SlideShare a Scribd company logo
Department of EECS University of California, Berkeley
EECS 105 Fall 2003, Lecture 17
Lecture 17:
Common Source/Gate/Drain
Amplifiers
Prof. Niknejad
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Lecture Outline
 MOS Common Source Amp
 Current Source Active Load
 Common Gate Amp
 Common Drain Amp
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Common-Source Amplifier
Isolate DC level
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Load-Line Analysis to find Q
Q
D
DD out
R
D
V V
I
R


1
10k
slope 
0V
10k
D
I 
5V
10k
D
I 
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Small-Signal Analysis
in
R  
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
s
v
s
R
in
R
out
R L
R
m in
G v
in
v


Two-Port Parameters:
Find Rin, Rout, Gm
in
R  
m m
G g
 ||
out o D
R r R

Generic Transconductance Amp
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Two-Port CS Model
Reattach source and load one-ports:
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Maximize Gain of CS Amp
 Increase the gm (more current)
 Increase RD (free? Don’t need to dissipate extra
power)
 Limit: Must keep the device in saturation
 For a fixed current, the load resistor can only be
chosen so large
 To have good swing we’d also like to avoid getting
to close to saturation
||
v m D o
A g R r
 
,
DS DD D D DS sat
V V I R V
  
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Current Source Supply
 Solution: Use a
current source!
 Current independent
of voltage for ideal
source
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CS Amp with Current Source Supply
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Load Line for DC Biasing
Both the I-source and the transistor are idealized for DC bias
analysis
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Two-Port Parameters
From current
source supply
in
R  
||
out o oc
R r r

m m
G g

EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
P-Channel CS Amplifier
DC bias: VSG = VDD – VBIAS sets drain current –IDp = ISUP
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Two-Port Model Parameters
Small-signal model for PMOS and for rest of circuit
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Common Gate Amplifier
DC bias:
SUP BIAS DS
I I I
 
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CG as a Current Amplifier: Find Ai
out d t
i i i
  
1
i
A  
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CG Input Resistance
At input:
Output voltage:
t out
t m gs mb t
o
v v
i g v g v
r
 

    
 
( || ) ( || )
out d oc L t oc L
v i r R i r R
  
gs t
v v
 
 
||
t oc L t
t m t mb t
o
v r R i
i g v g v
r
 

   
 
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Approximations…
 We have this messy result
 But we don’t need that much precision. Let’s start
approximating:
1
1
||
1
m mb
t o
oc L
in t
o
g g
i r
r R
R v
r
 
 

1
m mb
o
g g
r
  ||
oc L L
r R R
 0
L
o
R
r

1
in
m mb
R
g g


EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CG Output Resistance
( ) 0
s s t
m gs mb s
S o
v v v
g v g v
R r

    
1 1 t
s m mb
S o o
v
v g g
R r r
 
   
 
 
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CG Output Resistance
Substituting vs = itRS
1 1 t
t S m mb
S o o
v
i R g g
R r r
 
   
 
 
The output resistance is (vt / it)|| roc
|| 1
o
out oc S m o mb o
S
r
R r R g r g r
R
 
 
   
 
 
 
 
 
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Approximating the CG Rout
The exact result is complicated, so let’s try to
make it simpler:
S
gm 
500
 S
gmb 
50
 
 k
ro 200
]
[
|| S
S
o
mb
S
o
m
o
oc
out R
R
r
g
R
r
g
r
r
R 



]
[
|| S
S
o
m
o
oc
out R
R
r
g
r
r
R 


Assuming the source resistance is less than ro,
)]
1
(
[
||
]
[
|| S
m
o
oc
S
o
m
o
oc
out R
g
r
r
R
r
g
r
r
R 



EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CG Two-Port Model
Function: a current buffer
• Low Input Impedance
• High Output Impedance
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
Common-Drain Amplifier
2
1
( )
2
DS ox GS T
W
I C V V
L

