π
→
-
ln
0ln
2
tanln
2
cosln
6
3tanln
6
3cosln
3xtanln
3xcosln
lim
6
x
( ) 01ln
:Note
=
( ) ∞=∞ln
( ) −∞=0ln
[ ]
[ ]
( )
( )3x3sec
x3tan
1
3x3sin
cos3x
1
lim
3xtanln
dx
d
3xcosln
dx
d
lim
3xtanln
3xcosln
lim
:LHRApply
2
6
x
6
x
6
x
−
== π
→
π
→
π
→
x3cos
1
3xcos
x3sin
lim
x3sec
x3tan
lim
3x3sec
x3tan
1
3xtan3
lim
2
2
2
6
x
2
2
6
x26
x
π
→
π
→
π
→
−=





−=
•





−
( ) 1
6
3sinx3sinlim
2
2
6
x
−=










 π
−=⇒ π
→
1
3xtanln
3xcosln
lim
6
x
−=∴
→
π
.
( ) ( ) ( )
( )
( ) ( )
( ) ( )
( )
( )
applies.RulesHopital'L'casetheof
eitherIn.or
0
0
toresultmaywhichevaluatedislimitthethen
xg
1
xf
limxgxflim
,Henceone.equivalentantodtransforme
isproductstheirlimit,suchevaluateTolimit.itsapproaches
xas0or0formthehavingundefinedisxgandxf
ofproducttheunsigned),orsignedbecould(which0xglimand
0xflimthatsuchfunctionsabledifferentitwoarexgandxfIf.A
:onDefininiti
axax
ax
ax
∞
∞
=•
•∞∞•
=
=
→→
→
→
∞∞∞• -and0FORMSATEINDETERMINThe
.
( ) ( ) ( )
( ) ( )[ ]
( ) ( )[ ] ( ) ( )
Rule.sHopital'L'applyThen.or
0
0
toresultmay
evaluatedwhenlimitwhosequotientequivalentaninto
differencethengtransformibyevaluatedbecouldlimitThe
.xglimxflimxgxflimisThat.-
formtheofateindeterminbetosaidisxgxflimthe
then,positivebotharewhichxglimand,xflimIf.B
axaxax
ax
axax
∞
∞
∞−∞=−=−⇒∞∞
−
∞=∞=
→→→
→
→→
∞∞∞• -and0FORMSATEINDETERMINThe
.
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )[ ] ( )
LHR.thenandlogarithm
ofpropertiestheapplythenfunction,theforyvariable
alettingbyevaluatedbemayformsateindeterminThese
ly.respective,1,,0formsateminerdetintheassumed
xflimexpressionthethenorapproachesxasor
xglimand,1xflim
or,0xglimand,xflim
or,0xglimand,0xflim
:ifand,xgandxffunctionstwoGiven
:Definition
00
xg
ax
axax
axax
axax
∞
→
→→
→→
→→
∞
∞−∞+
∞==•
=∞=•
==•
∞
∞ 1and,,0FORMSATEINDETERMINThe 00
.
EXAMPLE:
Evaluate the following limits:
[ ]2xcscxlim.1 0x→
[ ] [ ] ∞•==→
00csc02xcscxlim0x
[ ]
0
0
0sin
0
sin2x
x
lim2xcscxlim
:functionrationalequivalentantofunctionthegminTransfor
0x0x
=== →→
[ ]
[ ] ( )( )
[ ]
2
1
2xcscxlim
2
1
)0(cos2
1
2cos2x
1
lim
2cos2x
1
lim
sin2x
dx
d
x
dx
d
lim
sin2x
x
lim
:LHRApply
0x
0x0x0x0x
=∴⇒==
===
→
→→→→
.
[ ]xlnxlim.2 0x→
[ ] ( ) ( )∞−==→
00ln0xlnxlim0x
[ ]
∞
∞−
=== →→
0
1
0ln
x
1
xln
limxlnxlim
:functionequivalentantofunctiongiventhegminTransfor
0x0x
[ ] 0xlnxlim
0x
=∴
→
[ ] ( )
( ) 0xlim
x
1
1
x
1
lim
x
1
dx
d
xln
dx
d
lim
x
1
xln
lim
:LHRApply
0x
2
0x0x0x
=−=
−
=




= →→→→
.




