Introduction to Spark 
Wisely Chen (aka thegiive) 
Sr. Engineer at Yahoo
Agenda 
• What is Spark? ( Easy ) 
• Spark Concept ( Middle ) 
• Break : 10min 
• Spark EcoSystem ( Easy ) 
• Spark Future ( Middle ) 
• Q&A
Who am I? 
• Wisely Chen ( thegiive@gmail.com ) 
• Sr. Engineer in Yahoo![Taiwan] data team 
• Loves to promote open source tech 
• Hadoop Summit 2013 San Jose 
• Jenkins Conf 2013 Palo Alto 
• Spark Summit 2014 San Francisco 
• Coscup 2006, 2012, 2013 , OSDC 2007, Webconf 2013, 
Coscup 2012, PHPConf 2012 , RubyConf 2012
Taiwan Data Team 
Data! 
Highway 
BI! 
Report 
Serving! 
API 
Data! 
Mart 
ETL / 
Forecast 
Machine! 
Learning
Forecast 
Recommendation
HADOOP
Opinion from Cloudera 
• The leading candidate for “successor to 
MapReduce” today is Apache Spark 
• No vendor — no new project — is likely to catch 
up. Chasing Spark would be a waste of time, 
and would delay availability of real-time analytic 
and processing services for no good reason. ! 
• From http://0rz.tw/y3OfM
What is Spark 
• From UC Berkeley AMP Lab 
• Most activity Big data open source project since 
Hadoop
Community
Community
Where is Spark?
YARN 
HDFS 
MapReduce 
Hadoop 2.0 
Storm HBase Others
Hadoop Architecture 
Hive 
MapReduce 
YARN 
HDFS 
SQL 
Computing Engine 
Resource Management 
Storage
Hadoop vs Spark 
Hive Shark/SparkSQL 
YARN 
HDFS 
MapReduce 
Spark
Spark vs Hadoop 
• Spark run on Yarn, Mesos or Standalone mode 
• Spark’s main concept is based on MapReduce 
• Spark can read from 
• HDFS: data locality 
• HBase 
• Cassandra
More than MapReduce 
Shark: Hive GraphX: Pregel MLib: Mahout 
Spark Core : MapReduce 
HDFS 
Streaming: 
Storm 
Resource Management System(Yarn, Mesos)
Why Spark?
天下武功,無堅不破,惟快不破
Logistic 
regression 
3 
110 
82.5 
55 
27.5 
33 
106 
180 
135 
90 
45 
171 
3X~25X than MapReduce framework 
! 
From Matei’s paper: http://0rz.tw/VVqgP 
Running Time(S) 
80 
60 
40 
20 
0 
76 
MR Spark 
KMeans 
0 
MR Spark 
PageRank 
0 
23 
MR Spark
What is Spark 
• Apache Spark™ is a very fast and general 
engine for large-scale data processing
Language Support 
• Python 
• Java 
• Scala
Python Word Count 
• file = spark.textFile("hdfs://...") 
• counts = file.flatMap(lambda line: line.split(" "))  
• .map(lambda word: (word, 1))  
• .reduceByKey(lambda a, b: a + b) 
• counts.saveAsTextFile("hdfs://...") 
Access data via 
Spark API 
Process via Python
What is Spark 
• Apache Spark™ is a very fast and general 
engine for large-scale data processing
Why is Spark so fast?
Most machine learning 
algorithms need iterative computing
a 1.0 
1.0 
1.0 
1.0 
PageRank 
b 
b 
1st Iter 2nd Iter 3rd Iter 
b 
d 
c 
Rank 
Tmp 
Result 
Rank 
Tmp 
Result 
a 1.85 
1.0 
0.58 
d 
c 
0.58 
a 1.31 
1.72 
0.39 
d 
c 
0.58
HDFS is 100x slower than memory 
Input 
(HDFS) 
Iter 1 
Tmp 
(HDFS) 
Iter 2 
Tmp 
(HDFS) 
Iter N 
Input 
(HDFS) 
Iter 1 
Tmp 
(Mem) 
Iter 2 
Tmp 
(Mem) 
Iter N 
MapReduce 
Spark
3rd iteration(mem)! 
take 7.7 sec 
2nd iteration(mem)! 
take 7.4 sec 
First iteration(HDFS)! 
take 200 sec 
Page Rank algorithm in 1 billion record url
Spark Concept
Map Reduce 
Shuffle
DAG Engine
DAG Engine
RDD 
• Resilient Distributed Dataset 
• Collections of objects spread across a cluster, 
stored in RAM or on Disk 
• Built through parallel transformations
Fault Tolerance 
天下武功,無堅不破,惟快不破
RDD 
val b = a.filer( line=>line.contain(“Spark”) ) 
RDD a RDD b 
val a =sc.textFile(“hdfs://....”) 