 
2 DS
GS T
ox
I
V V
W
C
L

 
Weak IDS dependence
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CD Voltage Gain
Note vgs = vt – vout
||
out
m gs mb out
oc o
v
g v g v
r r
 
 
||
out
m t out mb out
oc o
v
g v v g v
r r
  
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CD Voltage Gain (Cont.)
KCL at source node:
Voltage gain (for vSB not zero):
 
||
out
m t out mb out
oc o
v
g v v g v
r r
  
1
||
mb m out m t
oc o
g g v g v
r r
 
  
 
 
1
||
out m
in
mb m
oc o
v g
v g g
r r

 
1
out m
in mb m
v g
v g g
 

EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CD Output Resistance
Sum currents at output (source) node:
|| || t
out o oc
t
v
R r r
i
 t m t mb t
i g v g v
 
1
out
m mb
R
g g


EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley
CD Output Resistance (Cont.)
ro || roc is much larger than the inverses of the
transconductances  ignore
1
out
m mb
R
g g


Function: a voltage buffer
• High Input Impedance
• Low Output Impedance
EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad
Department of EECS University of California, Berkeley

More Related Content

Similar to Lecture17.ppt

Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
Jess Rangcasajo
 
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman UniversityBASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
Rana Sharma
 
Lecture 20.ppt
Lecture 20.pptLecture 20.ppt
Lecture 20.ppt
atomking73
 
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
MarioAndradeHernande1
 
Aes
AesAes
Aes
cynon
 
From Macroscopic to Microscopic Dynamics of Superconducting Cavities
From Macroscopic to Microscopic Dynamics of Superconducting CavitiesFrom Macroscopic to Microscopic Dynamics of Superconducting Cavities
From Macroscopic to Microscopic Dynamics of Superconducting Cavities
Anirban Krishna Bhattacharyya
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
Nishant Jha
 
Single stage amplifier using mos technology
Single stage amplifier using mos technologySingle stage amplifier using mos technology
Single stage amplifier using mos technology
rohithansaliya2
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
ARCHISTUDIO1
 
Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3
Aravinda Koithyar
 
Arvind
ArvindArvind
Arvind
Arvind2311
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
Editor IJARCET
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
Editor IJARCET
 
Comps #2
Comps #2Comps #2
Comps #2
Kevin Kuwata
 
Dc load line fixed biasing
Dc load line fixed biasingDc load line fixed biasing
Dc load line fixed biasing
PRAVEENA N G
 
1780 n 10577
1780 n 105771780 n 10577
1780 n 10577
Fatih Ocaklı
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
Patel Jay
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
Venkat Malai Avichi
 
Diodes
DiodesDiodes
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Imee Rose Tagaca
 

Similar to Lecture17.ppt (20)

Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
 
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman UniversityBASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
BASIC ELECTRONICS , By Ritwik Tripathi Dept Of EEE, Dr. C.V.Raman University
 
Lecture 20.ppt
Lecture 20.pptLecture 20.ppt
Lecture 20.ppt
 
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
 
Aes
AesAes
Aes
 
From Macroscopic to Microscopic Dynamics of Superconducting Cavities
From Macroscopic to Microscopic Dynamics of Superconducting CavitiesFrom Macroscopic to Microscopic Dynamics of Superconducting Cavities
From Macroscopic to Microscopic Dynamics of Superconducting Cavities
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
 
Single stage amplifier using mos technology
Single stage amplifier using mos technologySingle stage amplifier using mos technology
Single stage amplifier using mos technology
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
 
Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3
 
Arvind
ArvindArvind
Arvind
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
Comps #2
Comps #2Comps #2
Comps #2
 
Dc load line fixed biasing
Dc load line fixed biasingDc load line fixed biasing
Dc load line fixed biasing
 
1780 n 10577
1780 n 105771780 n 10577
1780 n 10577
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
 
Diodes
DiodesDiodes
Diodes
 
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
 

Recently uploaded

Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
Aditya Rajan Patra
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 

Recently uploaded (20)

Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 

Lecture17.ppt

  • 1. Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Lecture 17: Common Source/Gate/Drain Amplifiers Prof. Niknejad
  • 2. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Lecture Outline  MOS Common Source Amp  Current Source Active Load  Common Gate Amp  Common Drain Amp
  • 3. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Common-Source Amplifier Isolate DC level
  • 4. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Load-Line Analysis to find Q Q D DD out R D V V I R   1 10k slope  0V 10k D I  5V 10k D I 
  • 5. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Small-Signal Analysis in R  
  • 6. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley s v s R in R out R L R m in G v in v   Two-Port Parameters: Find Rin, Rout, Gm in R   m m G g  || out o D R r R  Generic Transconductance Amp
  • 7. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Two-Port CS Model Reattach source and load one-ports:
  • 8. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Maximize Gain of CS Amp  Increase the gm (more current)  Increase RD (free? Don’t need to dissipate extra power)  Limit: Must keep the device in saturation  For a fixed current, the load resistor can only be chosen so large  To have good swing we’d also like to avoid getting to close to saturation || v m D o A g R r   , DS DD D D DS sat V V I R V   
  • 9. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Current Source Supply  Solution: Use a current source!  Current independent of voltage for ideal source
  • 10. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CS Amp with Current Source Supply
  • 11. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Load Line for DC Biasing Both the I-source and the transistor are idealized for DC bias analysis
  • 12. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Two-Port Parameters From current source supply in R   || out o oc R r r  m m G g 
  • 13. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley P-Channel CS Amplifier DC bias: VSG = VDD – VBIAS sets drain current –IDp = ISUP
  • 14. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Two-Port Model Parameters Small-signal model for PMOS and for rest of circuit
  • 15. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Common Gate Amplifier DC bias: SUP BIAS DS I I I  
  • 16. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CG as a Current Amplifier: Find Ai out d t i i i    1 i A  
  • 17. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CG Input Resistance At input: Output voltage: t out t m gs mb t o v v i g v g v r           ( || ) ( || ) out d oc L t oc L v i r R i r R    gs t v v     || t oc L t t m t mb t o v r R i i g v g v r         
  • 18. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Approximations…  We have this messy result  But we don’t need that much precision. Let’s start approximating: 1 1 || 1 m mb t o oc L in t o g g i r r R R v r      1 m mb o g g r   || oc L L r R R  0 L o R r  1 in m mb R g g  
  • 19. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CG Output Resistance ( ) 0 s s t m gs mb s S o v v v g v g v R r       1 1 t s m mb S o o v v g g R r r          
  • 20. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CG Output Resistance Substituting vs = itRS 1 1 t t S m mb S o o v i R g g R r r           The output resistance is (vt / it)|| roc || 1 o out oc S m o mb o S r R r R g r g r R                  
  • 21. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Approximating the CG Rout The exact result is complicated, so let’s try to make it simpler: S gm  500  S gmb  50    k ro 200 ] [ || S S o mb S o m o oc out R R r g R r g r r R     ] [ || S S o m o oc out R R r g r r R    Assuming the source resistance is less than ro, )] 1 ( [ || ] [ || S m o oc S o m o oc out R g r r R r g r r R    
  • 22. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CG Two-Port Model Function: a current buffer • Low Input Impedance • High Output Impedance
  • 23. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley Common-Drain Amplifier 2 1 ( ) 2 DS ox GS T W I C V V L    2 DS GS T ox I V V W C L    Weak IDS dependence
  • 24. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CD Voltage Gain Note vgs = vt – vout || out m gs mb out oc o v g v g v r r     || out m t out mb out oc o v g v v g v r r   
  • 25. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CD Voltage Gain (Cont.) KCL at source node: Voltage gain (for vSB not zero):   || out m t out mb out oc o v g v v g v r r    1 || mb m out m t oc o g g v g v r r          1 || out m in mb m oc o v g v g g r r    1 out m in mb m v g v g g   
  • 26. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CD Output Resistance Sum currents at output (source) node: || || t out o oc t v R r r i  t m t mb t i g v g v   1 out m mb R g g  
  • 27. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley CD Output Resistance (Cont.) ro || roc is much larger than the inverses of the transconductances  ignore 1 out m mb R g g   Function: a voltage buffer • High Input Impedance • Low Output Impedance
  • 28. EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Department of EECS University of California, Berkeley