−
−→
1x
1
xln
1
lim.3 1x
∞−∞=−=
−
−=



−
−→
0
1
0
1
11
1
1ln
1
1x
1
xln
1
lim1x
( )
( )
( )
( ) 0
0
1ln1-1
1ln11
xln1-x
xln1x
lim
1x
1
xln
1
lim
:fractionsimpleaotgminTransfor
1x1x
=
−−
=
−−
=



−
− →→
( )[ ]
( )[ ]
( )
( ) ( ) ( )( )1xln1
x
1
1x
1
x
1
1
lim
xln1-x
dx
d
xln1x
dx
d
lim
1x
1
xln
1
lim
:LHRApply
1x1x1x
+





−




−
=
−−
=



−
− →→→
( ) ( ) 0
0
1ln111
11
xlnx1-x
1x
lim
x
xlnx1-x
x
1-x
lim 1x1x
=
+−
−
=
+
−
=
+
⇒ →→
.
( ) [ ]
[ ] ( ) ( )( )1xln1
x
1
x1
1
lim
xlnx1-x
dx
d
1-x
dx
d
lim
xlnx1-x
1-x
lim
:LHRagainApply
1x1x1x
++
=
+
=
+
⇒ →→→
( ) 2
1
1ln2
1
xln2
1
lim1x
=
+
=
+
⇒ →
2
1
1x
1
xln
1
lim
1x
=



−
−∴
→
.




−→
x2secx
1
x
1
lim.4 220x
( )
∞∞=−=−=



−→
-
0
1
0
1
0sec0
1
0
1
x2secx
1
x
1
lim 220x
( )
0
0
0
02cos1
x
cos2x-1
lim
x
x2cos
x
1
lim
x2secx
1
x
1
lim
:functionequivalentthetogminTransfor
20x220x220x
=
−
=



=



−=



− →→→
[ ]
[ ]
( )( ) ( )
0
0
0
02sin
x2
2x2sin
lim
x
dx
d
cos2x-1
dx
d
lim
x
cos2x-1
lim
:LHRApply
0x
2
0x20x
==
−−
==



→→→
( ) ( )
( )
( )( )( )
20cos2x2cos2lim
1
12x2cos
lim
x
dx
d
x2sin
dx
d
lim
x
x2sin
lim
:againLHRApply
0x0x0x0x
===== →→→→
2
x2secx
1
x
1
lim 220x
=





−∴
→
.
[ ]x
0x
x2lim.5 →
[ ] ( )[ ] 00x
0x
002x2lim ==→
[ ]x
x2yLet =
[ ]
[ ]
x
1
x2ln
2xlnxyln
x2lnyln
x
==
=
( )
∞
∞−
=
∞
=== →→
0ln
0
1
02ln
x
1
x2ln
limylnlim
:sidesbothonitlimtheApply
0x0x
[ ] ( )
( ) 0xlim
x
1
2
x2
1
x
1
dx
d
x2ln
dx
d
lim
x
1
x2ln
lim
:LHRApply
0x
2
0x0x
=−=
−
=




= →→→
( )
( ) 12xlimthereforethen
2xysince
1ylimeylim
:sidesbothoffunctioninversetheTake
x
0x
x
0x
0
0x
=
=
=→=
→
→→
0ylnlim
0
x
1
x2ln
limylnlim
0x
0x0x
=
==
→
→→
.
( ) 1x
1
1x
xlim.6 −
→ +
( ) ( ) ( ) ( )∞
−−
→
===+
111xlim 0
1
11
1
1x
1
1x
( ) 1x
1
xyLet −=
( ) ( )
1x
xln
xln
1x
1
xlnyln 1x
1
−
=
−
== −
0
0
11
1ln
1x
xln
limylnlim
:1xassidesbothonitlimtheApplying
1x1x
=
−
=
−
=
→
++
→→
+
( )
( )
( )
1
1
x
1
lim
1
1
x
1
lim
1x
dx
d
xln
dx
d
lim
1x
xln
lim
:memberrighttheonLHRApply
1x1x1x1x
===
−
=
− ++++
→→→→
.
( )
( ) 72.2exlim
xybuteylim
:sidesbothoffunctioninversethetake,1ylnlim
1x
xln
lim
,Thus
1x
1
1x
1x
1
1
1x
1x1x
==∴
==
==
−
−
→
−
→
→→
+
+
++
( )x
0x
xcotlim.7 +
→
( ) ( ) 00x
0x
0cotxcotlim ∞==+
→
( )
( )
x
1
xcotln
xcotlnxxcotlnyln
xcotyLet
x
x
===
=
( ) ( )
∞
∞
=
∞
∞
=
=
+
++
→
→→
ln
0
1
0cotln
lim
x
1
xcotln
limylnlim
:sidesbothonlimitthepplyA
0x
0x0x
( ) ( )( )
2
2
0x0x0x
x
1
1xcsc
xcot
1
lim
x
1
dx
d
xcotln
dx
d
lim
x
1
xcotln
lim
:memberrightonLHRApply
−
−
=






