SlideShare a Scribd company logo
1 of 107
Download to read offline
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
1
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Table of content
1. Introduction
2. Finite Differences
(a) Forward Differences
(b) Backward Differences
(c) Central Differences
3. Interpolation for equal intervals
(a) Newton Forward and Backward Interpolation Formula
(b) Gauss Forward and Backward Interpolation Formula
(c) Stirling’s Interpolation Formula
4. Interpolation for unequal intervals
(a) Lagrange’s Interpolation Formula
5. Inverse interpolation
6. Relation between the operators
7. Newton Divided Difference Interpolation Formula
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
2
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
D efinition : Finite D ifferences
0 1 1 1
L et ( , ) ; 0,1, 2, ..., b e an y set o f d ata va lu es fo r th e fu n ctio n
( ) w ith th e valu es are eq u ally sp aced , d istan ce ap art so
th at ... ; th at is , an d ( ).
S o th e val
i i
i
n n i i i i
x y i n
y f x x h
x x x x x x h y f x 


      
1
0 1
0 1
u e o f is k n o w n as th e F in ite d ifferen c e
b etw een tw o co n secu tive term s o f .
S u p p o se th at , , ..., b e th e set o f valu es o f co rresp o n d in g
to th e valu es o f as , , ..., th en th e ex p re
i i
n
n
h x x
x
y y y y
x x x x

 
1 0 2 1 1
ssio n lik e
y , y , ..., y are called th e d ifferen ces o f .n n
y y y y
  
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
3
Numerical Techniques
There are three types of finite differences as follows :
Finite
Differences
Forward
Difference
Backward
Difference
Central
Difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
4
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
0 1 0
1 2 1
2 3 2
1
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e fo rw a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
w h e rei i i
y y y
y y y
y y y
y y y i

  
  
  
    0 ,1, 2 ..., .n
1st forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
5
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
2
2
0 0 1 0 1 0
2
1 1 2 1 2 1
2
2 2 3 2 3 2
2
1
T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
( ) ( ) ,
( ) ( ) ,
( ) ( ) ,
.
.
.
( ) ( )i i i i
y y y y y y
y y y y y y
y y y y y y
y y y y

          
          
          
        1
w h e re 0 ,1, 2 ..., .
i i
y y
i n

  

2nd forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
6
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
1 1 1 1
1 1
S im ilarly w e o b tain ed th e n fo rw ard d ifferen ce is d en o ted b y .
M ath em atically w e ex p ress it as fo llo w s:
( ) ( )
w h ere 0 ,1, 2 ..., .
th n
n n n n n
i i i i i i
y y y y y y
i n
   
 

          

nth forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
7
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

4

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
4
x 4
y
0
y
1
y
2
y
3
y
2
0
y
2
1
y
2
2
y
3
0
y
3
1
y
4
0
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
8
Numerical Techniques
P roperties of the operator :
   1 . [ ( ) ( )] ( ) ( )
w h ere ' ' an d ' ' are co n stan ts.
a f x b g x a f x b g x
a b
     
 2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x  
 3 . ( ) ( )
w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs .
m n m n
f x f x
m n

   
 4 . [ ( ) ( )] ( ) ( )f x g x f x g x    
5 . [ ] 0 w h ere 'c' is co n stan tc 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
9
Numerical Techniques
2
2 3
E x -1 : C o n stru ct th e fo rw ard tab le fo r ( ) ; 0,1, 2, 3, 4 an d fin d
th e valu es o f ( (2 )), (1), (0 ).
f x x x
f
 
  
x y 
2

3

4

0
0x  0
0y 
1
1x  1
1y 
2
2x  2
4y 
3
3x  3
9y 
4
4x  4
1 6y 
0
1y 
1
3y 
2
5y 
2
0
2y 
2
1
2y 
3
0
0y 
3
7y 
2
1
2y 
3
1
0y 
4
0
0y 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
10
Numerical Techniques
2
T o fin d : (a ) ( ( 2 ))
N o w ( 2 ) = 4
( ( 2 )) ( 4 ) ( ) 5 .
f
f
f y

     
2
2 2
1
T o fin d : (b ) (1)
(1) ( ) 2 .y

    
3
3 3
0
T o fin d : (c ) ( 0 )
( 0 ) ( ) 0 .y

    
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
11
Numerical Techniques
Definition : Backward Difference
1 1 0
2 2 1
3 3 2
1
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
w h e rei i i
y y y
y y y
y y y
y y y i

  
  
  
   1, 2 ..., .n
1st backward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
12
Numerical Techniques
Definition : Backward Difference
2nd forward
difference
2
2
1 1 1 0 1 0
2
2 2 2 1 2 1
2
3 3 3 2 3 2
2
1
T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y .
M a th e m a tic a lly w e e x p re s s it a s fo llo w s :
( ) ( ) ,
( ) ( ) ,
( ) ( ) ,
.
.
.
( ) ( )i i i i
y y y y y y
y y y y y y
y y y y y y
y y y y 

          
          
          
        1
w h e re 1, 2 ..., .
i i
y y
i n

  

Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
13
Numerical Techniques
1 1 1 1
1 1
S im ilarly w e o b tain ed th e n b ack w ard d ifferen ce is d en o ted b y .
M ath em atically w e ex p ress it as fo llo w s:
( ) ( )
w h ere 1, 2 ..., .
th n
n n n n n
i i i i i i
y y y y y y
i n
   
 

          

nth
backward
difference
Definition : Backward Difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
14
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

4

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
4
x 4
y
1
y
2
y
3
y
4
y
2
2
y
2
3
y
2
4
y
3
3
y
3
4
y
4
4
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
15
Numerical Techniques
P roperties of the operator :
   1 . [ ( ) ( )] ( ) ( )
w h ere ' ' an d ' ' are co n stan ts.
a f x b g x a f x b g x
a b
     
 2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x  
 3 . ( ) ( )
w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs .
m n m n
f x f x
m n

   
 4 . [ ( ) ( )] ( ) ( )f x g x f x g x    
5 . [ ] 0 w h ere 'c' is co n stan tc 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Central
Difference
16
Numerical Techniques
Definition : Central Difference
1 1 0
2
3 2 1
2
5 3 2
2
2 1 1
2
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
i i i
y y y
y y y
y y y
y y y




  
 
 
 
  w h e re 1, 2 ..., .i n
1st central
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Central
Difference
17
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
1
2
y
3
2
y
5
2
y
2
1
y
2
2
y
3
3
2
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic :
Interpolation
18
Numerical Techniques
Definition : Interpolation and Extrapolation
(a) Newton Forward Interpolation Formula
2 3 4
0 0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2) ( 1)( 2)( 3)
( ) ...
2 ! 3 ! 4 !
W h e r e , ...
n
n n
p p p p p p p p p
P x y p y y y y
x x
p h x x x x x x
h

     
         

       
Interpolation for equal intervals
E x -1 : U s in g N e w t o n F o r w a r d In t e r p o la t io n F o r m u la f in d
(1 .6 ) f r o m t h e f o llo w in g t a b u la r v a lu e s .
1 1 .4 1 .8 2 .2
( ) 3 .4 9 4 .8 2 5 .9 6 6 .5
f
x
y f x
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
19
Numerical Techniques
2 3
0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2)
( ) .......... (1)
2 ! 3 !
W h e r e , ...
n
n n
p p p p p
P x y p y y y
x x
p h x x x x x x
h

  
        

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
0
0
G iv e n th a t 1, 1 .6 a n d 0 .4
1 .6 1 0 .6 3
1 .5
0 .4 0 .4 2
x x h
x x
T h e r e fo r e p
h
  
 
    
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
20
Numerical Techniques
x y 
2

3

0
1x 0
3 .4 9y
1
1 .4x 1
4 .8 2y
2
1 .8x 2
5 .9 6y
3
2 .2x 3
6 .5y
1.33
1.14
0.54
0.19
0.60
0.41
:Solu tion
0 0
2 3
0 0
T h e re fo re 3 .4 9 , 1 .3 3,
0 .1 9 a n d 0 .4 1
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
  
     
y y
y y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
21
Numerical Techniques
2 3
0 0 0 0
( 1) ( 1)( 2)
(1) ( ) ...
2 ! 3 !
n
p p p p p
P x y p y y y
  
        
:Solu tion
1 .5 (1 .5 1) 1 .5 (1 .5 1) (1 .5 2)
( ) 3 .4 9 1 .5 1 .3 3 ( 0 .1 9) ( 0 .4 1)
2 6
n
P x
     
                   
   
( ) 3 .4 9 1 .9 9 5 0 .0 7 1 3 0 .0 2 5 6n
P x                  
E x -2 : T h e p o p u la tio n o f th e to w n in d e c e n n ia l c e n s u s w a s a s g iv e n
b e lo w e s tim a te th e p o p u la tio n fo r th e y e a r 1 8 9 5 .
y e a r (x ) 1 8 9 1 1 9 0 1 1 9 1 1 1 9 2 1 1 9 3 1
P o p u la tio n (y ) 4 6 6 6 8 1 9 3 1 0 1
(in th o u s a n d )
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
22
Numerical Techniques
2 3 4
0 0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2) ( 1)( 2)( 3)
( ) .......... (1)
2 ! 3 ! 4 !
W h e r e , ...
n
n n
p p p p p p p p p
P x y p y y y y
x x
p h x x x x x x
h

     
         

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
23
Numerical Techniques
:Solu tion
0
0
G iv e n th a t 1 8 9 1, 1 8 9 5 a n d 1 0
1 8 9 5 1 8 9 1 4
0 .4
1 0 1 0
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
x y
1981 46
1901 66
1911 81
1921 93
1931 101
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
24
Numerical Techniques
:Solu tion

2
 3

4

20
15
12
8
-5
-3
-4
2
-1
-3
Semester :III
Mr. Tushar J Bhatt
25
Numerical Techniques
:Solu tion
0 0
2 3 4
0 0 0
T h e re fo re 4 6 , 2 0 ,
5 , 2 a n d 3
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
  
       
y y
y y y
2 3 4
0 0 0 0 0
( 1) ( 1)( 2) ( 1)( 2)( 3)
(1) ( )
2 ! 3 ! 4 !
n
p p p p p p p p p
P x y p y y y y
     
         
0 .4 (0 .4 1) 0 .4 (0 .4 1)(0 .4 2)
( ) 4 6 0 .4 2 0 ( 5) (2)
2 6
0 .4 (0 .4 1)(0 .4 2)(0 .4 3)
( 3)
2 4
n
P x
     
              
   
   
   
 
0 .4 ( 0 .6 ) 0 .4 ( 0 .6 )( 1 .6 )
( ) 4 6 0 .4 2 0 ( 5) (2)
2 6
0 .4 ( 0 .6 )( 1 .6 )( 2 .6 )
( 3)
2 4
n
P x
     
              
   
   
   
 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
26
Numerical Techniques
:Solu tion
( ) 4 6 8 0 .6 0 .1 2 8 0 .4 5 1 2n
P x                       
E x -3 : D e t e r m in e t h e in t e r p o la t in g p o ly n o m ia l f o r t h e
1 2 3 4
f o llo w in g t a b le o f d a t a :
( ) 1 1 1 5
x
y f x  
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
27
Numerical Techniques
2 3
0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2)
( ) .......... (1)
2 ! 3 !
W h e r e , ...
n
n n
p p p p p
P x y p y y y
x x
p h x x x x x x
h

  
        

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
0
0
G iv e n th a t 1, a n d 1
1
1
1
x x x h
x x x
T h e r e fo r e p x
h
  
 
   
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
x y
1 -1
2 -1
3 1
4 5
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
28
Numerical Techniques
:Solu tion

2
 3

0
2
4
2
2
0
Semester :III
Mr. Tushar J Bhatt
29
Numerical Techniques
:Solu tion
2 3
0 0 0 0
T h e re fo re 1, 0 , 2 , 0
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
       y y y y
2 3
0 0 0 0
( 1) ( 1)( 2)
(1) ( )
2 ! 3 !
n
p p p p p
P x y p y y y
  
       
( 1)( 2) ( 1)( 2)( 3)
( ) 1 ( 1) (0 ) (2) (0 )
2 6
n
x x x x x
P x x
       
               
   
2
( ) 1 0 3 2 0n
P x x x       
Semester :III
Mr. Tushar J Bhatt
30
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
...
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
  
(b) Newton Backward Interpolation Formula
1 0 1
W h e re , ... , 1 1
n
n n
x x
p h x x x x p
h


        
Semester :III
Mr. Tushar J Bhatt
31
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
... (1)
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
       