Value c 
val c = b.count() 
Transformation Action
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
Worker! 
! 
! 
Tas! k 
Worker! 
! 
! 
! 
Task Task
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
RDD a 
Bloc! k1 
Worker! 
! 
! 
! 
RDD a 
Bloc! k3 
Worker! 
! 
! 
! 
RDD a 
Bloc! k2
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
! 
RDD err 
Worker! 
! 
! 
! 
! 
RDD err 
Block3 
Worker! 
! 
! 
! 
! 
RDD err 
Block1 Block2
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
! 
RDD err 
Worker! 
! 
! 
! 
! 
RDD err 
Block3 
Worker! 
! 
! 
! 
! 
RDD err 
Block1 Block2
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
! 
RDD err 
Worker! 
! 
! 
! 
! 
RDD err 
Cache3 
Worker! 
! 
! 
! 
! 
RDD err 
Cache1 Cache2
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
! 
RDD m 
Worker! 
! 
! 
! 
! 
RDD m 
Cache3 
Worker! 
! 
! 
! 
! 
RDD m 
Cache1 Cache2
Log mining 
val a = sc.textfile(“hdfs://aaa.com/a.txt”)! 
val err = a.filter( t=> t.contains(“ERROR”) )! 
.filter( t=>t.contains(“2014”)! 
! 
err.cache()! 
err.count()! 
! 
val m = err.filter( t=> t.contains(“MYSQL”) )! 
! ! .count()! 
val a = err.filter( t=> t.contains(“APACHE”) )! 
! ! .count() 
Driver 
Worker! 
! 
! 
! 
! 
RDD a 
Worker! 
! 
! 
! 
! 
RDD a 
Cache3 
Worker! 
! 
! 
! 
! 
RDD a 
Cache1 Cache2
RDD Cache 
with cache! 
take 7 sec 
1st 
iteration(no cache)! 
take same time
RDD Cache 
• Data locality 
• Cache 
After cache, take 
only 265ms 
A big shuffle! 
take 20min 
self join 5 billion record data
Scala Word Count 
• val file = spark.textFile("hdfs://...") 
• val counts = file.flatMap(line => line.split(" ")) 
• .map(word => (word, 1)) 
• .reduceByKey(_ + _) 
• counts.saveAsTextFile("hdfs://...")
Step by Step 
• file.flatMap(line => line.split(" “)) => (aaa,bb,cc) 
• .map(word => (word, 1)) => ((aaa,1),(bb,1)..) 
• .reduceByKey(_ + _) => ((aaa,123),(bb,23)…)
Java Wordcount 
• JavaRDD<String> file = spark.textFile("hdfs://..."); 
• JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, String>() 
• public Iterable<String> call(String s) { return Arrays.asList(s.split(" ")); } 
• }); 
• JavaPairRDD<String, Integer> pairs = words.map(new PairFunction<String, String, Integer>() 
• public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } 
• }); 
• JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new Function2<Integer, Integer>() 
• public Integer call(Integer a, Integer b) { return a + b; } 
• }); 
• counts.saveAsTextFile("hdfs://...");
Java vs Scala 
• Scala : file.flatMap(line => line.split(" ")) 
• Java version : 
• JavaRDD<String> words = file.flatMap(new 
FlatMapFunction<String, String>() 
• public Iterable<String> call(String s) { 
• return Arrays.asList(s.split(" ")); } 
• });
Python 
• file = spark.textFile("hdfs://...") 
• counts = file.flatMap(lambda line: line.split(" "))  
• .map(lambda word: (word, 1))  
• .reduceByKey(lambda a, b: a + b) 
• counts.saveAsTextFile("hdfs://...")
Highly Recommend 
• Scala : Latest API feature, Stable 
• Python 
• very familiar language 
• Native Lib: NumPy, SciPy
How to use it? 