= +++
→→→
xcosxsin2
x2
lim
x
1
xcosxsin
1
lim
x
1
xsin
1
xcos
xsin
lim
2
0x
2
0x
2
2
0x ⋅
⋅
==






= +++
→→→
( )
( ) 0
0
0sin
02
x2sin
x2
lim
22
0x
=== +
→
( )
( ) ( )( ) x2cos
x2
lim
2x2cos
x4
lim
x2sin
dx
d
x2
dx
d
lim
x2sin
x2
lim
:againLHRApply
0x0x
2
0x
2
0x ++++
→→→→
===
( )
( )
0
1
0
0cos
02
===
( ) ( ) 1xcotlimthenxcotySince
1eylim
sidesbothoffunctioninversethetake,0ylnlim
x
1
xcotln
lim
,Hence
x
0x
x
0
0x
0x0x
=∴=
==
==
+
+
++
→
→
→→
x4sin
xtanx2
lim.1
0x
+
→






−
→ 220y y
1
ysin
1
lim.2
xsin
x2
lim.3 10x −→






→ ycosln
y
lim.4
2
0y
( )
x3
x2ln
lim.5
3
x +∞→
( ) 





−
+ −→ x2tan
1
x1ln
1
lim.8 10x
( )x
4
2
0x
x1lim.9 +
→






+∞→ x2
2
x e
x3
lim.10
( ) 2
x
2
2
0x
xsin1lim.11 +
→
( )x
2
x
0x
x3elim.12 +
→
x2tanln
x2cosln
lim.13
4
x
π
→( )x
1
0x
x2sinx2coslim.6 −
→
( )( )xcscxsinlim.15 1
0x
−
→
x
x
2
0x
e1lim.7 







++
→
( ) xlnxcoslim.14 1
0x
−
→ +
EXERCISES: Evaluate the following limits.

More Related Content

What's hot

What's hot (19)

LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
 
Derivatives
DerivativesDerivatives
Derivatives
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
 
Operations research 1_the_two-phase_simp
Operations research 1_the_two-phase_simpOperations research 1_the_two-phase_simp
Operations research 1_the_two-phase_simp
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Big-M Method Presentation
Big-M Method PresentationBig-M Method Presentation
Big-M Method Presentation
 
What is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun UmraoWhat is meaning of epsilon and delta in limits of a function by Arun Umrao
What is meaning of epsilon and delta in limits of a function by Arun Umrao
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 
Two Phase Method- Linear Programming
Two Phase Method- Linear ProgrammingTwo Phase Method- Linear Programming
Two Phase Method- Linear Programming
 
Top School in Delhi NCR
Top School in Delhi NCRTop School in Delhi NCR
Top School in Delhi NCR
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
Minimization model by simplex method
Minimization model by simplex methodMinimization model by simplex method
Minimization model by simplex method
 
Artificial variable technique big m method (1)
Artificial variable technique big m method (1)Artificial variable technique big m method (1)
Artificial variable technique big m method (1)
 
Differentiation index problems
Differentiation index problemsDifferentiation index problems
Differentiation index problems
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
 
2. lp iterative methods
2. lp   iterative methods2. lp   iterative methods
2. lp iterative methods
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 

Viewers also liked

L2 graphs piecewise, absolute,and greatest integer
L2 graphs  piecewise, absolute,and greatest integerL2 graphs  piecewise, absolute,and greatest integer
L2 graphs piecewise, absolute,and greatest integerJames Tagara
 