E x -1 : C o m p u t e t h e v a lu e o f (7 .5), b y u s i n g s u it a b le in t e r p o la t io n
f o r m u la u s in g t h e f o llo w in g d a t a :
3 4 5 6 7 8
( ) 2 8 6 5 1 2 6 2 1 7 3 4 4 5 1 3
f
x
y f x
:Solu tion
W e k n o w th a t th e N -B -I-F is g iv e n b y ,
G iv e n th a t 8, 7 .5 a n d 1
7 .5 8
0 .5
1
n
n
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n
   
x y
3 28
4 65
5 126
6 217
7 344
8 513
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
32
Numerical Techniques
:Solu tion
37
61
91
127
169
24
30
36
42
6
6
6
0
0
0

2

3

4
 5

Semester :III
Mr. Tushar J Bhatt
33
Numerical Techniques
:Solu tion
2 3
4 5
T h e re fo re 5 1 3, 1 6 9 , 4 2 , 6 ,
0 , 0
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
      
   
n n n n
n n
y y y y
y y
2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3)
(1) ( ) ...
2 ! 3 ! 4 !
n n n n n n
p p p p p p p p p
P x y p y y y y
     
          
( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2)
( ) 5 1 3 ( 0 .5) (1 6 9) (4 2) (6 )
2 6
n
P x
          
                  
   
( ) 5 1 3 8 4 .5 5 .2 5 0 .3 7 5n
P x                  
Semester :III
Mr. Tushar J Bhatt
34
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
... (1)
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
       
E x -2 : P o p u la t io n o f a t o w n in t h e c e n s u s is a s g iv e n in t h e d a t a .
E s t im a t e t h e p o p u la t io n in t h e y e a r 1 9 9 6 .
( ) 1 9 6 1 1 9 7 1 1 9 8 1 1 9 9 1 2 0 0 1
P o p u la t io n ( ) 4 6 6 6 8 1 9 3 1 0 1
(in t h o u s a n d s)
Y e a r x
y
:Solu tion
W e k n o w th a t th e N -B -I-F is g iv e n b y ,
G iv e n th a t 2 0 0 1, 1 9 9 6 a n d 1 0
1 9 9 6 2 0 0 1
0 .5
1 0
n
n
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n
   
x y
1961 46
1971 66
1981 81
1991 93
2001 101
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
35
Numerical Techniques
:Solu tion
20
15
12
8
-5
-3
-4
2
-1
-3

2

3

4

Semester :III
Mr. Tushar J Bhatt
36
Numerical Techniques
:Solu tion
2 3
4
T h e re fo re 1 0 1, 8, 4 , 1,
3
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
        
  
n n n n
n
y y y y
y
2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3)
(1) ( ) ...
2 ! 3 ! 4 !
n n n n n n
p p p p p p p p p
P x y p y y y y
     
          
( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2)
( ) 1 0 1 ( 0 .5) (8 ) ( 4 ) ( 1)
2 6
( 0 .5) ( 0 .5 1) ( 0 .5 2)( 0 .5 3)
( 3)
2 4
n
P x
          
                    
   
       
   
 
( ) 1 0 1 4 .0 0 .5 0 .0 6 2 5 0 .1 1 7 2n
P x                       
Semester :III
Mr. Tushar J Bhatt
37
Numerical Techniques
(c) Gauss’s Forward Interpolation Formula
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
x y 
2

3

4

2
x 
1
x 
0
x
1
x
2
x
2
y 
1
y 
0
y
1
y
2
y
0
y
1
y
1
y 

2
y 

2
0
y
2
1
y 

2
2
y 

3
1
y 

3
2
y 

4
2
y 

0
1 0 1
W h ere ,
in w h ich ... .n n
x x
p
h
h x x x x 


    
Semester :III
Mr. Tushar J Bhatt
38
Numerical Techniques
E x -1 : F in d ( 2 2 ) fro m th e fo llo w in g ta b u la r v a lu e s u sin g
G a u ss's fo rw a rd fo rm u la .
2 0 2 5 3 0 3 5 4 0 4 5
3 5 4 3 3 2 2 9 1 2 6 0 2 3 1 2 0 4
f
x
y
S o lu tio n :
W e k n o w th a t th e G -F -I-F is g iv e n b y ,
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
1
 

  
    
0
0
H e re w e w a n t to fin d ( ) w h e re 2 2, S o 2 2 is lie s in th e in te rv a l [2 5, 3 0 ] ,
in w h ic h 2 2 is v e ry n e a r to 2 5 ra th e r th a n 3 0 th e re fo re w e c h o o s e 2 5 .
2 2 2 5 3
0 .6
5 5
f x x x
x
x x
p
h
2 3 4 5
1 1
1
2
0 0 1
3
0 1
2 4
1 1 0 1
3 5
1 0 1
2 4
2 2 1 0
3
2 1
2
3 3 2
3
4 4
20 354
22
25 332 19
41 29
30 291 10 37
31 8 45
35 260 2 8
29 0
40 231 2
27
45 204
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 





    
 
  
    
    
      
       
     
    
   
  
 
Semester :III
39
Numerical Techniques
S o lu tio n :
Semester :III
40
Numerical Techniques
S o lu tio n : W e have substitute the values of
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
1
  0 .6A n d p
in th e fo llo w in g eq u atio n ......(1 ) w e g et
( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1)
(1) 332 ( 0.6)( 41) ( 19) (29)
2 6
p
y
       
         
( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1)
332 ( 0.6)( 41) ( 19) (29)
2 6
332 24.6 9.12 1.856
349.336
p
p
p
y
y
y
       
         
    
 
Semester :III
41
Numerical Techniques
1 0 1
0
W h e r e ,
... 0 .5
3 .2 3 .0 0 .2
0 .4
0 .5 0 .5
n n
h x x x x
x x
p
h

     
 
   
E x -2 : F in d t h e v a lu e s o f y w h e n x = 3 .2 f r o m t h e f o llo w in g d a t a
u s in g G a u s s 's f o r w a r d in t e r p o la t io n f o r m u la :
2 .0 2 .5 3 .0 3 .5 4 .0
2 4 6 .2 4 0 9 .3 5 3 7 .2 6 3 6 .3 7 1 5 .9
x
y
:Solu tion
W e k n o w th a t th e G -F -I-F is g iv e n b y ,
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)(p 2)
( ) ...
2 ! 3 ! 4 !
n
p p p p p p p p
P x y p y y y y  
     
         
1
42
Numerical Techniques
1
x y 1st difference 2nd difference
3rd
difference
4th difference
2
2 .0
x
1
2 .5
x
0
3 .0x
1
3 .5x
2
4 .0x
0
5 3 7 .2y
1
409.3
y
2
246.2
y
1
6 3 6 .3y
2
7 1 5 .9y
0
9 9 .1 y
1
7 9 .6 y
1
127.9
 y
2
1 6 3 .1
 y
2
1
28.8
  y
2
2
35.2
  y
3
1
9.3
 y
3
2
6.4
 y
4
2
2.9
 y
:Solu tion
43
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .4 a n dp
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)(p 2)
(1) ( ) ...
2 ! 3 ! 4 !
n
p p p p p p p p
P x y p y y y y  
     
          
   
0 .4 (0 .4 1)
( ) 5 3 7 .2 0 .4 9 9 .1 2 8 .8
2
(0 .4 1) (0 .4 ) (0 .4 1) (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 2)
9 .3 2 .9
6 2 4
n
P x
  
                
  
          
             
      
         ( ) 5 3 7 .2 3 9 .6 4 3 .4 5 6 0 .5 2 0 8 0 .0 6 4 9 6n
P x     
( ) 5 7 9 .8 4n
P x  ANSWER
S ubstitute all the above values in result ..............(1) w e get
Semester :III
Mr. Tushar J Bhatt
44
Numerical Techniques
(d) Gauss’s Backward Interpolation Formula
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
x y 
2

3

4

2
x 
1
x 
0
x
1
x
2
x
2
y 
1
y 
0
y
1
y
2
y
0
y
1
y
1
y 

2
y 

2
0
y
2
1
y 

2
2
y 

3
1
y 

3
2
y 

4
2
y 

0
1 0 1
W h ere ,
in w h ich ... .n n
x x
p
h
h x x x x 


    
Semester :III
Mr. Tushar J Bhatt
45
Numerical Techniques
E x -1 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (8 ) fro m th e
0 5 1 0 1 5 2 0 2 5
fo llo w in g ta b le .
7 1 1 1 4 1 8 2 4 3 2
y
x
y
:Solu tion
W e k n o w th a t th e G -B -I-F is g iv e n b y ,
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
1 0 1
0
0
W h ere ... 5, an d 8 is n ear to th e tab u lar valu e 1 0
th erefo re 1 0 .
8 1 0 2
In w h ich 0 .4
5 5
n n
h x x x x x
x
x x
p
h

      

  
    
1
2 3 4 5
2 2
2
2
1 1 2
3
1 2
2 4
0 0 1 2
3 5
0 1 2
2 4
1 1 0 1
3
1 0
2
2 2 1
2
3 3
0 7
4
5 1 1 1
3 2
1 0 1 4 1 1
4 1 0
1 5 1 8 2 1
6 0
2 0 2 4 2
8
2 5 3 2
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 

  
 
 
 

    
 
 
    
   
      
     
      
   
   
 
 
Semester :III
Mr. Tushar J Bhatt
46
Numerical Techniques
:Solu tion :Solu tion
Semester :III
Mr. Tushar J Bhatt
47
Numerical Techniques
:Solu tion :Solu tion
 N o w w e h a v e 0 .4 a n dp
S ubstitute all the above values in result ..............(1) w e get
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
(1) ....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
          
Semester :III
Mr. Tushar J Bhatt
48
Numerical Techniques
:Solu tion :Solu tion
( 0 .4 )( 0 .4 1)
(1) 1 4 ( 0 .4 ) (3) (1)
2
( 0 .4 1)( 0 .4 )( 0 .4 1)
( 2 )
6
( 0 .4 1)( 0 .4 )( 0 .4 1)( 0 .4 2 )
( 1)
2 4
p
y
  
      
    
 
      
  
1 4 1 .2 0 .1 2 0 .1 1 2 0 .0 3 4
1 2 .8 2 6
p
p
y
y
     
 
Semester :III
Mr. Tushar J Bhatt
49
Numerical Techniques
E x -2 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (1 9 7 4 ) fro m th e
1 9 3 9 1 9 4 9 1 9 5 9 1 9 6 9 1 9 7 9 1 9 8 9
fo llo w in g ta b le .
1 2 1 5 2 0 2 7 3 9 5 2
y
x
y
:Solu tion
W e k n o w th a t th e G -B -I-F is g iv e n b y ,
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
1 0 1
0
0
W h ere ... 1 0, an d 1 9 7 4 is n ear to th e tab u lar valu e 1 9 6 9
th erefo re 1 9 6 9 .
1 9 7 4 1 9 6 9 5
In w h ich 0 .5
1 0 1 0
n n
h x x x x x
x
x x
p
h

      

 
   
1
Semester :III
Mr. Tushar J Bhatt
50
Numerical Techniques
:Solu tion
2 3 4 5
3 3
3
2
2 2 3
3
2 3
2 4
1 1 2 3
3 5
1 2 3
2 4
0 0 1 2
3
0 1
2
1 1 0
1
2 2
1 9 3 9 1 2
3
1 9 4 9 1 5 2
5 0
1 9 5 9 2 0 2 3
7 3 1 0
1 9 6 9 2 7 5 7
1 2 4
1 9 7 9 3 9 1
1 3
1 9 8 9 5 2
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 

  
 
   
  
 

    
 
 
   
   
     
      
      
    
   
 
 
Semester :III
Mr. Tushar J Bhatt
51
Numerical Techniques
:Solu tion :Solu tion
N o w w e h a v e 0 .5 a n dp
S ubstitute all the above values in result ..............(1) w e get
2 3 4
0 1 1 2 2
5
3
( 1) ( 1) ( 1) ( 1) ( 1)( 2 )
(1)
2 ! 3 ! 4 !
( 1) ( 1)( 2 )( 2 )
5 !
p
p p p p p p p p p
y y p y y y y
p p p p p
y
   

     
         
   
 
Semester :III
Mr. Tushar J Bhatt
52
Numerical Techniques
:Solu tion :Solu tion
(0 .5 )(0 .5 1) (0 .5 1)(0 .5 )(0 .5 1)
(1) 2 7 (0 .5 )(7 ) (5 ) (3)
2 6
(0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )
( 7 )
2 4
(0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )(0 .5 2 )
( 1 0 )
1 2 0
p
y
  
      
  
  
   
  
      