• 1. go to https://spark.apache.org/ 
• 2. Download and unzip it 
• 3. ./sbin/start-all.sh or ./bin/spark-shell
DEMO
EcoSystem/Future
Hadoop EcoSystem
Hadoop EcoSystem
Spark ECOSystem 
SparkSQL: Hive GraphX: Pregel MLib: Mahout 
Spark Core : MapReduce 
HDFS 
Streaming: 
Storm 
Resource Management System(Yarn, Mesos)
Unified Platform
Detail 
Streaming BI ETL 
Spark 
SparkSQL 
MLlib 
Hive HDFS Cassandra RDBMS
Complexity
Performance
Write once, Run use case
BI 
(SparkSQL) 
Streaming 
(SparkStreaming) 
Machine 
Learning 
(MLlib) 
Spark
Spark bridge people 
together
Data Analyst 
Data Engineer Data Scientist
Bridge people together 
• Scala : Engineer 
• Java : Engineer 
• Python : Data Scientist , Engineer 
• R : Data Scientist , Data Analyst 
• SQL : Data Analyst
Yahoo EC team 
Data Platform! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
Filtered 
Data! 
(HDFS) 
Data 
Mart! 
(Oracle) 
ML Model! 
(Spark) 
BI Report! 
(MSTR) 
Traffic! 
Data 
Transaction! 
Data 
Shark
Data Analyst
Data Analyst 
350 TB data 
• Select tweet from tweets_data where 
similarity(tweet , “FIFA” ) > 0.01 
Machine 
! 
Learning 
• = 
! 
• http://youtu.be/lO7LhVZrNwA?list=PL-x35fyliRwiST9gF7Z8Nu3LgJDFRuwfr 
https://www.youtube.com/watch?v=lO7LhVZrNwA&list=PL-x35fyliRwiST9gF7Z8Nu3LgJDFRuwfr#t=2900
Data Scientist 
http://goo.gl/q5CAx8 
http://research.janelia.org/zebrafish/
SQL 
(Data Analyst) 
Cloud 
Computing 
(Data Engineer) 
Machine Learning 
(Data Scientist) 
Spark
Databricks Cloud 
DEMO
BI 
(SparkSQL) 
Streaming 
(SparkStreaming) 
Machine 
Learning 
(MLlib) 
Spark
Instant BI Report 
http://youtu.be/dJQ5lV5Tldw?t=30m30s
BI 
(SparkSQL) 
Streaming 
(SparkStreaming) 
Machine 
Learning 
(MLlib) 
Spark
Background Knowledge 
• Tweet real time data store into SQL database 
• Spark MLLib use Wikipedia data to train a TF-IDF 
model 
• SparkSQL select tweet and filter by TF-IDF 
model 
• Generate live BI report
Code 
• val wiki = sql(“select text from wiki”) 
• val model = new TFIDF() 
• model.train(wiki) 
• registerFunction(“similarity” , model.similarity _ ) 
• select tweet from tweet where similarity(tweet, 
“$search” > 0.01 )
DEMO 
http://youtu.be/dJQ5lV5Tldw?t=39m30s
Q & A

OCF.tw's talk about "Introduction to spark"

  • 1.
    Introduction to Spark Wisely Chen (aka thegiive) Sr. Engineer at Yahoo
  • 2.
    Agenda • Whatis Spark? ( Easy ) • Spark Concept ( Middle ) • Break : 10min • Spark EcoSystem ( Easy ) • Spark Future ( Middle ) • Q&A
  • 3.
    Who am I? • Wisely Chen ( thegiive@gmail.com ) • Sr. Engineer in Yahoo![Taiwan] data team • Loves to promote open source tech • Hadoop Summit 2013 San Jose • Jenkins Conf 2013 Palo Alto • Spark Summit 2014 San Francisco • Coscup 2006, 2012, 2013 , OSDC 2007, Webconf 2013, Coscup 2012, PHPConf 2012 , RubyConf 2012
  • 4.
    Taiwan Data Team Data! Highway BI! Report Serving! API Data! Mart ETL / Forecast Machine! Learning
  • 6.
  • 7.
  • 8.
    Opinion from Cloudera • The leading candidate for “successor to MapReduce” today is Apache Spark • No vendor — no new project — is likely to catch up. Chasing Spark would be a waste of time, and would delay availability of real-time analytic and processing services for no good reason. ! • From http://0rz.tw/y3OfM
  • 9.
    What is Spark • From UC Berkeley AMP Lab • Most activity Big data open source project since Hadoop
  • 10.
  • 11.
  • 12.
  • 13.
    YARN HDFS MapReduce Hadoop 2.0 Storm HBase Others
  • 14.