AA Section 3-9
AA Section 3-9AA Section 3-9
AA Section 3-9Jimbo Lamb
 
Greatest integer
Greatest integerGreatest integer
Greatest integerdmidgette
 
Angles and sides of a triangle
Angles and sides of a triangleAngles and sides of a triangle
Angles and sides of a triangledmidgette
 
2.7 Piecewise Functions
2.7 Piecewise Functions2.7 Piecewise Functions
2.7 Piecewise Functionshisema01
 
2.5.3 writing a piecewise defined function
2.5.3 writing a piecewise defined function2.5.3 writing a piecewise defined function
2.5.3 writing a piecewise defined functionNorthside ISD
 
Piecewise function lesson 3
Piecewise function lesson 3Piecewise function lesson 3
Piecewise function lesson 3aksetter
 
Scilab - Piecewise Functions
Scilab - Piecewise FunctionsScilab - Piecewise Functions
Scilab - Piecewise FunctionsJorge Jasso
 
Section 2.4 library of functions; piecewise defined function
Section 2.4 library of functions; piecewise defined function Section 2.4 library of functions; piecewise defined function
Section 2.4 library of functions; piecewise defined function Wong Hsiung
 
Piecewise Functions
Piecewise FunctionsPiecewise Functions
Piecewise Functionsktini
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsMatthew Leingang
 

Viewers also liked (14)

L2 graphs piecewise, absolute,and greatest integer
L2 graphs  piecewise, absolute,and greatest integerL2 graphs  piecewise, absolute,and greatest integer
L2 graphs piecewise, absolute,and greatest integer
 
AA Section 3-9
AA Section 3-9AA Section 3-9
AA Section 3-9
 
Greatest integer
Greatest integerGreatest integer
Greatest integer
 
Angles and sides of a triangle
Angles and sides of a triangleAngles and sides of a triangle
Angles and sides of a triangle
 
2.7 Piecewise Functions
2.7 Piecewise Functions2.7 Piecewise Functions
2.7 Piecewise Functions
 
2.5.3 writing a piecewise defined function
2.5.3 writing a piecewise defined function2.5.3 writing a piecewise defined function
2.5.3 writing a piecewise defined function
 
Hprec7.3
Hprec7.3Hprec7.3
Hprec7.3
 
Hat04 0205
Hat04 0205Hat04 0205
Hat04 0205
 
Piecewise function lesson 3
Piecewise function lesson 3Piecewise function lesson 3
Piecewise function lesson 3
 
Scilab - Piecewise Functions
Scilab - Piecewise FunctionsScilab - Piecewise Functions
Scilab - Piecewise Functions
 
Section 2.4 library of functions; piecewise defined function
Section 2.4 library of functions; piecewise defined function Section 2.4 library of functions; piecewise defined function
Section 2.4 library of functions; piecewise defined function
 
Piecewise Functions
Piecewise FunctionsPiecewise Functions
Piecewise Functions
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 

Similar to L16 indeterminate forms (l'hopital's rule)

Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsRnold Wilson
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinityJames Tagara
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremJames Tagara
 
5.1 analysis of function i
5.1 analysis of function i5.1 analysis of function i
5.1 analysis of function idicosmo178
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Satoshi Kura
 
Basic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxBasic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxMeryAnnMAlday
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfyavig57063
 
Rules_for_Differentiation.ppt
Rules_for_Differentiation.pptRules_for_Differentiation.ppt
Rules_for_Differentiation.pptjimj87313
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricosAmchel
 
Rational Functions
Rational FunctionsRational Functions
Rational FunctionsJazz0614
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdfanandsimple
 
03_NumberSystems.pdf
03_NumberSystems.pdf03_NumberSystems.pdf
03_NumberSystems.pdfvijayapraba1
 
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)mmisono
 

Similar to L16 indeterminate forms (l'hopital's rule) (20)

Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
 
Mit6 094 iap10_lec02
Mit6 094 iap10_lec02Mit6 094 iap10_lec02
Mit6 094 iap10_lec02
 
5.1 analysis of function i
5.1 analysis of function i5.1 analysis of function i
5.1 analysis of function i
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
 