 
2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2
3 2 .5 3 2
p
p
y
y
Semester :III
Mr. Tushar J Bhatt
53
Numerical Techniques
:Solu tion :Solu tion
      
 
2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2
3 2 .5 3 2
p
p
y
y
Semester :III
Mr. Tushar J Bhatt
54
Numerical Techniques
(c) Stirling’s Interpolation Formula
 We have discussed Newton forward and backward
interpolation formulae which are applicable for interpolation
near the beginning and end respectively, of tabulated values.
 They are not suited to estimate the value of a function near
the middle of a table.
 To obtain more accuracy near the middle of a table, we use
central difference interpolation formulae.
Semester :III
Mr. Tushar J Bhatt
55
Numerical Techniques
(c) Stirling’s Interpolation Formula
x y
1st
difference
2nd
difference
3rd
difference
4th
difference
2
x
1
x
0
x
1
x
2
x
0
y
1
y
2
y
1
y
2
y
0
 y
1
 y
1
 y
2
 y
2
0
 y
2
1
 y
2
2
 y
3
1
 y
3
2
 y
4
2
 y
Mr. Tushar J Bhatt
56
Numerical Techniques
(c) Stirling’s Interpolation Formula
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
...
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
    
 
0
1 0 1
W h e r e , ... n n
x x
p h x x x x
h


     
1 1
In u s in g t h is f o r m u la , w e s h o u ld h a v e < .
2 2
1 1
G o o d e s t im a t e s w ill b e o b t a in e d if < .
4 4
p
p




Semester :III
Mr. Tushar J Bhatt
57
Numerical Techniques
1 2 .2
E x -1 : U sin g S tirlin g 's fo rm u la to co m p u t e fro m th e fo llo w in g tab le
1 0 1 1 1 2 1 3 1 4
0 .2 3 9 6 7 0 .2 8 0 6 0 0 .3 1 7 8 8 0 .3 5 2 0 9 0 .3 8 3 6 8
y
x
y
:Solu tion
W e k n o w th a t th e S -C -I-F is g iv e n b y ,
1
3 32 2 2 2
2 40 1 1 2
0 1 2
( 1) ( 1)
...
2 2 ! 3 ! 2 4 !
p
y y y yp p p p p
y y p y y
  
 
         
          
  


     
 
  
0
1 0 1
0
H e r e 1 2 .2 is n e a r t o t h e t a b u la r v a lu e s = 1 2
A n d W h e r e ... 1 ,
1 2 .2 1 2
0 .2
1
n n
x x
h x x x x
x x
p
h
58
Numerical Techniques
x y 1st difference 2nd difference 3rd difference 4th difference
2
1 0x 

1
1 1x 

0
1 2x 
1
1 3x 
2
1 4x 
0
0.31788y 
1
0.28060y

2
0.23967y

1
0.35209y 
2
0.38368y 
0
0 .0 3 4 2 1y 
1
0.03159y 
1
0.03728y
 
2
0.04093y
 
2
0
0.00062y  
2
1
0.00307y
  
2
2
0.00365y
  
3
1
0.00045y
  
3
2
0 .0 0 0 5 8y
 
4
2
0.00013y
  
:Solu tion
59
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .5 a n dp
S ubstitute all the above values in result ..............(1) w e get
  
 
         
           
  
3 32 2 2 2
2 40 1 1 2
0 1 2
( 1) ( 1)
(1) ...
2 2 ! 3 ! 2 4 !
p
y y y yp p p p p
y y p y y
60
Numerical Techniques
:Solu tion
 
       
 
   
    
 
2
2 2 2
0 .0 3 7 2 8 0 .0 3 4 2 1 (0 .2)
(1) 0 .3 1 7 8 8 (0 .2) ( 0 .0 0 3 0 7 )
2 2
(0 .2) ((0 .2) 1) 0 .0 0 0 5 8 0 .0 0 0 4 5 (0 .2) ((0 .2) 1)
( 0 .0 0 0 1 3)
6 2 2 4
p
y
     0 .3 1 7 8 8 0 .0 0 7 1 5 0 .0 0 0 0 6 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p
y
  0 .3 2 4 9 7p
y
Semester :III
Mr. Tushar J Bhatt
61
Numerical Techniques
E x -2 : U sin g S tirlin g 's fo rm u la to co m p u t e tan 1 6 fro m th e fo llo w in g tab le
0 5 1 0 1 5 2 0 2 5 3 0
tan 0 0 .0 8 7 5 0 .1 7 6 3 0 .2 6 7 9 0 .3 6 4 0 0 .4 6 6 3 0 .5 7 7 4
x
y x
:Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y ,
0
1 0 1
0
H e r e 1 6 is n e a r t o t h e t a b u la r v a lu e s = 1 5
A n d W h e r e ... 5 ,
1 6 1 5 1
0 .2
5 5
n n
x x
h x x x x
x x
p
h


     
 
   
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
... (1)
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
      
 
62
Numerical Techniques
:Solu tion
x y
0 0
5 0.0875
10 0.1763
15 0.2679
20 0.3640
25 0.4663
30 0.5774

2

3

4
 5

6

0.0875
0.0888
0.0916
0.1023
0.1111
0.0961
0.0013
0.0028
0.0015
0.0062
0.0088
0.0045
0.0017
0.0017
0.0026
0.0002
0.0000
-0.0002
0.0009
0.0009
0.0011
63
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .2 a n dp 
S ubstitute all the above values in result ..............(1) w e get
3 5
2 4 61 2 3
0 1 2 33 3
0 1 2
0 .0 9 1 6 0 .0 0 1 7 0 .0 0 0 2
0 .2 6 7 9 0 .0 0 4 5 0 0 .0 0 1 1
0 .0 9 6 1 0 .0 0 1 7 0 .0 0 0 9
y y y
y y y y
y y y
  
  
 
      
      
     
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
... (1)
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
      
 
64
Numerical Techniques
:Solu tion
   
   
   
2
2 2
2 2
2 2
0 .0 9 6 1 0 .0 9 1 6 (0 .2)
(1) 0 .2 6 7 9 (0 .2) (0 .0 0 4 5)
2 2
(0 .2) (0 .2) 1 (0 .2) (0 .2) 10 .0 0 1 7 0 .0 0 1 7
(0 )
6 2 2 4
(0 .2) (0 .2) 1 (0 .2) 4 0 .0 0 0 9 0 .0 0 0 2
1 2 0 2
(0 .2) (0 .2) 1 (0 .2) 4
(0 .0 0 1 1)
7 2 0
p
y
 
      
 
    
    
 
     
   
 
   
 
0 .2 6 7 9 0 .0 1 8 7 7 0 .0 0 0 0 9 0 .0 0 0 0 5 0 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p
y       
0 .2 8 6 7p
y 
Semester :III
65
Numerical Techniques
Interpolation for unequal intervals
 The various interpolation formulae derived so far possess the
disadvantage of being applicable only to equally spaced values of an interval.
It is, therefore desirable to develop interpolation formulae for unequally
spaced values of x.
 Therefore we shall study the Lagrange’s interpolation formula.
Lagrange’s interpolation formula
0 1 0 1
0 11 2
0 1
0 1 0 2 0 1 0 1 2 1
0 1
If y = f (x ) t a k e s t h e v a lu e y , , ..., c o r e s s p o n d in g t o , , ..., t h e n
( )( ) ( )( )( ) ( )
( )
( )( ) ( ) ( )( ) ( )
( )( ) (
n n
nn
n n
y y x x x x
x x x x x xx x x x x x
y f x y y
x x x x x x x x x x x x
x x x x x

    
    
     
  

0 1 1
2
2 0 2 1 2 0 1 1
) ( )( ) ( )
...
( )( ) ( ) ( )( ) ( )
n n
n
n n n n n
x x x x x x x
y y
x x x x x x x x x x x x


  
   
     
66
Numerical Techniques
1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te f(9 ),
5 7 1 1 1 3
u s in g L a g ra n g e 's fo rm u la
( ) 1 5 0 3 9 2 1 4 5 2 2 3 6 6
E x
x
y f x


:Solu tion

   
   
0 1 2 3
0 1 2 3
H e r e g iv e n t h a t 9,
5, 7 , 1 1, 1 3 a n d
1 5 0, 3 9 2, 1 4 5 2, 2 3 6 6 .
x
x x x x
y y y y
            
        
               
1 2 3 0 2 3 0 1 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3
W e know that the Lagrange's interp olatio n form ula is,
( )( )( ) ( )( )( ) ( )( )( )
y
( )( )( ) ( )( )( ) ( )( )( )
p
x x x x x x x x x x x x x x x x x x
y y
x x x x x x x x x x x x x x x x x x
    
    
       
0 1 2
2 3
3 0 3 1 3 2
( )( )( )
.....(1)
( )( )( )
subtitute all the above values in equation ....(1) w e get
x x x x x x
y y
x x x x x x
N ow
67
Numerical Techniques
:Solu tion
        
       
        
        
      
        
(9 7 )(9 1 1)(9 1 3) (9 5)(9 1 1)(9 1 3)
(1 ) y 1 5 0 3 9 2
(5 7 )(5 1 1)(5 1 3) (7 5)(7 1 1)(7 1 3)
(9 5)(9 7 )(9 1 3) (9 5)(9 7 )(9 1 1)
1 4 5 2 2 3 6 6
(1 1 5)(1 1 7 )(1 1 1 3) (1 3 5)(1 3 7 )(1 3 1 1)
p
                    
               
                    
2 ( 2) ( 4) 4 ( 2) ( 4) 4 2 ( 4) 4 2 ( 2)
y 1 5 0 3 9 2 1 4 5 2 2 3 6 6
( 2) ( 6) ( 8) 2 ( 4) ( 6) 6 4 ( 2) 8 6 2
p
        
               
       
1 2 2 ( 1)
y 1 5 0 3 9 2 1 4 5 2 2 3 6 6
6 3 3 6
p
       
           
       
1 5 0 7 8 4 9 6 8 2 3 6 6
y
6 3 1 6
p
68
Numerical Techniques
:Solu tion
                   y 2 5 2 6 1 .3 3 9 6 8 3 9 4 .3 3p
 y 8 1 0p
       
           
       
1 5 0 7 8 4 9 6 8 2 3 6 6
y
6 3 1 6
p
69
Numerical Techniques
2 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te ( 4 ),
2 3 5 6
u s in g L a g ra n g e 's fo rm u la
( ) 1 5 3 0 4 5 6 0
E x f
x
y f x


:Solu tion

   
   
0 1 2 3
0 1 2 3
H e r e g i v e n t h a t 4 ,
2, 3, 5, 6 a n d
1 5, 3 0, 4 5, 6 0 .
x
x x x x
y y y y
            
        
               
1 2 3 0 2 3 0 1 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3
W e kn o w th at th e Lagran ge's in terp o latio n fo rm u la is,
( )( )( ) ( )( )( ) ( )( )( )
y
( )( )( ) ( )( )( ) ( )( )( )
p
x x x x x x x x x x x x x x x x x x
y y
x x x x x x x x x x x x x x x x x x
    
    
       
0 1 2
2 3
3 0 3 1 3 2
( )( )( )
.....(1)
( )( )( )
su b titu te all th e ab o v e v alu es in eq u atio n ....(1) w e get
x x x x x x
y y
x x x x x x
N ow
70
Numerical Techniques
:Solu tion
        
       
        
        
      
        
(4 3)(4 5)(4 6 ) (4 2)(4 5)(4 6 )
(1 ) y 1 5 3 0
(2 3)(2 5)(2 6 ) (3 2)(3 5)(3 6 )
(4 2)(4 3)(4 6 ) (4 2)(4 3)(4 5)
4 5 6 0
(5 2)(5 3)(5 6 ) (6 2)(6 3)(6 5)
p
            
               
            
(1)( 1)( 2) (2)( 1)( 2) (2)(1)( 2) (2)(1)( 1)
(1 ) y 1 5 3 0 4 5 6 0
( 1)( 3)( 4 ) (1)( 2)( 3) (3)(2)( 1) (4 )(3)(1)
p
       
            
       
5 2 0 3 0 1 0
(1 ) y
2 1 1 1
p
71
Numerical Techniques
:Solu tion
 y 3 7 .5p
                   y 2 .5 2 0 3 0 1 0p
  y 5 0 1 2 .5p
Semester :III
72
Numerical Techniques
Inverse Interpolation method
 For unequal intervals if we want to find the value of x corresponding
given y then we will use following Lagrange’s interpolation formula
Lagrange’s inverse interpolation formula
0 1 0 1
0 21 2
0 1
0 1 0 2 0 1 0 1 2 1
0 1
If x = f (y ) t a k e s t h e v a lu e , , ..., c o r e s s p o n d in g t o y , , ..., t h e n
(y )(y ) (y )(y )(y ) (y )
(y )
(y )(y ) (y ) (y )(y ) (y )
(y )(y ) (y
n n
nn
n n
x x x x y y
y y yy y y
x f x x
y y y y y y
y y