    Hadoop Architecture Hive MapReduce YARN HDFS SQL Computing Engine Resource Management Storage
  • 15.
    Hadoop vs Spark Hive Shark/SparkSQL YARN HDFS MapReduce Spark
  • 16.
    Spark vs Hadoop • Spark run on Yarn, Mesos or Standalone mode • Spark’s main concept is based on MapReduce • Spark can read from • HDFS: data locality • HBase • Cassandra
  • 17.
    More than MapReduce Shark: Hive GraphX: Pregel MLib: Mahout Spark Core : MapReduce HDFS Streaming: Storm Resource Management System(Yarn, Mesos)
  • 18.
  • 19.
  • 20.
    Logistic regression 3 110 82.5 55 27.5 33 106 180 135 90 45 171 3X~25X than MapReduce framework ! From Matei’s paper: http://0rz.tw/VVqgP Running Time(S) 80 60 40 20 0 76 MR Spark KMeans 0 MR Spark PageRank 0 23 MR Spark
  • 21.
    What is Spark • Apache Spark™ is a very fast and general engine for large-scale data processing
  • 22.
    Language Support •Python • Java • Scala
  • 23.
    Python Word Count • file = spark.textFile("hdfs://...") • counts = file.flatMap(lambda line: line.split(" ")) • .map(lambda word: (word, 1)) • .reduceByKey(lambda a, b: a + b) • counts.saveAsTextFile("hdfs://...") Access data via Spark API Process via Python
  • 24.
    What is Spark • Apache Spark™ is a very fast and general engine for large-scale data processing
  • 25.
    Why is Sparkso fast?
  • 26.
    Most machine learning algorithms need iterative computing
  • 27.
    a 1.0 1.0 1.0 1.0 PageRank b b 1st Iter 2nd Iter 3rd Iter b d c Rank Tmp Result Rank Tmp Result a 1.85 1.0 0.58 d c 0.58 a 1.31 1.72 0.39 d c 0.58
  • 28.
    HDFS is 100xslower than memory Input (HDFS) Iter 1 Tmp (HDFS) Iter 2 Tmp (HDFS) Iter N Input (HDFS) Iter 1 Tmp (Mem) Iter 2 Tmp (Mem) Iter N MapReduce Spark
  • 29.
    3rd iteration(mem)! take7.7 sec 2nd iteration(mem)! take 7.4 sec First iteration(HDFS)! take 200 sec Page Rank algorithm in 1 billion record url
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
    RDD • ResilientDistributed Dataset • Collections of objects spread across a cluster, stored in RAM or on Disk • Built through parallel transformations
  • 35.
  • 36.
    RDD val b= a.filer( line=>line.contain(“Spark”) ) RDD a RDD b val a =sc.textFile(“hdfs://....”) Value c val c = b.count() Transformation Action
  • 37.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! Worker! ! ! Tas! k Worker! ! ! ! Task Task
  • 38.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! RDD a Bloc! k1 Worker! ! ! ! RDD a Bloc! k3 Worker! ! ! ! RDD a Bloc! k2
  • 39.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! ! RDD err Worker! ! ! ! ! RDD err Block3 Worker! ! ! ! ! RDD err Block1 Block2
  • 40.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! ! RDD err Worker! ! ! ! ! RDD err Block3 Worker! ! ! ! ! RDD err Block1 Block2
  • 41.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! ! RDD err Worker! ! ! ! ! RDD err Cache3 Worker! ! ! ! ! RDD err Cache1 Cache2
  • 42.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! ! RDD m Worker! ! ! ! ! RDD m Cache3 Worker! ! ! ! ! RDD m Cache1 Cache2
  • 43.
    Log mining vala = sc.textfile(“hdfs://aaa.com/a.txt”)! val err = a.filter( t=> t.contains(“ERROR”) )! .filter( t=>t.contains(“2014”)! ! err.cache()! err.count()! ! val m = err.filter( t=> t.contains(“MYSQL”) )! ! ! .count()! val a = err.filter( t=> t.contains(“APACHE”) )! ! ! .count() Driver Worker! ! ! ! ! RDD a Worker! ! ! ! ! RDD a Cache3 Worker! ! ! ! ! RDD a Cache1 Cache2
  • 44.
    RDD Cache withcache! take 7 sec 1st iteration(no cache)! take same time
  • 45.
    RDD Cache •Data locality • Cache After cache, take only 265ms A big shuffle! take 20min self join 5 billion record data
  • 46.