Basic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxBasic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptx
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdf
 
Rules_for_Differentiation.ppt
Rules_for_Differentiation.pptRules_for_Differentiation.ppt
Rules_for_Differentiation.ppt
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricos
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
 
Limites Problemas resueltos
Limites Problemas resueltosLimites Problemas resueltos
Limites Problemas resueltos
 
Rational Functions
Rational FunctionsRational Functions
Rational Functions
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
Mit6 094 iap10_lec03
Mit6 094 iap10_lec03Mit6 094 iap10_lec03
Mit6 094 iap10_lec03
 
03_NumberSystems.pdf
03_NumberSystems.pdf03_NumberSystems.pdf
03_NumberSystems.pdf
 
Understanding Reed-Solomon code
Understanding Reed-Solomon codeUnderstanding Reed-Solomon code
Understanding Reed-Solomon code
 
93311880 limites-trigonometricos
93311880 limites-trigonometricos93311880 limites-trigonometricos
93311880 limites-trigonometricos
 
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
 
feedforward-network-
feedforward-network-feedforward-network-
feedforward-network-
 

More from James Tagara

L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equationsJames Tagara
 
L17 the differentials (applications)
L17 the differentials (applications)L17 the differentials (applications)
L17 the differentials (applications)James Tagara
 
L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functionsJames Tagara
 
L3 functions operations
L3 functions operationsL3 functions operations
L3 functions operationsJames Tagara
 
L1 functions, domain & range
L1 functions, domain & rangeL1 functions, domain & range
L1 functions, domain & rangeJames Tagara
 

More from James Tagara (6)

L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equations
 
L17 the differentials (applications)
L17 the differentials (applications)L17 the differentials (applications)
L17 the differentials (applications)
 
L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functions
 
L6 continuity
L6 continuityL6 continuity
L6 continuity
 
L3 functions operations
L3 functions operationsL3 functions operations
L3 functions operations
 
L1 functions, domain & range
L1 functions, domain & rangeL1 functions, domain & range
L1 functions, domain & range
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 

L16 indeterminate forms (l'hopital's rule)