    
    
     
  

0 1 1
2
2 0 2 1 2 0 1 1
) (y )(y ) (y )
...
(y )(y ) (y ) (y )(y ) (y )
n n
n
n n n n n
y y y y
x x
y y y y y y


  
   
     
73
Numerical Techniques
1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s fin d x c o rre s p o n d in g to y= 1 2 , u s in g
1 .2 2 .1 2 .8 4 .1 4 .9 6 .2
L a g ra n g e 's in v e rs e in te rp o la tio n fo rm u la
4 .2 6 .8 9 .8 1 3 .4 1 5 .5 1 9 .6
E x
x
y
:Solu tion
0 1 2 3 4 5
0 1 2 3 4 5
H e r e g iv e n t h a t y 1 2,
1 .2, 2 .1, 2 .8, 4 .1, 4 .9 , 6 .2 a n d
4 .2, 6 .8, 9 .8, 1 3 .4 , 1 5 .5, 1 9 .6 .
T a k in g y = 1 2 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's
in v e r s e in t e r p o la t io n f o r m u la ;
x x x x x x
y y y y y y

     
     
74
Numerical Techniques:Solution
1 2 3 4 5 1 2 3 4 5
0 1
0 1 0 2 0 3 0 4 0 5 1 0 1 2 1 3 1 4 1 5
0 1 3 4 5
2 0 2 1 2 3 2
(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y )
(y )(y )(y )(y
x f
y y y y y y y y y y
x x
y y y y y y y y y y
y y y y y
y y y

         
   
         
    

   
0 1 2 4 5
2 3
4 2 5 3 0 3 1 3 2 3 4 3 5
0 1 2 3 5 0 1 2 3 4
4
4 0 4 1 4 2 4 3 4 5 5 0 5 1 5
(y )(y )(y )(y )(y )
)(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y
y y y y y
x x
y y y y y y y
y y y y y y y y y y
x
y y y y y y y
    
  
     
         
  
       
5
2 5 3 5 4
)(y )(y )
x
y y y

 
75
Numerical Techniques:Solution
(y )
(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
1 .2
(4 .2 6 .8 )(4 .2 9 .8 )(4 .2 1 3 .4 )(4 .2 1 5 .5)(4 .2 1 9 .6 )
(1 2 4 .2)(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
2 .1
(6 .8 4 .2)(6 .8 9 .8 )(6 .8 1 3 .4 )(6 .8 1 5 .5)(6 .8 1 9 .6 )
(
x f
    
 
    
    
 
    

1 2 4 .2)(1 2 6 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
2 .8
(9 .8 4 .2)(9 .8 6 .8 )(9 .8 1 3 .4 )(9 .8 1 5 .5)(9 .8 1 9 .6 )
(1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 5 .5)(1 2 1 9 .6 )
4 .1
(1 3 .4 4 .2)(1 3 .4 6 .8 )(1 3 .4 9 .8 )(1 3 .4 1 5 .5)(1 3 .4 1 9 .6 )
(1 2 4 .
    

    
    
 
    


2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 9 .6 )
4 .9
(1 5 .5 4 .2)(1 5 .5 6 .8 )(1 5 .5 9 .8 )(1 5 .5 1 3 .4 )(1 5 .5 1 9 .6 )
(1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)
6 .2
(1 9 .6 4 .2)(1 9 .6 6 .8 )(1 9 .6 9 .8 )(1 9 .6 1 3 .4 )(1 9 .6 1 5 .5)
   

    
    
 
    
76
Numerical Techniques
:Solution
0.022 0.234 1.252 3.419 0.964 0.055x      
3.55x 
77
Numerical Techniques
2 : A p p ly L an g ran g es fo rm u la in versely to o b tain a ro o t o f th e eq u atio n
( ) 0, g iven th at (3 0 ) -3 0, (3 4 ) 1 3, (3 8) 3 an d (4 2 ) 1 8 .

     
E x
f x f f f f
:Solu tion
0 1 2 3
0 1 2 3
H e r e g iv e n t h a t y 0,
3 0, 3 4 , 3 8, 4 2 a n d
3 0, 1 3, 3, 1 8 .
T a k in g y = 0 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's
in v e r s e in t e r p o la t io n f o r m u la ;
x x x x
y y y y

   
     
78
Numerical Techniques:Solution
1 2 3 0 2 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3
0 1 3 0 1 2
2 3
2 0 2 1 2 3 3 0 3 1 3 2
(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
x f
y y y y y y
x x
y y y y y y
y y y y y y
x x
y y y y y y
 
     
   
     
     
   
     
(0 1 3)(0 3)(0 1 8 ) (0 3 0 )(0 3)(0 1 8 )
3 0 3 4
( 3 0 1 3)( 3 0 3)( 3 0 1 8 ) ( 1 3 3 0 )( 1 3 3)( 1 3 1 8 )
(0 3 0 )(0 1 3)(0 1 8 ) (0 3 0 )(0 1 3)(0 3)
3 8 4 2
(3 3 0 )(3 1 3)(3 1 8 ) (1 8 3 0 )(1 8 1 3)(1 8 3)
x
     
    
           
     
   
     
79
Numerical Techniques
:Solution
(1 3)( 3)( 1 8 ) (3 0 )( 3)( 1 8 )
3 0 3 4
( 1 7 )( 3 3)( 4 8 ) (1 7 )( 1 6 )( 3 1)
(3 0 )(1 3)( 1 8 ) (3 0 )(1 3)( 3)
3 8 4 2
(3 3)(1 6 )( 1 5) (4 8 )(3 1)(1 5)
x
   
    
    
 
   

0.782 6.532 33.682 2.202x     
3 7 .2 3x 
80
Numerical Techniques
N ew ton - D evided D ifference Form ula
0 1
0 1
1 0
0 1
1 0
L e t f (x ) b e g iv e n a t (n + 1 ) d is t in c t p o in t s x , , ..., . W e d e f in e
t h e f ir s t d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x a n d x a s
( ) ( )
f (x , ) .........(1)
n
x x
f x f x
x
x x



1
0 1 2
1 2 0
0 1 2
2 0
T h e s e c o n d d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x , x a n d x
is d e f in e a s
( , x ) ( , x )
f (x , , x ) ........(2)
f x f x
x
x x



11 2 0 1
0 1 2
0
a n d in g e n e r a l th e n d iv id e d d if f e r e n c e is d e f in e a s
( , x ,..., x ) ( , x ,...., x )
f (x , , x ,...., x ) ........(3)
th
n n
n
n
f x f x
x
x x




81
Numerical TechniquesDevided Difference Table
0 0
1 0
0 1
1 0
1 1 1 2 0 1
0 1 2
2 0
2 1 1 2 3 0 1 2
1 2 0 1 2 3
2 1 3 0
2 2 2 3 1 2
1 2 3
3 1
( ) 1 2 3
( ) ( )
( , x )
( ) ( , x ) ( , x )
( , x , x )
( ) ( ) ( , x , x ) ( , x , x )
( , x ) ( , x , x , x )
( ) ( , x ) ( , x )
( , x , x )
(
st n d rd
x f x D D D D D D
f x f x
f x
x x
x f x f x f x
f x
x x
f x f x f x f x
f x f x
x x x x
x f x f x f x
f x
x x
f x






 
 
 



3 2
2 3
3 2
3 3
( ) ( )
, x )
( )
f x f x
x x
x f x



82
Numerical Techniques
N ew ton-D evided D ifference Form ula
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
E x -1 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d
1 0 2 5 1 0
f(1 ) a n d f(9 ) fo rm th e fo llo w in g ta b le : .
2 1 7 1 2 4 9 9 9
x
y

 
:Solution
83
Numerical Techniques
:Solu tion
1 2 3 4
1 2
1 2
1
0 1
0 1 4 1
1
2 1
7 1 7 1
4 1
2 0 5 1
2 7 3 9 4 1 1
7 0
5 0 1 0 1
1 2 4 7 1 7 7
3 9 1
5 2 1 0 0
5 1 2 4 1 7 5 3 9
1 7
1 0 2
9 9 9 1 2 4
1 7 5
1 0 5
1 0 9 9 9
s t n d r d th
x y D D D D D D D D
 
 


 


 
 
 
 
 
 
 
 
 






84
Numerical Techniques
:Solu tion
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x              
T o fin d : f(1 )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(1) (1) 2 (1 1) (1) (1 1)(1 0 ) (1) (1 1)(1 0 )(1 2) (1)
(1) (1) 2 2 2 2
(1) (1) 0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
f P
f P
f P
               
      
  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
85
Numerical Techniques
:Solu tion
( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x              
T o fin d : f(9 )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(9) (9) 2 (9 1) (1) (9 1)(9 0 ) (1) (9 1)(9 0 )(9 2) (1)
(9) (9) 2 1 0 1 1 0 9 1 1 0 9 7 1
(9) (9) 2 1 0 9 0 6 3 0
(9)
f P
f P
f P
f P
               
            
      
  (9) 7 2 8
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

86
Numerical Techniques
E x -2 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d
1 0 1 3
th e p o ly n o m ia l s a tis fy in g th e d a ta : .
( ) 2 1 0 1
x
f x y

 
:Solution
87
Numerical Techniques:Solution
1 2 3
1 2
1 2
1
0 1
0 1 1 1
0
1 1
0 1 1
1 0
11 0 6
3 1 2 4
1 0 1
1
12
3 0 6
1 0 1
3 1 2
3 1
s t n d r d
x y D D D D D D


 

 



  







  



88
Numerical Techniques:Solution
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
2
3
3
3
3
1
( ) 2 ( x 1) ( 1) ( x 1) ( x 0 ) (0 ) ( x 1) ( x 0 ) ( x 1)
2 4
1
( ) 2 1 0 ( 1)
2 4
1
( ) 2 1 0 ( )
2 4
( ) 2 1 0
2 4 2 4
2 5
( ) 1
2 4 2 4
2 5 2 4
( )
2 4
P x
P x x x x
P x x x x
x x
P x x
x x
P x
x x
P x
             
       
       
      
   
 
 
89
Numerical Techniques
T he O p erators:
 (1) D iffe re n c e O p e ra to rs ( , a n d ) :
(a) T h e F o rw ard d ifferen ce o p erato r is d e n o ted b y , d efin ed as ( ) ( ) ( ).
(b ) T h e B ack w ard d ifferen ce o p erato r is d en o ted b y , d efin ed as ( ) ( ) ( ).
(c ) T h e C en tral d ifferen ce o p erato r i
f x f x h f x
f x f x f x h
    
    
s d en o ted b y , d efin ed as ( )
2 2
W h ere 'h ' is th e d ifferen ce b etw een th e co n secu tive valu es o f th e in d ep en d en t va riab le "x " is called
th e in terval o f d ifferen cin g .
h h
f x f x f x 
   
      
   
90
Numerical Techniques
2
2
2
2
2
2 2
N o w ( ) ( ( ))
( ) ( )
( ) [ ( 1)] ( ......(1))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......(1))
( ) ( 1) [ ]..................( 2 )
x x
x x h
x h x h
x h x h
x h x
f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   

  
1
E x -1 : E v a lu a te th e fo llo w in g ( ) ( e ) ( ) (lo g ) ( ) (ta n ).
:
n x
i ii x iii x
S o lu tio n
H ere w e k n o w th at h e d ifferen tial o p erato r ( ) ( ) ( ).f x f x h f x   
( ) ( ) ( )
x x h x h
i L e t f x e th e r e fo r e f x h e e e

   
( ) ( ) ( )
( ) ( 1).................(1)
x x h x x h
f x f x h f x
e e e e e e
   
     
91
Numerical Techniques
3 2
3 2
3 2
3 2
3 2
3 3
( ) ( ( ))
( ) ( )
( ) [( 1) [ ] ( ......( 2 ))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......( 2 ))
( ) ( 1) [ ]..................(3)
x x
x h x
x h x h
x h x h
x h x
S im ila r ly f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   
F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral
( ) ( 1) [ ]
n x h n x
e e e   
92
Numerical Techniques
3 2
3 2
3 2
3 2
3 2
3 3
( ) ( ( ))
( ) ( )
( ) [( 1) [ ] ( ......( 2 ))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......( 2 ))
( ) ( 1) [ ]..................(3)
x x
x h x
x h x h
x h x h
x h x
S im ila r ly f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   
F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral
( ) ( 1) [ ]
n x h n x
e e e   
93
Numerical Techniques
( ) ( ) lo g ( ) a n d ( ) lo g ( )
w e k n o w th a t ( ) ( ) - ( )
( ) ( ) ( ) .........(1)
( ) ( ) - ( )
lo g ( ) lo g ( ) lo g ( )
( )
lo g ( ) lo g
( )
( )
lo g ( ) lo g
ii L e t f x f x f x h f x h b u t
f x f x h f x
f x h f x f x
N o w f x f x h f x
f x f x h f x
f x h
f x
f x
f x
f x
   
