This document summarizes kernel methods in machine learning. It begins with an introductory example of using a kernel function to perform binary classification in a reproducing kernel Hilbert space. It then defines positive definite kernels and shows how they allow representing algorithms as operating in linear dot product spaces while using nonlinear kernel functions. The document covers fundamental properties of kernels, provides examples, and discusses how kernels define reproducing kernel Hilbert spaces for regularization. It overviews various kernel-based machine learning approaches and modeling structured responses using statistical models in reproducing kernel Hilbert spaces.