  • 2. OBJECTIVES: • define, determine, enumerate the different indeterminate forms of functions; • apply the theorems on differentiation in evaluating limits of indeterminate forms of functions using L’Hopital’s Rule.
  • 3. . ( )( ) ( ) 2313-xlim 1x 3x1-x lim 1x 3x4x lim :followsasnumeratorthefactorweexist,tolimit theforandform,ateindeterminanislimitthe 0 0 11 3)1(4)1( 1x 3x4x lim 1x 3x4x limofitlimtheEvaluate:callRe 1x1x 2 1x 22 1x 2 1x −=−== − − = − +− = − +− = − +− − +− →→→ → → 2 1x 3x4x lim,thus 2 1x −= − +− → used.bewillRulesHopital'L'onTheoremslimit saidtheevaluateToexample.secondthetoappliedbelonger nocanproblemsprevioustheinappliedprincipletheObviously, 0 0 0 )0sin( )0(2 )0(2sin 2x 2xsin lim 2x 2xsin limtheevaluatingconsiderusLet 0x 0x ===→ →
  • 5. . Theorem 3.6.1 (p. 220) L'Hôpital's Rule for Form 0/0
  • 7. Theorem 3.6.2 (p. 222) L'Hopital's Rule for Form ∞/∞
  • 8. . 2x 2xsin lim.1 0x→ EXAMPLE: Evaluate the following limits. ( ) ( ) ( ) 0 0 0 0sin 02 02sin 2x 2xsin lim0x ===→ ( ) ( ) ( ) ( ) ( ) 10cos 2 02cos2 12 2x2cos lim 2x dx d 2xsin dx d lim 2x 2xsin lim :Rules'Hopital'LgsinuBy 0x0x0x === == →→→ 1 2x 2xsin lim 0x =∴ →
  • 9. .3ysin-y 3y-ytan lim.2 0y→ ( ) ( ) ( ) ( ) 0 0 00 00 0sin3-0 03-0tan 3ysin-y 3y-ytan lim0y = − − ==→ ( ) ( ) ( ) ( ) ( ) 1 2 2 31 31 03cos-1 30sec 33ycos-1 13ysec lim 3ysin-y dx d 3y-ytan dx d lim 3ysin-y 3y-ytan lim :LHRBy 2 2 0y0y0y = − − = − − = − = − == →→→ 1 3ysin-y 3y-ytan lim 0y =∴ →
  • 10. . ( ) ( )2 4 x x4 2xsinln lim.3 −ππ → ( ) ( ) ( ) ( ) ( ) ( )( )4x42 2x2cos 2xsin 1 lim x4 dx d 2xsinln dx d lim x4 2xsinln lim :LHRBy 4 x2 4 x 2 4 x −−π = −π = −π π → π → π → ( ) ( ) .ateminerdetinstillisThis 0 0 08 2 2cot 4 48 4 2cot2 x48 2x2cot lim 4 x       − π =             π −π−       π = −π−π → ( ) ( ) 0 0 0 2 sinln 4 4 4 2sinln x4 2xsinln lim 22 4 x =       π =             π −π             π = −ππ → ( ) 01ln :Note = ( ) ∞=∞ln ( ) −∞=0ln
  • 11. . [ ] ( )[ ] ( ) 32 x2csc4 lim )4(8 2x2csc2 lim x48 dx d 2xcot2 dx d lim :LHRpeatRe 2 4 x 2 4 x 4 x − = −− − = −π− π → π → π → ( ) 8 1 1 8 1 4 2csc 8 1 x2csc 8 1 lim 2 2 2 4 x −=−=            π −=−⇒ π → ( ) ( ) 8 1 x4 sin2xln lim 2 4 x −= − ∴ → ππ
  • 12. . x 2 x e x lim.4 +∞→ ( ) ∞+ ∞ = ∞+ =⇒ ∞++∞→ ee x lim 2 x 2 x [ ] [ ] ( ) ( ) ∞+ ∞+ = ∞+ === ∞++∞→+∞→+∞→ e 2 1e 2x lim e dx d x dx d lim e x lim :LHRBy xx x 2 xx 2 x [ ] [ ] ( ) ( ) 0 2 e 2 1e 12 lim e dx d 2x dx d lim :LHRpeatRe xx x x = ∞+ ====⇒ ∞++∞→+∞→ 0 e x lim x 2 x =∴ +∞→
  • 13. . 3xtanln 3xcosln lim.5 6 x π → ( ) ( ) ∞ ∞ = ∞ = π π =       π       π =⇒ π → - ln 0ln 2 tanln 2 cosln 6 3tanln 6 3cosln 3xtanln 3xcosln lim 6 x ( ) 01ln :Note = ( ) ∞=∞ln ( ) −∞=0ln [ ] [ ] ( ) ( )3x3sec x3tan 1 3x3sin cos3x 1 lim 3xtanln dx d 3xcosln dx d lim 3xtanln 3xcosln lim :LHRApply 2 6 x 6 x 6 x − == π → π → π → x3cos 1 3xcos x3sin lim x3sec x3tan lim 3x3sec x3tan 1 3xtan3 lim 2 2 2 6 x 2 2 6 x26 x π → π → π → −=      −= •      − ( ) 1 6 3sinx3sinlim 2 2 6 x −=            π −=⇒ π → 1 3xtanln 3xcosln lim 6 x −=∴ → π