  
    
  
    
 
    
 
 
  
( )
( .......(1) )
( )
( )
lo g ( ) lo g 1
( )
f x
fr o m
f x
f x
f x
f x
 
 
 
 
    
 
94
Numerical Techniques
1 1
1 1 1
1 1 1 1 1
1 1
( ) ( ) ta n a n d ( ) ta n ( )
( ) ( ) - ( )
ta n ta n ( ) ta n
ta n ta n ta n ta n ta n
1 ( ) 1
ta n ta n
1 ( )
iii L e t f x x f x h x h
N o w f x f x h f x
x x h x
x h x
x
x x h
h
x
x x h
 
 
 
 
  
    
 
   
  
    
      
        
      
 
    
  
95
Numerical Techniques
(2) S h ift O p e ra to r (E ) :
T h e sh ift o p erato r is d en o ted b y E , d efin ed as E ( ) ( ).f x f x h 
2
N o w E ( ) ( ( )) ( ( )) ( ) ( 2 )f x E E f x E f x h f x h h f x h       
3 2
S im ilarly E ( ) ( ( )) ( ( 2 )) ( 2 ) ( 3 )f x E E f x E f x h f x h h f x h       
1
In g e n e ra l E ( ) ( )
E ( ) ( )
E ( ) ( )
n
n
f x f x n h
f x f x h a n d
f x f x n h


  
  
  
R e la tio n b e tw e e n D iffe re n c e o p e ra to r a n d S h ift o p e ra to r
H ere w e k n o w th at h e d ifferen ce o p erato r ( ) ( ) ( )
( ) ( ) ( )
( ) ( 1) ( )
1 1
f x f x h f x
f x E f x f x
f x E f x
E o r E
   
   
   
      
96
Numerical Techniques
(3) D iffe re n tia l O p e ra to r (D ) :
T h e D iffeen tial o p erato r is d en o ted b y D , d efin ed as D ( ) ( ) '( ).
d
f x f x f x
d x
 
2
N o w D ( ) "( )f x f x
3
S im ilarly D ( ) "'( )f x f x
In g en eral D ( ) ( ).
n n
f x f x 
R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r
2 3
2 3
2 3
T a ylo r's se rie s w e h a v e ,
( ) ( ) '( ) "( ) "'( ) ...
2 ! 3 !
( ) ( ) ( ( )) ( ( )) ( ( )) ....
2 ! 3 !
B y
h h
f x h f x h f x f x f x
h h
E f x f x h D f x D f x D f x
     
     
97
Numerical Techniques
R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r
2 2 3 3
2 2 3 3
2 2 3 3
( ) ( ) 1 .....
2 ! 3 !
1 .....
2 ! 3 !
1 .....
2 ! 3 !
1 ( 1 ) .
h D h x
h D
h D h D
E f x f x h D
h D h D
E h D
h x h x
E e e h x
o r e E
 
      
 
     
 
       
 
     
98
Numerical Techniques
(4 ) A v e ra g in g O p e ra to r ( ) :
1
T h e averan g in g o p erato r is d en o ted b y , d efin ed as ( ) .
2 2 2
h h
f x f x f x 
    
       
    
R e la tio n b e tw e e n A v e ra n g in g o p e ra to r a n d S h ift o p e ra to r
 
1 1
2 2
1 1
2 2
1
( )
2 2 2
1
( ) ( ) ( ) ( ) ( )
2
1
2
n
h h
f x f x f x
f x E f x E f x E f x f x n h
E E





    
       
    
 
      
 
 
   
 
99
Numerical Techniques
 


           
1 1 1
1 2 2 2
E x -1 : P ro v e th a t (i) 1 ( ) ( ) ( )E ii E E iii E E iv E
Proof:
W e k n o w th at
( ) ( ) ( )......(1)
( ) ( ) ( )......( 2 )
( ) ......(3)
2 2
f x f x h f x
f x f x f x h
h h
f x f x f x
   
   
   
      
   
E ( ) ( )......( 4 )f x f x h 
1
( ) ......(5 )
2 2 2
h h
f x f x f x
    
       
    
100
Numerical Techniques
 
 
1
1 1
1
1
( ) T o p ro v e : 1
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) 1 ( )
1 .
i E
f x f x f x h
f x f x E f x E f x f x h
f x E f x
E

 


  
    
     
   
   
101
Numerical Techniques
1 1
2 2
1 1
2 2
1 1
2 2
1 1
2 2
( ) T o p ro v e :
( )
2 2
( ) ( ) ( )
( ) ( )
ii E E
h h
f x f x f x
f x E f x E f x
f x E E f x
E E









 
   
       
   
  
 
   
 
  
102
Numerical Techniques
 
 
   
( ) T o p ro v e : ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
iii a E
E f x E f x
E f x E f x f x h
E f x E f x E f x h
E f x f x h f x h h
E f x f x h f x
E f x f x
E
  
   
    
    
      
    
   
   
103
Numerical Techniques
 
 
( ) T o p ro v e : ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
iii b E
E f x E f x
E f x f x h
E f x f x h f x
E f x f x
E
  
  
    
    
   
   
104
Numerical Techniques
1
2
1 1
2 2
1
2
1
2
1
2
1
2
1
2
( ) T o p r o v e :
( ) ( )
( )
2
( )
2 2 2 2
( ) ( ) ( )
( ) ( )
.
iv E
E f x E f x
h
E f x f x
h h h h
E f x f x f x
E f x f x h f x
E f x f x
E

 
 




 
 
   
 
  
    
  
   
         
   
   
  
  
105
Numerical Techniques
   
    
 
         
 
2
1 12 2
2 2 2 2 2
E x -2 : P ro v e th a t ( ) 1 1 ( ) 1 ( ) ( )
2 4 2 2
i ii iii E iv E
Proof:
 
   
 
1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2
1
2
2 1
2 2 2 1 2
1
( ) W e k n o w th at = an d
2
1
2
1
2
1
2
1
2
4
i E E E E
E E E E
E E
E E
E E E E
 
 
 
 
 
 
 


 
 
   
 
   
      
   
  
 
  
 
 
   
106
Numerical Techniques
 2 2 2 1 2
2 1 2
2 2
2 2
2 2
2
1
2 2
1
1 2 1
4
2 4
1
4
2
1
4
1 ......(1)
2
E E E E
E E E E
E E
E E
 
 
 
 
 
 


     
  
  
 
  
 
    
 
 
2
1 12
2 2
2
1
2 1
2 1
N o w
1
1 1
2 2
1
1 1 2
2 2
2 2
1
2 2
1 ......( 2 )
2 2
E E
E E
E E
E E








 
     
 
     
  
  

  
2
1
2 2
2
2
2 2
F ro m ......(1 ) an d ......(2 ) w e h ave ,
1
2
1 1
2
E E
 

 

 
   
 
 
    
 
107
Numerical Techniques
THANK YOU

More Related Content

What's hot

Solving linear equation system
Solving linear equation   systemSolving linear equation   system
Solving linear equation systemsulaiman_karim
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature FormulaDhaval Shukla
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolationVISHAL DONGA
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidelarunsmm
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and IntegrationMeenakshisundaram N
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integrationTarun Gehlot
 
Numerical solution of ordinary differential equation
Numerical solution of ordinary differential equationNumerical solution of ordinary differential equation
Numerical solution of ordinary differential equationDixi Patel
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsDiler4
 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference methodPrateek Jha
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSnaveen kumar
 

What's hot (20)

Solving linear equation system
Solving linear equation   systemSolving linear equation   system
Solving linear equation system
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Unit vi
Unit viUnit vi
Unit vi
 
Numerical solution of ordinary differential equation
Numerical solution of ordinary differential equationNumerical solution of ordinary differential equation
Numerical solution of ordinary differential equation
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
 

Similar to Interpolation in Numerical Methods

Numerical Methods(Roots of Equations)
Numerical Methods(Roots of Equations)Numerical Methods(Roots of Equations)
Numerical Methods(Roots of Equations)Dr. Tushar J Bhatt
 
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...Numerical Integration and Numerical Solution of Ordinary Differential Equatio...
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...Dr. Tushar J Bhatt
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Dr. Tushar J Bhatt
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3RoshanTushar1
 
On the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeOn the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeAlexander Decker
 
PaperNo21-habibi-IJMTT-V8P514-IJMMT
PaperNo21-habibi-IJMTT-V8P514-IJMMTPaperNo21-habibi-IJMTT-V8P514-IJMMT
PaperNo21-habibi-IJMTT-V8P514-IJMMTMezban Habibi
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.pptArounaGanou2
 
D0366025029
D0366025029D0366025029
D0366025029theijes
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.pptThirumoorthy64
 
CS330-Lectures Statistics And Probability
CS330-Lectures Statistics And ProbabilityCS330-Lectures Statistics And Probability
CS330-Lectures Statistics And Probabilitybryan111472
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...sophiabelthome
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slidesNguyen Mina
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualto2001
 
Observations on Triacontagonal number
Observations on Triacontagonal numberObservations on Triacontagonal number
Observations on Triacontagonal numberIJESM JOURNAL
 

Similar to Interpolation in Numerical Methods (20)

Numerical Methods(Roots of Equations)
Numerical Methods(Roots of Equations)Numerical Methods(Roots of Equations)
Numerical Methods(Roots of Equations)
 
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...Numerical Integration and Numerical Solution of Ordinary Differential Equatio...
Numerical Integration and Numerical Solution of Ordinary Differential Equatio...
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3
 
CH3-1.pdf
CH3-1.pdfCH3-1.pdf
CH3-1.pdf
 
D028036046
D028036046D028036046
D028036046
 
Sol1
Sol1Sol1
Sol1
 
Dg mcqs (1)
Dg mcqs (1)Dg mcqs (1)
Dg mcqs (1)
 
On the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeOn the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterative
 
PaperNo21-habibi-IJMTT-V8P514-IJMMT
PaperNo21-habibi-IJMTT-V8P514-IJMMTPaperNo21-habibi-IJMTT-V8P514-IJMMT
PaperNo21-habibi-IJMTT-V8P514-IJMMT
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.ppt
 
D0366025029
D0366025029D0366025029
D0366025029
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.ppt
 
CS330-Lectures Statistics And Probability
CS330-Lectures Statistics And ProbabilityCS330-Lectures Statistics And Probability
CS330-Lectures Statistics And Probability
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
 
Observations on Triacontagonal number
Observations on Triacontagonal numberObservations on Triacontagonal number
Observations on Triacontagonal number
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
MATRIX ALGEBRA
MATRIX ALGEBRA MATRIX ALGEBRA
MATRIX ALGEBRA
 

More from Dr. Tushar J Bhatt

SAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfSAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfDr. Tushar J Bhatt
 
Statistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfStatistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfDr. Tushar J Bhatt
 
Statistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfStatistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfDr. Tushar J Bhatt
 
Decision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDecision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDr. Tushar J Bhatt
 
OPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfOPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfDr. Tushar J Bhatt
 
Random Variable and Probability Distribution
Random Variable and Probability Distribution Random Variable and Probability Distribution
Random Variable and Probability Distribution Dr. Tushar J Bhatt
 
Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Dr. Tushar J Bhatt
 

More from Dr. Tushar J Bhatt (16)

Network_Analysis.pdf
Network_Analysis.pdfNetwork_Analysis.pdf
Network_Analysis.pdf
 
Linear_Programming.pdf
Linear_Programming.pdfLinear_Programming.pdf
Linear_Programming.pdf
 
Theory_of_Probability .pdf
Theory_of_Probability .pdfTheory_of_Probability .pdf
Theory_of_Probability .pdf
 
Number_System .pdf
Number_System .pdfNumber_System .pdf
Number_System .pdf
 
Error_Analysis.pdf
Error_Analysis.pdfError_Analysis.pdf
Error_Analysis.pdf
 
SAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfSAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdf
 
Statistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfStatistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdf
 
Statistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfStatistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdf
 
Decision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDecision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdf
 
OPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfOPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdf
 
