aoliveira@univ-ab.pt, toliveir@univ-ab.pt
plot( ), boxplot( ), hist( )
nome(argumento1,argumento2,...)

>plot(x,y,xlab="Peso",ylab="Altura",
main=’’Diagrama de dispers˜o’’, col=2)
                          a
graphics
lattice
> demo(graphics) # programa de demonstrac˜o
                                        ¸a
plot( ) - caso unidimensional
(base de dados "iris" dispon´vel no R)
                            ı

>iris.joclad<-iris
>names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala",
                             e            e
"Comp.P´tala","Larg.P´tala", "Esp´cies")
       e             e           e
>plot(Comp.S´pala)
            e
plot( )

>iris.joclad<-iris
>names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala",
                             e            e
"Comp.P´tala","Larg.P´tala", "Esp´cies")
       e             e           e
>plot(Comp.S´pala, ylab="Comprimento S´pala (cm)",
            e                         e
col="red", pch=20, cex=1.4, main="Anderson Iris data")
plot( ) - caso bidimensional

>iris.joclad<-iris
>names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala","Comp.P´tala",
                             e            e             e
"Larg.P´tala", "Esp´cies")
       e           e
>plot(Comp.S´pala,Comp.P´tala)
            e           e
plot( )

>iris.joclad<-iris
>names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala","Comp.P´tala",
                             e            e             e
"Larg.P´tala", "Esp´cies")
       e           e
>plot(Comp.S´pala,Comp.P´tala, xlab="Comprimento S´pala
            e           e                         e
(cm)", ylab="Comprimento P´tala (cm)", col=3, pch=6)
                          e
>abline(lm(Comp.P´tala Comp.S´pala),col=2)
                 e           e
pairs( ), para matrizes de diagramas de
dispers˜o
       a
barplot( ) - unidimensional

>require(grDevices) # for colours
>tN <- table(Ni <- stats::rpois(1000, lambda=4))
>barplot(tN, col=rainbow(20))
barplot( ) - multidimensional


>barplot(height = cbind(Jovem = c(465, 91) / 465 * 100,
Adulto = c(840, 200) / 840 * 100, Idoso = c(37, 17) / 37
* 100), beside = FALSE, width = c(465, 840, 37), col =
c(1, 2), legend.text = c("Antes tratamento", "Ap´s
                                                o
tratamento"), args.legend = list(x = "topleft"))
boxplot( )
hist( )


>hist(Comp.P´tala, breaks = "Sturges", + main =
            e
paste("Histograma"), + xlab = "Comprimentos das P´talas
                                                 e
(cm)", ylab="Frequˆncia", + axes = TRUE, plot = TRUE,
                  e
ylim=c(0,40), col=c(1,2,3,4,5,6,7,8,9,10,11,12))
persp( )
¸˜
> demo(lattice) # programa de demonstracao
barchart( )

>barchart(peso,variedade | local, data = cevada, groups
= ano, layout = c(1,6), stack = TRUE, auto.key =
list(points = FALSE, rectangles = TRUE, space =
"right"), ylab = "Peso de cevada (Ton./ha)", scales =
list(x = list(rot = 45)))
densityplot( )


> densityplot(   altura | voz, data = cantor, layout =
c(2, 4), xlab = "Altura (polegadas)", bw = 5)
dotplot( )


> dotplot(variedade,peso | ano * local, data=cevada)
histogram( )


>histogram(   altura | voz, data = cantor, nint = 17,
endpoints = c(59.5, 76.5), layout = c(2,4), aspect = 1,
xlab = "Altura (polegadas)")
xyplot( )


>xyplot(Comp.P´tala
              e       Larg.P´tala, data=iris,
                            e
groups=Esp´cies, auto.key=T)
          e
cloud( )


>par.set <- list(axis.line = list(col = "transparent"), clip = list(panel = "off"))

print(cloud(Larg.S´pala
                  e       Comp.P´tala * Larg.P´tala, data = iris, cex = .8, groups =
                                e             e

Esp´cies, screen = list(z = 20, x = -70, y = 3), par.settings = par.set, scales =
   e

list(col = "black")), split = c(1,1,2,1), more = TRUE) print(cloud(Comp.S´pala
                                                                         e

Comp.P´tala * Larg.P´tala, data = iris, cex = .8, groups = Esp´cies, screen = list(z
      e             e                                         e

= 20, x = -70, y = 0), par.settings = par.set, scales = list(col = "black")), split =

c(2,1,2,1))
biplot e triplot)


> library(agricolae)
> library(klaR)
> data(Oat2)
> startgraph
> biplot
> model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],xlim=c(-35,20),ylim=c(-20,20),
graph="biplot")
> model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],xlim=c(-35,20),ylim=c(-20,20),
graph="biplot",number=FALSE)
> triplot