  • 14. . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) applies.RulesHopital'L'casetheof eitherIn.or 0 0 toresultmaywhichevaluatedislimitthethen xg 1 xf limxgxflim ,Henceone.equivalentantodtransforme isproductstheirlimit,suchevaluateTolimit.itsapproaches xas0or0formthehavingundefinedisxgandxf ofproducttheunsigned),orsignedbecould(which0xglimand 0xflimthatsuchfunctionsabledifferentitwoarexgandxfIf.A :onDefininiti axax ax ax ∞ ∞ =• •∞∞• = = →→ → → ∞∞∞• -and0FORMSATEINDETERMINThe
  • 15. . ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) Rule.sHopital'L'applyThen.or 0 0 toresultmay evaluatedwhenlimitwhosequotientequivalentaninto differencethengtransformibyevaluatedbecouldlimitThe .xglimxflimxgxflimisThat.- formtheofateindeterminbetosaidisxgxflimthe then,positivebotharewhichxglimand,xflimIf.B axaxax ax axax ∞ ∞ ∞−∞=−=−⇒∞∞ − ∞=∞= →→→ → →→ ∞∞∞• -and0FORMSATEINDETERMINThe
  • 16. . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) LHR.thenandlogarithm ofpropertiestheapplythenfunction,theforyvariable alettingbyevaluatedbemayformsateindeterminThese ly.respective,1,,0formsateminerdetintheassumed xflimexpressionthethenorapproachesxasor xglimand,1xflim or,0xglimand,xflim or,0xglimand,0xflim :ifand,xgandxffunctionstwoGiven :Definition 00 xg ax axax axax axax ∞ → →→ →→ →→ ∞ ∞−∞+ ∞==• =∞=• ==• ∞ ∞ 1and,,0FORMSATEINDETERMINThe 00
  • 17. . EXAMPLE: Evaluate the following limits: [ ]2xcscxlim.1 0x→ [ ] [ ] ∞•==→ 00csc02xcscxlim0x [ ] 0 0 0sin 0 sin2x x lim2xcscxlim :functionrationalequivalentantofunctionthegminTransfor 0x0x === →→ [ ] [ ] ( )( ) [ ] 2 1 2xcscxlim 2 1 )0(cos2 1 2cos2x 1 lim 2cos2x 1 lim sin2x dx d x dx d lim sin2x x lim :LHRApply 0x 0x0x0x0x =∴⇒== === → →→→→
  • 18. . [ ]xlnxlim.2 0x→ [ ] ( ) ( )∞−==→ 00ln0xlnxlim0x [ ] ∞ ∞− === →→ 0 1 0ln x 1 xln limxlnxlim :functionequivalentantofunctiongiventhegminTransfor 0x0x [ ] 0xlnxlim 0x =∴ → [ ] ( ) ( ) 0xlim x 1 1 x 1 lim x 1 dx d xln dx d lim x 1 xln lim :LHRApply 0x 2 0x0x0x =−= − =     = →→→→
  • 19. .     − −→ 1x 1 xln 1 lim.3 1x ∞−∞=−= − −=    − −→ 0 1 0 1 11 1 1ln 1 1x 1 xln 1 lim1x ( ) ( ) ( ) ( ) 0 0 1ln1-1 1ln11 xln1-x xln1x lim 1x 1 xln 1 lim :fractionsimpleaotgminTransfor 1x1x = −− = −− =    − − →→ ( )[ ] ( )[ ] ( ) ( ) ( ) ( )( )1xln1 x 1 1x 1 x 1 1 lim xln1-x dx d xln1x dx d lim 1x 1 xln 1 lim :LHRApply 1x1x1x +      −     − = −− =    − − →→→ ( ) ( ) 0 0 1ln111 11 xlnx1-x 1x lim x xlnx1-x x 1-x lim 1x1x = +− − = + − = + ⇒ →→
  • 20. . ( ) [ ] [ ] ( ) ( )( )1xln1 x 1 x1 1 lim xlnx1-x dx d 1-x dx d lim xlnx1-x 1-x lim :LHRagainApply 1x1x1x ++ = + = + ⇒ →→→ ( ) 2 1 1ln2 1 xln2 1 lim1x = + = + ⇒ → 2 1 1x 1 xln 1 lim 1x =    − −∴ →