Statistical Methods
Statistical Methods Statistical Methods
Statistical Methods
 
Random Variable and Probability Distribution
Random Variable and Probability Distribution Random Variable and Probability Distribution
Random Variable and Probability Distribution
 
Correlation and Regression
Correlation and Regression Correlation and Regression
Correlation and Regression
 
Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Measure of Dispersion (statistics)
Measure of Dispersion (statistics)
 
Measure of Central Tendancy
Measure of Central TendancyMeasure of Central Tendancy
Measure of Central Tendancy
 
Introduction to Statistics
Introduction to StatisticsIntroduction to Statistics
Introduction to Statistics
 

Recently uploaded

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 

Recently uploaded (20)

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 

Interpolation in Numerical Methods

  • 1. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 1 Numerical Techniques Unit- 2: Finite Differences and Interpolation Table of content 1. Introduction 2. Finite Differences (a) Forward Differences (b) Backward Differences (c) Central Differences 3. Interpolation for equal intervals (a) Newton Forward and Backward Interpolation Formula (b) Gauss Forward and Backward Interpolation Formula (c) Stirling’s Interpolation Formula 4. Interpolation for unequal intervals (a) Lagrange’s Interpolation Formula 5. Inverse interpolation 6. Relation between the operators 7. Newton Divided Difference Interpolation Formula
  • 2. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 2 Numerical Techniques Unit- 2: Finite Differences and Interpolation D efinition : Finite D ifferences 0 1 1 1 L et ( , ) ; 0,1, 2, ..., b e an y set o f d ata va lu es fo r th e fu n ctio n ( ) w ith th e valu es are eq u ally sp aced , d istan ce ap art so th at ... ; th at is , an d ( ). S o th e val i i i n n i i i i x y i n y f x x h x x x x x x h y f x           1 0 1 0 1 u e o f is k n o w n as th e F in ite d ifferen c e b etw een tw o co n secu tive term s o f . S u p p o se th at , , ..., b e th e set o f valu es o f co rresp o n d in g to th e valu es o f as , , ..., th en th e ex p re i i n n h x x x y y y y x x x x    1 0 2 1 1 ssio n lik e y , y , ..., y are called th e d ifferen ces o f .n n y y y y   
  • 3. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 3 Numerical Techniques There are three types of finite differences as follows : Finite Differences Forward Difference Backward Difference Central Difference
  • 4. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 4 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 0 1 0 1 2 1 2 3 2 1 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e fo rw a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . w h e rei i i y y y y y y y y y y y y i               0 ,1, 2 ..., .n 1st forward difference
  • 5. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 5 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 2 2 0 0 1 0 1 0 2 1 1 2 1 2 1 2 2 2 3 2 3 2 2 1 T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: ( ) ( ) , ( ) ( ) , ( ) ( ) , . . . ( ) ( )i i i i y y y y y y y y y y y y y y y y y y y y y y                                           1 w h e re 0 ,1, 2 ..., . i i y y i n      2nd forward difference
  • 6. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 6 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 1 1 1 1 1 1 S im ilarly w e o b tain ed th e n fo rw ard d ifferen ce is d en o ted b y . M ath em atically w e ex p ress it as fo llo w s: ( ) ( ) w h ere 0 ,1, 2 ..., . th n n n n n n i i i i i i y y y y y y i n                    nth forward difference
  • 7. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 7 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  4  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 4 x 4 y 0 y 1 y 2 y 3 y 2 0 y 2 1 y 2 2 y 3 0 y 3 1 y 4 0 y
  • 8. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 8 Numerical Techniques P roperties of the operator :    1 . [ ( ) ( )] ( ) ( ) w h ere ' ' an d ' ' are co n stan ts. a f x b g x a f x b g x a b        2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x    3 . ( ) ( ) w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs . m n m n f x f x m n       4 . [ ( ) ( )] ( ) ( )f x g x f x g x     5 . [ ] 0 w h ere 'c' is co n stan tc 
  • 9. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 9 Numerical Techniques 2 2 3 E x -1 : C o n stru ct th e fo rw ard tab le fo r ( ) ; 0,1, 2, 3, 4 an d fin d th e valu es o f ( (2 )), (1), (0 ). f x x x f      x y  2  3  4  0 0x  0 0y  1 1x  1 1y  2 2x  2 4y  3 3x  3 9y  4 4x  4 1 6y  0 1y  1 3y  2 5y  2 0 2y  2 1 2y  3 0 0y  3 7y  2 1 2y  3 1 0y  4 0 0y 
  • 10. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 10 Numerical Techniques 2 T o fin d : (a ) ( ( 2 )) N o w ( 2 ) = 4 ( ( 2 )) ( 4 ) ( ) 5 . f f f y        2 2 2 1 T o fin d : (b ) (1) (1) ( ) 2 .y       3 3 3 0 T o fin d : (c ) ( 0 ) ( 0 ) ( ) 0 .y      
  • 11. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 11 Numerical Techniques Definition : Backward Difference 1 1 0 2 2 1 3 3 2 1 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . w h e rei i i y y y y y y y y y y y y i              1, 2 ..., .n 1st backward difference
  • 12. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 12 Numerical Techniques Definition : Backward Difference 2nd forward difference 2 2 1 1 1 0 1 0 2 2 2 2 1 2 1 2 3 3 3 2 3 2 2 1 T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y . M a th e m a tic a lly w e e x p re s s it a s fo llo w s : ( ) ( ) , ( ) ( ) , ( ) ( ) , . . . ( ) ( )i i i i y y y y y y y y y y y y y y y y y y y y y y                                            1 w h e re 1, 2 ..., . i i y y i n     
  • 13. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 13 Numerical Techniques 1 1 1 1 1 1 S im ilarly w e o b tain ed th e n b ack w ard d ifferen ce is d en o ted b y . M ath em atically w e ex p ress it as fo llo w s: ( ) ( ) w h ere 1, 2 ..., . th n n n n n n i i i i i i y y y y y y i n                    nth backward difference Definition : Backward Difference
  • 14. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 14 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  4  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 4 x 4 y 1 y 2 y 3 y 4 y 2 2 y 2 3 y 2 4 y 3 3 y 3 4 y 4 4 y
  • 15. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 15 Numerical Techniques P roperties of the operator :    1 . [ ( ) ( )] ( ) ( ) w h ere ' ' an d ' ' are co n stan ts. a f x b g x a f x b g x a b        2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x    3 . ( ) ( ) w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs . m n m n f x f x m n       4 . [ ( ) ( )] ( ) ( )f x g x f x g x     5 . [ ] 0 w h ere 'c' is co n stan tc 
  • 16. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Central Difference 16 Numerical Techniques Definition : Central Difference 1 1 0 2 3 2 1 2 5 3 2 2 2 1 1 2 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . i i i y y y y y y y y y y y y                w h e re 1, 2 ..., .i n 1st central difference
  • 17. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Central Difference 17 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 1 2 y 3 2 y 5 2 y 2 1 y 2 2 y 3 3 2 y
  • 18. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Interpolation 18 Numerical Techniques Definition : Interpolation and Extrapolation (a) Newton Forward Interpolation Formula 2 3 4 0 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( 1)( 2)( 3) ( ) ... 2 ! 3 ! 4 ! W h e r e , ... n n n p p p p p p p p p P x y p y y y y x x p h x x x x x x h                           Interpolation for equal intervals
  • 19. E x -1 : U s in g N e w t o n F o r w a r d In t e r p o la t io n F o r m u la f in d (1 .6 ) f r o m t h e f o llo w in g t a b u la r v a lu e s . 1 1 .4 1 .8 2 .2 ( ) 3 .4 9 4 .8 2 5 .9 6 6 .5 f x y f x Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 19 Numerical Techniques 2 3 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( ) .......... (1) 2 ! 3 ! W h e r e , ... n n n p p p p p P x y p y y y x x p h x x x x x x h                       :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y , 0 0 G iv e n th a t 1, 1 .6 a n d 0 .4 1 .6 1 0 .6 3 1 .5 0 .4 0 .4 2 x x h x x T h e r e fo r e p h           2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 20. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 20 Numerical Techniques x y  2  3  0 1x 0 3 .4 9y 1 1 .4x 1 4 .8 2y 2 1 .8x 2 5 .9 6y 3 2 .2x 3 6 .5y 1.33 1.14 0.54 0.19 0.60 0.41 :Solu tion 0 0 2 3 0 0 T h e re fo re 3 .4 9 , 1 .3 3, 0 .1 9 a n d 0 .4 1 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,          y y y y
  • 21. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 21 Numerical Techniques 2 3 0 0 0 0 ( 1) ( 1)( 2) (1) ( ) ... 2 ! 3 ! n p p p p p P x y p y y y             :Solu tion 1 .5 (1 .5 1) 1 .5 (1 .5 1) (1 .5 2) ( ) 3 .4 9 1 .5 1 .3 3 ( 0 .1 9) ( 0 .4 1) 2 6 n P x                               ( ) 3 .4 9 1 .9 9 5 0 .0 7 1 3 0 .0 2 5 6n P x                  
  • 22. E x -2 : T h e p o p u la tio n o f th e to w n in d e c e n n ia l c e n s u s w a s a s g iv e n b e lo w e s tim a te th e p o p u la tio n fo r th e y e a r 1 8 9 5 . y e a r (x ) 1 8 9 1 1 9 0 1 1 9 1 1 1 9 2 1 1 9 3 1 P o p u la tio n (y ) 4 6 6 6 8 1 9 3 1 0 1 (in th o u s a n d ) Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 22 Numerical Techniques 2 3 4 0 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( 1)( 2)( 3) ( ) .......... (1) 2 ! 3 ! 4 ! W h e r e , ... n n n p p p p p p p p p P x y p y y y y x x p h x x x x x x h                           :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y ,
  • 23. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 23 Numerical Techniques :Solu tion 0 0 G iv e n th a t 1 8 9 1, 1 8 9 5 a n d 1 0 1 8 9 5 1 8 9 1 4 0 .4 1 0 1 0 x x h x x T h e r e fo r e p h          2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 24. x y 1981 46 1901 66 1911 81 1921 93 1931 101 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 24 Numerical Techniques :Solu tion  2  3  4  20 15 12 8 -5 -3 -4 2 -1 -3