> model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],graph="triplot")
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d
Joclad 2010 d

Joclad 2010 d

  • 1.
  • 6.
  • 7.
  • 9.
  • 10.
    > demo(graphics) #programa de demonstrac˜o ¸a
  • 11.
    plot( ) -caso unidimensional (base de dados "iris" dispon´vel no R) ı >iris.joclad<-iris >names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala", e e "Comp.P´tala","Larg.P´tala", "Esp´cies") e e e >plot(Comp.S´pala) e
  • 12.
    plot( ) >iris.joclad<-iris >names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala", e e "Comp.P´tala","Larg.P´tala", "Esp´cies") e e e >plot(Comp.S´pala, ylab="Comprimento S´pala (cm)", e e col="red", pch=20, cex=1.4, main="Anderson Iris data")
  • 13.
    plot( ) -caso bidimensional >iris.joclad<-iris >names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala","Comp.P´tala", e e e "Larg.P´tala", "Esp´cies") e e >plot(Comp.S´pala,Comp.P´tala) e e
  • 14.
    plot( ) >iris.joclad<-iris >names(iris.joclad)<-c(Comp.S´pala,"Larg.S´pala","Comp.P´tala", e e e "Larg.P´tala", "Esp´cies") e e >plot(Comp.S´pala,Comp.P´tala, xlab="Comprimento S´pala e e e (cm)", ylab="Comprimento P´tala (cm)", col=3, pch=6) e >abline(lm(Comp.P´tala Comp.S´pala),col=2) e e
  • 15.
    pairs( ), paramatrizes de diagramas de dispers˜o a
  • 16.
    barplot( ) -unidimensional >require(grDevices) # for colours >tN <- table(Ni <- stats::rpois(1000, lambda=4)) >barplot(tN, col=rainbow(20))
  • 17.
    barplot( ) -multidimensional >barplot(height = cbind(Jovem = c(465, 91) / 465 * 100, Adulto = c(840, 200) / 840 * 100, Idoso = c(37, 17) / 37 * 100), beside = FALSE, width = c(465, 840, 37), col = c(1, 2), legend.text = c("Antes tratamento", "Ap´s o tratamento"), args.legend = list(x = "topleft"))
  • 18.
  • 19.
    hist( ) >hist(Comp.P´tala, breaks= "Sturges", + main = e paste("Histograma"), + xlab = "Comprimentos das P´talas e (cm)", ylab="Frequˆncia", + axes = TRUE, plot = TRUE, e ylim=c(0,40), col=c(1,2,3,4,5,6,7,8,9,10,11,12))
  • 20.
  • 21.
    ¸˜ > demo(lattice) #programa de demonstracao
  • 22.
    barchart( ) >barchart(peso,variedade |local, data = cevada, groups = ano, layout = c(1,6), stack = TRUE, auto.key = list(points = FALSE, rectangles = TRUE, space = "right"), ylab = "Peso de cevada (Ton./ha)", scales = list(x = list(rot = 45)))
  • 23.
    densityplot( ) > densityplot( altura | voz, data = cantor, layout = c(2, 4), xlab = "Altura (polegadas)", bw = 5)
  • 24.
    dotplot( ) > dotplot(variedade,peso| ano * local, data=cevada)
  • 25.
    histogram( ) >histogram( altura | voz, data = cantor, nint = 17, endpoints = c(59.5, 76.5), layout = c(2,4), aspect = 1, xlab = "Altura (polegadas)")
  • 26.
    xyplot( ) >xyplot(Comp.P´tala e Larg.P´tala, data=iris, e groups=Esp´cies, auto.key=T) e
  • 27.
    cloud( ) >par.set <-list(axis.line = list(col = "transparent"), clip = list(panel = "off")) print(cloud(Larg.S´pala e Comp.P´tala * Larg.P´tala, data = iris, cex = .8, groups = e e Esp´cies, screen = list(z = 20, x = -70, y = 3), par.settings = par.set, scales = e list(col = "black")), split = c(1,1,2,1), more = TRUE) print(cloud(Comp.S´pala e Comp.P´tala * Larg.P´tala, data = iris, cex = .8, groups = Esp´cies, screen = list(z e e e = 20, x = -70, y = 0), par.settings = par.set, scales = list(col = "black")), split = c(2,1,2,1))
  • 28.
    biplot e triplot) >library(agricolae) > library(klaR) > data(Oat2) > startgraph > biplot > model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],xlim=c(-35,20),ylim=c(-20,20), graph="biplot") > model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],xlim=c(-35,20),ylim=c(-20,20), graph="biplot",number=FALSE) > triplot > model<- AMMI(Oat2[,1], Oat2[,2], Oat2[,3], Oat2[,4],graph="triplot")