  • 21. .     −→ x2secx 1 x 1 lim.4 220x ( ) ∞∞=−=−=    −→ - 0 1 0 1 0sec0 1 0 1 x2secx 1 x 1 lim 220x ( ) 0 0 0 02cos1 x cos2x-1 lim x x2cos x 1 lim x2secx 1 x 1 lim :functionequivalentthetogminTransfor 20x220x220x = − =    =    −=    − →→→ [ ] [ ] ( )( ) ( ) 0 0 0 02sin x2 2x2sin lim x dx d cos2x-1 dx d lim x cos2x-1 lim :LHRApply 0x 2 0x20x == −− ==    →→→ ( ) ( ) ( ) ( )( )( ) 20cos2x2cos2lim 1 12x2cos lim x dx d x2sin dx d lim x x2sin lim :againLHRApply 0x0x0x0x ===== →→→→ 2 x2secx 1 x 1 lim 220x =      −∴ →
  • 22. . [ ]x 0x x2lim.5 → [ ] ( )[ ] 00x 0x 002x2lim ==→ [ ]x x2yLet = [ ] [ ] x 1 x2ln 2xlnxyln x2lnyln x == = ( ) ∞ ∞− = ∞ === →→ 0ln 0 1 02ln x 1 x2ln limylnlim :sidesbothonitlimtheApply 0x0x [ ] ( ) ( ) 0xlim x 1 2 x2 1 x 1 dx d x2ln dx d lim x 1 x2ln lim :LHRApply 0x 2 0x0x =−= − =     = →→→ ( ) ( ) 12xlimthereforethen 2xysince 1ylimeylim :sidesbothoffunctioninversetheTake x 0x x 0x 0 0x = = =→= → →→ 0ylnlim 0 x 1 x2ln limylnlim 0x 0x0x = == → →→
  • 23. . ( ) 1x 1 1x xlim.6 − → + ( ) ( ) ( ) ( )∞ −− → ===+ 111xlim 0 1 11 1 1x 1 1x ( ) 1x 1 xyLet −= ( ) ( ) 1x xln xln 1x 1 xlnyln 1x 1 − = − == − 0 0 11 1ln 1x xln limylnlim :1xassidesbothonitlimtheApplying 1x1x = − = − = → ++ →→ + ( ) ( ) ( ) 1 1 x 1 lim 1 1 x 1 lim 1x dx d xln dx d lim 1x xln lim :memberrighttheonLHRApply 1x1x1x1x === − = − ++++ →→→→
  • 24. . ( ) ( ) 72.2exlim xybuteylim :sidesbothoffunctioninversethetake,1ylnlim 1x xln lim ,Thus 1x 1 1x 1x 1 1 1x 1x1x ==∴ == == − − → − → →→ + + ++ ( )x 0x xcotlim.7 + → ( ) ( ) 00x 0x 0cotxcotlim ∞==+ → ( ) ( ) x 1 xcotln xcotlnxxcotlnyln xcotyLet x x === =
  • 25. ( ) ( ) ∞ ∞ = ∞ ∞ = = + ++ → →→ ln 0 1 0cotln lim x 1 xcotln limylnlim :sidesbothonlimitthepplyA 0x 0x0x ( ) ( )( ) 2 2 0x0x0x x 1 1xcsc xcot 1 lim x 1 dx d xcotln dx d lim x 1 xcotln lim :memberrightonLHRApply − − =       = +++ →→→ xcosxsin2 x2 lim x 1 xcosxsin 1 lim x 1 xsin 1 xcos xsin lim 2 0x 2 0x 2 2 0x ⋅ ⋅ ==       = +++ →→→ ( ) ( ) 0 0 0sin 02 x2sin x2 lim 22 0x === + →
  • 26. ( ) ( ) ( )( ) x2cos x2 lim 2x2cos x4 lim x2sin dx d x2 dx d lim x2sin x2 lim :againLHRApply 0x0x 2 0x 2 0x ++++ →→→→ === ( ) ( ) 0 1 0 0cos 02 === ( ) ( ) 1xcotlimthenxcotySince 1eylim sidesbothoffunctioninversethetake,0ylnlim x 1 xcotln lim ,Hence x 0x x 0 0x 0x0x =∴= == == + + ++ → → →→
  • 27. x4sin xtanx2 lim.1 0x + →       − → 220y y 1 ysin 1 lim.2 xsin x2 lim.3 10x −→       → ycosln y lim.4 2 0y ( ) x3 x2ln lim.5 3 x +∞→ ( )       − + −→ x2tan 1 x1ln 1 lim.8 10x ( )x 4 2 0x x1lim.9 + →       +∞→ x2 2 x e x3 lim.10 ( ) 2 x 2 2 0x xsin1lim.11 + → ( )x 2 x 0x x3elim.12 + → x2tanln x2cosln lim.13 4 x π →( )x 1 0x x2sinx2coslim.6 − → ( )( )xcscxsinlim.15 1 0x − → x x 2 0x e1lim.7         ++ → ( ) xlnxcoslim.14 1 0x − → + EXERCISES: Evaluate the following limits.