  • 25. Semester :III Mr. Tushar J Bhatt 25 Numerical Techniques :Solu tion 0 0 2 3 4 0 0 0 T h e re fo re 4 6 , 2 0 , 5 , 2 a n d 3 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,            y y y y y 2 3 4 0 0 0 0 0 ( 1) ( 1)( 2) ( 1)( 2)( 3) (1) ( ) 2 ! 3 ! 4 ! n p p p p p p p p p P x y p y y y y                 0 .4 (0 .4 1) 0 .4 (0 .4 1)(0 .4 2) ( ) 4 6 0 .4 2 0 ( 5) (2) 2 6 0 .4 (0 .4 1)(0 .4 2)(0 .4 3) ( 3) 2 4 n P x                                    0 .4 ( 0 .6 ) 0 .4 ( 0 .6 )( 1 .6 ) ( ) 4 6 0 .4 2 0 ( 5) (2) 2 6 0 .4 ( 0 .6 )( 1 .6 )( 2 .6 ) ( 3) 2 4 n P x                                   
  • 26. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 26 Numerical Techniques :Solu tion ( ) 4 6 8 0 .6 0 .1 2 8 0 .4 5 1 2n P x                       
  • 27. E x -3 : D e t e r m in e t h e in t e r p o la t in g p o ly n o m ia l f o r t h e 1 2 3 4 f o llo w in g t a b le o f d a t a : ( ) 1 1 1 5 x y f x   Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 27 Numerical Techniques 2 3 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( ) .......... (1) 2 ! 3 ! W h e r e , ... n n n p p p p p P x y p y y y x x p h x x x x x x h                       :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y , 0 0 G iv e n th a t 1, a n d 1 1 1 1 x x x h x x x T h e r e fo r e p x h          2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 28. x y 1 -1 2 -1 3 1 4 5 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 28 Numerical Techniques :Solu tion  2  3  0 2 4 2 2 0
  • 29. Semester :III Mr. Tushar J Bhatt 29 Numerical Techniques :Solu tion 2 3 0 0 0 0 T h e re fo re 1, 0 , 2 , 0 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,        y y y y 2 3 0 0 0 0 ( 1) ( 1)( 2) (1) ( ) 2 ! 3 ! n p p p p p P x y p y y y            ( 1)( 2) ( 1)( 2)( 3) ( ) 1 ( 1) (0 ) (2) (0 ) 2 6 n x x x x x P x x                             2 ( ) 1 0 3 2 0n P x x x       
  • 30. Semester :III Mr. Tushar J Bhatt 30 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... 4 ! n n n n n n p p p p p P x y p y y y p p p p y                 (b) Newton Backward Interpolation Formula 1 0 1 W h e re , ... , 1 1 n n n x x p h x x x x p h           
  • 31. Semester :III Mr. Tushar J Bhatt 31 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... (1) 4 ! n n n n n n p p p p p P x y p y y y p p p p y                      E x -1 : C o m p u t e t h e v a lu e o f (7 .5), b y u s i n g s u it a b le in t e r p o la t io n f o r m u la u s in g t h e f o llo w in g d a t a : 3 4 5 6 7 8 ( ) 2 8 6 5 1 2 6 2 1 7 3 4 4 5 1 3 f x y f x :Solu tion W e k n o w th a t th e N -B -I-F is g iv e n b y , G iv e n th a t 8, 7 .5 a n d 1 7 .5 8 0 .5 1 n n x x h x x T h e r e fo r e p h          2 3 4 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n    
  • 32. x y 3 28 4 65 5 126 6 217 7 344 8 513 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 32 Numerical Techniques :Solu tion 37 61 91 127 169 24 30 36 42 6 6 6 0 0 0  2  3  4  5 
  • 33. Semester :III Mr. Tushar J Bhatt 33 Numerical Techniques :Solu tion 2 3 4 5 T h e re fo re 5 1 3, 1 6 9 , 4 2 , 6 , 0 , 0 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,            n n n n n n y y y y y y 2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3) (1) ( ) ... 2 ! 3 ! 4 ! n n n n n n p p p p p p p p p P x y p y y y y                  ( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2) ( ) 5 1 3 ( 0 .5) (1 6 9) (4 2) (6 ) 2 6 n P x                                   ( ) 5 1 3 8 4 .5 5 .2 5 0 .3 7 5n P x                  
  • 34. Semester :III Mr. Tushar J Bhatt 34 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... (1) 4 ! n n n n n n p p p p p P x y p y y y p p p p y                      E x -2 : P o p u la t io n o f a t o w n in t h e c e n s u s is a s g iv e n in t h e d a t a . E s t im a t e t h e p o p u la t io n in t h e y e a r 1 9 9 6 . ( ) 1 9 6 1 1 9 7 1 1 9 8 1 1 9 9 1 2 0 0 1 P o p u la t io n ( ) 4 6 6 6 8 1 9 3 1 0 1 (in t h o u s a n d s) Y e a r x y :Solu tion W e k n o w th a t th e N -B -I-F is g iv e n b y , G iv e n th a t 2 0 0 1, 1 9 9 6 a n d 1 0 1 9 9 6 2 0 0 1 0 .5 1 0 n n x x h x x T h e r e fo r e p h          2 3 4 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n    
  • 35. x y 1961 46 1971 66 1981 81 1991 93 2001 101 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 35 Numerical Techniques :Solu tion 20 15 12 8 -5 -3 -4 2 -1 -3  2  3  4 
  • 36. Semester :III Mr. Tushar J Bhatt 36 Numerical Techniques :Solu tion 2 3 4 T h e re fo re 1 0 1, 8, 4 , 1, 3 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,             n n n n n y y y y y 2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3) (1) ( ) ... 2 ! 3 ! 4 ! n n n n n n p p p p p p p p p P x y p y y y y                  ( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2) ( ) 1 0 1 ( 0 .5) (8 ) ( 4 ) ( 1) 2 6 ( 0 .5) ( 0 .5 1) ( 0 .5 2)( 0 .5 3) ( 3) 2 4 n P x                                                   ( ) 1 0 1 4 .0 0 .5 0 .0 6 2 5 0 .1 1 7 2n P x                       
  • 37. Semester :III Mr. Tushar J Bhatt 37 Numerical Techniques (c) Gauss’s Forward Interpolation Formula 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   x y  2  3  4  2 x  1 x  0 x 1 x 2 x 2 y  1 y  0 y 1 y 2 y 0 y 1 y 1 y   2 y   2 0 y 2 1 y   2 2 y   3 1 y   3 2 y   4 2 y   0 1 0 1 W h ere , in w h ich ... .n n x x p h h x x x x        
  • 38. Semester :III Mr. Tushar J Bhatt 38 Numerical Techniques E x -1 : F in d ( 2 2 ) fro m th e fo llo w in g ta b u la r v a lu e s u sin g G a u ss's fo rw a rd fo rm u la . 2 0 2 5 3 0 3 5 4 0 4 5 3 5 4 3 3 2 2 9 1 2 6 0 2 3 1 2 0 4 f x y S o lu tio n : W e k n o w th a t th e G -F -I-F is g iv e n b y , 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   1            0 0 H e re w e w a n t to fin d ( ) w h e re 2 2, S o 2 2 is lie s in th e in te rv a l [2 5, 3 0 ] , in w h ic h 2 2 is v e ry n e a r to 2 5 ra th e r th a n 3 0 th e re fo re w e c h o o s e 2 5 . 2 2 2 5 3 0 .6 5 5 f x x x x x x p h
  • 39. 2 3 4 5 1 1 1 2 0 0 1 3 0 1 2 4 1 1 0 1 3 5 1 0 1 2 4 2 2 1 0 3 2 1 2 3 3 2 3 4 4 20 354 22 25 332 19 41 29 30 291 10 37 31 8 45 35 260 2 8 29 0 40 231 2 27 45 204 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                               Semester :III 39 Numerical Techniques S o lu tio n :
  • 40. Semester :III 40 Numerical Techniques S o lu tio n : W e have substitute the values of 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   1   0 .6A n d p in th e fo llo w in g eq u atio n ......(1 ) w e g et ( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1) (1) 332 ( 0.6)( 41) ( 19) (29) 2 6 p y                   ( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1) 332 ( 0.6)( 41) ( 19) (29) 2 6 332 24.6 9.12 1.856 349.336 p p p y y y                         
  • 41. Semester :III 41 Numerical Techniques 1 0 1 0 W h e r e , ... 0 .5 3 .2 3 .0 0 .2 0 .4 0 .5 0 .5 n n h x x x x x x p h              E x -2 : F in d t h e v a lu e s o f y w h e n x = 3 .2 f r o m t h e f o llo w in g d a t a u s in g G a u s s 's f o r w a r d in t e r p o la t io n f o r m u la : 2 .0 2 .5 3 .0 3 .5 4 .0 2 4 6 .2 4 0 9 .3 5 3 7 .2 6 3 6 .3 7 1 5 .9 x y :Solu tion W e k n o w th a t th e G -F -I-F is g iv e n b y , 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)(p 2) ( ) ... 2 ! 3 ! 4 ! n p p p p p p p p P x y p y y y y                   1
  • 42. 42 Numerical Techniques 1 x y 1st difference 2nd difference 3rd difference 4th difference 2 2 .0 x 1 2 .5 x 0 3 .0x 1 3 .5x 2 4 .0x 0 5 3 7 .2y 1 409.3 y 2 246.2 y 1 6 3 6 .3y 2 7 1 5 .9y 0 9 9 .1 y 1 7 9 .6 y 1 127.9  y 2 1 6 3 .1  y 2 1 28.8   y 2 2 35.2   y 3 1 9.3  y 3 2 6.4  y 4 2 2.9  y :Solu tion
  • 43. 43 Numerical Techniques :Solu tion N o w w e h a v e 0 .4 a n dp 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)(p 2) (1) ( ) ... 2 ! 3 ! 4 ! n p p p p p p p p P x y p y y y y                        0 .4 (0 .4 1) ( ) 5 3 7 .2 0 .4 9 9 .1 2 8 .8 2 (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 2) 9 .3 2 .9 6 2 4 n P x                                                                 ( ) 5 3 7 .2 3 9 .6 4 3 .4 5 6 0 .5 2 0 8 0 .0 6 4 9 6n P x      ( ) 5 7 9 .8 4n P x  ANSWER S ubstitute all the above values in result ..............(1) w e get
  • 44. Semester :III Mr. Tushar J Bhatt 44 Numerical Techniques (d) Gauss’s Backward Interpolation Formula 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    x y  2  3  4  2 x  1 x  0 x 1 x 2 x 2 y  1 y  0 y 1 y 2 y 0 y 1 y 1 y   2 y   2 0 y 2 1 y   2 2 y   3 1 y   3 2 y   4 2 y   0 1 0 1 W h ere , in w h ich ... .n n x x p h h x x x x        
  • 45. Semester :III Mr. Tushar J Bhatt 45 Numerical Techniques E x -1 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (8 ) fro m th e 0 5 1 0 1 5 2 0 2 5 fo llo w in g ta b le . 7 1 1 1 4 1 8 2 4 3 2 y x y :Solu tion W e k n o w th a t th e G -B -I-F is g iv e n b y , 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    1 0 1 0 0 W h ere ... 5, an d 8 is n ear to th e tab u lar valu e 1 0 th erefo re 1 0 . 8 1 0 2 In w h ich 0 .4 5 5 n n h x x x x x x x x p h                  1
  • 46. 2 3 4 5 2 2 2 2 1 1 2 3 1 2 2 4 0 0 1 2 3 5 0 1 2 2 4 1 1 0 1 3 1 0 2 2 2 1 2 3 3 0 7 4 5 1 1 1 3 2 1 0 1 4 1 1 4 1 0 1 5 1 8 2 1 6 0 2 0 2 4 2 8 2 5 3 2 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                                Semester :III Mr. Tushar J Bhatt 46 Numerical Techniques :Solu tion :Solu tion
  • 47. Semester :III Mr. Tushar J Bhatt 47 Numerical Techniques :Solu tion :Solu tion  N o w w e h a v e 0 .4 a n dp S ubstitute all the above values in result ..............(1) w e get 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) (1) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    
  • 48. Semester :III Mr. Tushar J Bhatt 48 Numerical Techniques :Solu tion :Solu tion ( 0 .4 )( 0 .4 1) (1) 1 4 ( 0 .4 ) (3) (1) 2 ( 0 .4 1)( 0 .4 )( 0 .4 1) ( 2 ) 6 ( 0 .4 1)( 0 .4 )( 0 .4 1)( 0 .4 2 ) ( 1) 2 4 p y                            1 4 1 .2 0 .1 2 0 .1 1 2 0 .0 3 4 1 2 .8 2 6 p p y y        
  • 49. Semester :III Mr. Tushar J Bhatt 49 Numerical Techniques E x -2 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (1 9 7 4 ) fro m th e 1 9 3 9 1 9 4 9 1 9 5 9 1 9 6 9 1 9 7 9 1 9 8 9 fo llo w in g ta b le . 1 2 1 5 2 0 2 7 3 9 5 2 y x y :Solu tion W e k n o w th a t th e G -B -I-F is g iv e n b y , 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    1 0 1 0 0 W h ere ... 1 0, an d 1 9 7 4 is n ear to th e tab u lar valu e 1 9 6 9 th erefo re 1 9 6 9 . 1 9 7 4 1 9 6 9 5 In w h ich 0 .5 1 0 1 0 n n h x x x x x x x x p h                1