    Scala Word Count • val file = spark.textFile("hdfs://...") • val counts = file.flatMap(line => line.split(" ")) • .map(word => (word, 1)) • .reduceByKey(_ + _) • counts.saveAsTextFile("hdfs://...")
  • 47.
    Step by Step • file.flatMap(line => line.split(" “)) => (aaa,bb,cc) • .map(word => (word, 1)) => ((aaa,1),(bb,1)..) • .reduceByKey(_ + _) => ((aaa,123),(bb,23)…)
  • 48.
    Java Wordcount •JavaRDD<String> file = spark.textFile("hdfs://..."); • JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, String>() • public Iterable<String> call(String s) { return Arrays.asList(s.split(" ")); } • }); • JavaPairRDD<String, Integer> pairs = words.map(new PairFunction<String, String, Integer>() • public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } • }); • JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new Function2<Integer, Integer>() • public Integer call(Integer a, Integer b) { return a + b; } • }); • counts.saveAsTextFile("hdfs://...");
  • 49.
    Java vs Scala • Scala : file.flatMap(line => line.split(" ")) • Java version : • JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, String>() • public Iterable<String> call(String s) { • return Arrays.asList(s.split(" ")); } • });
  • 50.
    Python • file= spark.textFile("hdfs://...") • counts = file.flatMap(lambda line: line.split(" ")) • .map(lambda word: (word, 1)) • .reduceByKey(lambda a, b: a + b) • counts.saveAsTextFile("hdfs://...")
  • 51.
    Highly Recommend •Scala : Latest API feature, Stable • Python • very familiar language • Native Lib: NumPy, SciPy
  • 52.
    How to useit? • 1. go to https://spark.apache.org/ • 2. Download and unzip it • 3. ./sbin/start-all.sh or ./bin/spark-shell
  • 53.
  • 54.
  • 56.
  • 57.
  • 58.
    Spark ECOSystem SparkSQL:Hive GraphX: Pregel MLib: Mahout Spark Core : MapReduce HDFS Streaming: Storm Resource Management System(Yarn, Mesos)
  • 59.
  • 60.
    Detail Streaming BIETL Spark SparkSQL MLlib Hive HDFS Cassandra RDBMS
  • 61.
  • 62.
  • 63.
  • 64.
    BI (SparkSQL) Streaming (SparkStreaming) Machine Learning (MLlib) Spark
  • 65.
  • 66.
    Data Analyst DataEngineer Data Scientist
  • 67.
    Bridge people together • Scala : Engineer • Java : Engineer • Python : Data Scientist , Engineer • R : Data Scientist , Data Analyst • SQL : Data Analyst
  • 68.
    Yahoo EC team Data Platform! ! ! ! ! ! ! ! ! ! Filtered Data! (HDFS) Data Mart! (Oracle) ML Model! (Spark) BI Report! (MSTR) Traffic! Data Transaction! Data Shark
  • 69.
  • 70.
    Data Analyst 350TB data • Select tweet from tweets_data where similarity(tweet , “FIFA” ) > 0.01 Machine ! Learning • = ! • http://youtu.be/lO7LhVZrNwA?list=PL-x35fyliRwiST9gF7Z8Nu3LgJDFRuwfr https://www.youtube.com/watch?v=lO7LhVZrNwA&list=PL-x35fyliRwiST9gF7Z8Nu3LgJDFRuwfr#t=2900
  • 71.
    Data Scientist http://goo.gl/q5CAx8 http://research.janelia.org/zebrafish/
  • 72.
    SQL (Data Analyst) Cloud Computing (Data Engineer) Machine Learning (Data Scientist) Spark
  • 73.
  • 74.
    BI (SparkSQL) Streaming (SparkStreaming) Machine Learning (MLlib) Spark
  • 75.
    Instant BI Report http://youtu.be/dJQ5lV5Tldw?t=30m30s
  • 76.
    BI (SparkSQL) Streaming (SparkStreaming) Machine Learning (MLlib) Spark
  • 77.
    Background Knowledge •Tweet real time data store into SQL database • Spark MLLib use Wikipedia data to train a TF-IDF model • SparkSQL select tweet and filter by TF-IDF model • Generate live BI report
  • 78.
    Code • valwiki = sql(“select text from wiki”) • val model = new TFIDF() • model.train(wiki) • registerFunction(“similarity” , model.similarity _ ) • select tweet from tweet where similarity(tweet, “$search” > 0.01 )
  • 79.
  • 80.