  • 50. Semester :III Mr. Tushar J Bhatt 50 Numerical Techniques :Solu tion 2 3 4 5 3 3 3 2 2 2 3 3 2 3 2 4 1 1 2 3 3 5 1 2 3 2 4 0 0 1 2 3 0 1 2 1 1 0 1 2 2 1 9 3 9 1 2 3 1 9 4 9 1 5 2 5 0 1 9 5 9 2 0 2 3 7 3 1 0 1 9 6 9 2 7 5 7 1 2 4 1 9 7 9 3 9 1 1 3 1 9 8 9 5 2 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                                    
  • 51. Semester :III Mr. Tushar J Bhatt 51 Numerical Techniques :Solu tion :Solu tion N o w w e h a v e 0 .5 a n dp S ubstitute all the above values in result ..............(1) w e get 2 3 4 0 1 1 2 2 5 3 ( 1) ( 1) ( 1) ( 1) ( 1)( 2 ) (1) 2 ! 3 ! 4 ! ( 1) ( 1)( 2 )( 2 ) 5 ! p p p p p p p p p p y y p y y y y p p p p p y                           
  • 52. Semester :III Mr. Tushar J Bhatt 52 Numerical Techniques :Solu tion :Solu tion (0 .5 )(0 .5 1) (0 .5 1)(0 .5 )(0 .5 1) (1) 2 7 (0 .5 )(7 ) (5 ) (3) 2 6 (0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 ) ( 7 ) 2 4 (0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )(0 .5 2 ) ( 1 0 ) 1 2 0 p y                                 2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2 3 2 .5 3 2 p p y y
  • 53. Semester :III Mr. Tushar J Bhatt 53 Numerical Techniques :Solu tion :Solu tion          2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2 3 2 .5 3 2 p p y y
  • 54. Semester :III Mr. Tushar J Bhatt 54 Numerical Techniques (c) Stirling’s Interpolation Formula  We have discussed Newton forward and backward interpolation formulae which are applicable for interpolation near the beginning and end respectively, of tabulated values.  They are not suited to estimate the value of a function near the middle of a table.  To obtain more accuracy near the middle of a table, we use central difference interpolation formulae.
  • 55. Semester :III Mr. Tushar J Bhatt 55 Numerical Techniques (c) Stirling’s Interpolation Formula x y 1st difference 2nd difference 3rd difference 4th difference 2 x 1 x 0 x 1 x 2 x 0 y 1 y 2 y 1 y 2 y 0  y 1  y 1  y 2  y 2 0  y 2 1  y 2 2  y 3 1  y 3 2  y 4 2  y
  • 56. Mr. Tushar J Bhatt 56 Numerical Techniques (c) Stirling’s Interpolation Formula 3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                              0 1 0 1 W h e r e , ... n n x x p h x x x x h         1 1 In u s in g t h is f o r m u la , w e s h o u ld h a v e < . 2 2 1 1 G o o d e s t im a t e s w ill b e o b t a in e d if < . 4 4 p p    
  • 57. Semester :III Mr. Tushar J Bhatt 57 Numerical Techniques 1 2 .2 E x -1 : U sin g S tirlin g 's fo rm u la to co m p u t e fro m th e fo llo w in g tab le 1 0 1 1 1 2 1 3 1 4 0 .2 3 9 6 7 0 .2 8 0 6 0 0 .3 1 7 8 8 0 .3 5 2 0 9 0 .3 8 3 6 8 y x y :Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y , 1 3 32 2 2 2 2 40 1 1 2 0 1 2 ( 1) ( 1) ... 2 2 ! 3 ! 2 4 ! p y y y yp p p p p y y p y y                                           0 1 0 1 0 H e r e 1 2 .2 is n e a r t o t h e t a b u la r v a lu e s = 1 2 A n d W h e r e ... 1 , 1 2 .2 1 2 0 .2 1 n n x x h x x x x x x p h
  • 58. 58 Numerical Techniques x y 1st difference 2nd difference 3rd difference 4th difference 2 1 0x   1 1 1x   0 1 2x  1 1 3x  2 1 4x  0 0.31788y  1 0.28060y  2 0.23967y  1 0.35209y  2 0.38368y  0 0 .0 3 4 2 1y  1 0.03159y  1 0.03728y   2 0.04093y   2 0 0.00062y   2 1 0.00307y    2 2 0.00365y    3 1 0.00045y    3 2 0 .0 0 0 5 8y   4 2 0.00013y    :Solu tion
  • 59. 59 Numerical Techniques :Solu tion N o w w e h a v e 0 .5 a n dp S ubstitute all the above values in result ..............(1) w e get                               3 32 2 2 2 2 40 1 1 2 0 1 2 ( 1) ( 1) (1) ... 2 2 ! 3 ! 2 4 ! p y y y yp p p p p y y p y y
  • 60. 60 Numerical Techniques :Solu tion                        2 2 2 2 0 .0 3 7 2 8 0 .0 3 4 2 1 (0 .2) (1) 0 .3 1 7 8 8 (0 .2) ( 0 .0 0 3 0 7 ) 2 2 (0 .2) ((0 .2) 1) 0 .0 0 0 5 8 0 .0 0 0 4 5 (0 .2) ((0 .2) 1) ( 0 .0 0 0 1 3) 6 2 2 4 p y      0 .3 1 7 8 8 0 .0 0 7 1 5 0 .0 0 0 0 6 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p y   0 .3 2 4 9 7p y
  • 61. Semester :III Mr. Tushar J Bhatt 61 Numerical Techniques E x -2 : U sin g S tirlin g 's fo rm u la to co m p u t e tan 1 6 fro m th e fo llo w in g tab le 0 5 1 0 1 5 2 0 2 5 3 0 tan 0 0 .0 8 7 5 0 .1 7 6 3 0 .2 6 7 9 0 .3 6 4 0 0 .4 6 6 3 0 .5 7 7 4 x y x :Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y , 0 1 0 1 0 H e r e 1 6 is n e a r t o t h e t a b u la r v a lu e s = 1 5 A n d W h e r e ... 5 , 1 6 1 5 1 0 .2 5 5 n n x x h x x x x x x p h               3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... (1) 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                               
  • 62. 62 Numerical Techniques :Solu tion x y 0 0 5 0.0875 10 0.1763 15 0.2679 20 0.3640 25 0.4663 30 0.5774  2  3  4  5  6  0.0875 0.0888 0.0916 0.1023 0.1111 0.0961 0.0013 0.0028 0.0015 0.0062 0.0088 0.0045 0.0017 0.0017 0.0026 0.0002 0.0000 -0.0002 0.0009 0.0009 0.0011
  • 63. 63 Numerical Techniques :Solu tion N o w w e h a v e 0 .2 a n dp  S ubstitute all the above values in result ..............(1) w e get 3 5 2 4 61 2 3 0 1 2 33 3 0 1 2 0 .0 9 1 6 0 .0 0 1 7 0 .0 0 0 2 0 .2 6 7 9 0 .0 0 4 5 0 0 .0 0 1 1 0 .0 9 6 1 0 .0 0 1 7 0 .0 0 0 9 y y y y y y y y y y                             3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... (1) 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                               
  • 64. 64 Numerical Techniques :Solu tion             2 2 2 2 2 2 2 0 .0 9 6 1 0 .0 9 1 6 (0 .2) (1) 0 .2 6 7 9 (0 .2) (0 .0 0 4 5) 2 2 (0 .2) (0 .2) 1 (0 .2) (0 .2) 10 .0 0 1 7 0 .0 0 1 7 (0 ) 6 2 2 4 (0 .2) (0 .2) 1 (0 .2) 4 0 .0 0 0 9 0 .0 0 0 2 1 2 0 2 (0 .2) (0 .2) 1 (0 .2) 4 (0 .0 0 1 1) 7 2 0 p y                                          0 .2 6 7 9 0 .0 1 8 7 7 0 .0 0 0 0 9 0 .0 0 0 0 5 0 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p y        0 .2 8 6 7p y 
  • 65. Semester :III 65 Numerical Techniques Interpolation for unequal intervals  The various interpolation formulae derived so far possess the disadvantage of being applicable only to equally spaced values of an interval. It is, therefore desirable to develop interpolation formulae for unequally spaced values of x.  Therefore we shall study the Lagrange’s interpolation formula. Lagrange’s interpolation formula 0 1 0 1 0 11 2 0 1 0 1 0 2 0 1 0 1 2 1 0 1 If y = f (x ) t a k e s t h e v a lu e y , , ..., c o r e s s p o n d in g t o , , ..., t h e n ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( n n nn n n y y x x x x x x x x x xx x x x x x y f x y y x x x x x x x x x x x x x x x x x                      0 1 1 2 2 0 2 1 2 0 1 1 ) ( )( ) ( ) ... ( )( ) ( ) ( )( ) ( ) n n n n n n n n x x x x x x x y y x x x x x x x x x x x x               
  • 66. 66 Numerical Techniques 1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te f(9 ), 5 7 1 1 1 3 u s in g L a g ra n g e 's fo rm u la ( ) 1 5 0 3 9 2 1 4 5 2 2 3 6 6 E x x y f x   :Solu tion          0 1 2 3 0 1 2 3 H e r e g iv e n t h a t 9, 5, 7 , 1 1, 1 3 a n d 1 5 0, 3 9 2, 1 4 5 2, 2 3 6 6 . x x x x x y y y y                                       1 2 3 0 2 3 0 1 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 W e know that the Lagrange's interp olatio n form ula is, ( )( )( ) ( )( )( ) ( )( )( ) y ( )( )( ) ( )( )( ) ( )( )( ) p x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x                   0 1 2 2 3 3 0 3 1 3 2 ( )( )( ) .....(1) ( )( )( ) subtitute all the above values in equation ....(1) w e get x x x x x x y y x x x x x x N ow
  • 67. 67 Numerical Techniques :Solu tion                                                    (9 7 )(9 1 1)(9 1 3) (9 5)(9 1 1)(9 1 3) (1 ) y 1 5 0 3 9 2 (5 7 )(5 1 1)(5 1 3) (7 5)(7 1 1)(7 1 3) (9 5)(9 7 )(9 1 3) (9 5)(9 7 )(9 1 1) 1 4 5 2 2 3 6 6 (1 1 5)(1 1 7 )(1 1 1 3) (1 3 5)(1 3 7 )(1 3 1 1) p                                                           2 ( 2) ( 4) 4 ( 2) ( 4) 4 2 ( 4) 4 2 ( 2) y 1 5 0 3 9 2 1 4 5 2 2 3 6 6 ( 2) ( 6) ( 8) 2 ( 4) ( 6) 6 4 ( 2) 8 6 2 p                                  1 2 2 ( 1) y 1 5 0 3 9 2 1 4 5 2 2 3 6 6 6 3 3 6 p                             1 5 0 7 8 4 9 6 8 2 3 6 6 y 6 3 1 6 p
  • 68. 68 Numerical Techniques :Solu tion                    y 2 5 2 6 1 .3 3 9 6 8 3 9 4 .3 3p  y 8 1 0p                             1 5 0 7 8 4 9 6 8 2 3 6 6 y 6 3 1 6 p
  • 69. 69 Numerical Techniques 2 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te ( 4 ), 2 3 5 6 u s in g L a g ra n g e 's fo rm u la ( ) 1 5 3 0 4 5 6 0 E x f x y f x   :Solu tion          0 1 2 3 0 1 2 3 H e r e g i v e n t h a t 4 , 2, 3, 5, 6 a n d 1 5, 3 0, 4 5, 6 0 . x x x x x y y y y                                       1 2 3 0 2 3 0 1 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 W e kn o w th at th e Lagran ge's in terp o latio n fo rm u la is, ( )( )( ) ( )( )( ) ( )( )( ) y ( )( )( ) ( )( )( ) ( )( )( ) p x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x                   0 1 2 2 3 3 0 3 1 3 2 ( )( )( ) .....(1) ( )( )( ) su b titu te all th e ab o v e v alu es in eq u atio n ....(1) w e get x x x x x x y y x x x x x x N ow
  • 70. 70 Numerical Techniques :Solu tion                                                    (4 3)(4 5)(4 6 ) (4 2)(4 5)(4 6 ) (1 ) y 1 5 3 0 (2 3)(2 5)(2 6 ) (3 2)(3 5)(3 6 ) (4 2)(4 3)(4 6 ) (4 2)(4 3)(4 5) 4 5 6 0 (5 2)(5 3)(5 6 ) (6 2)(6 3)(6 5) p                                           (1)( 1)( 2) (2)( 1)( 2) (2)(1)( 2) (2)(1)( 1) (1 ) y 1 5 3 0 4 5 6 0 ( 1)( 3)( 4 ) (1)( 2)( 3) (3)(2)( 1) (4 )(3)(1) p                              5 2 0 3 0 1 0 (1 ) y 2 1 1 1 p
  • 71. 71 Numerical Techniques :Solu tion  y 3 7 .5p                    y 2 .5 2 0 3 0 1 0p   y 5 0 1 2 .5p
  • 72. Semester :III 72 Numerical Techniques Inverse Interpolation method  For unequal intervals if we want to find the value of x corresponding given y then we will use following Lagrange’s interpolation formula Lagrange’s inverse interpolation formula 0 1 0 1 0 21 2 0 1 0 1 0 2 0 1 0 1 2 1 0 1 If x = f (y ) t a k e s t h e v a lu e , , ..., c o r e s s p o n d in g t o y , , ..., t h e n (y )(y ) (y )(y )(y ) (y ) (y ) (y )(y ) (y ) (y )(y ) (y ) (y )(y ) (y n n nn n n x x x x y y y y yy y y x f x x y y y y y y y y                      0 1 1 2 2 0 2 1 2 0 1 1 ) (y )(y ) (y ) ... (y )(y ) (y ) (y )(y ) (y ) n n n n n n n n y y y y x x y y y y y y               
  • 73. 73 Numerical Techniques 1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s fin d x c o rre s p o n d in g to y= 1 2 , u s in g 1 .2 2 .1 2 .8 4 .1 4 .9 6 .2 L a g ra n g e 's in v e rs e in te rp o la tio n fo rm u la 4 .2 6 .8 9 .8 1 3 .4 1 5 .5 1 9 .6 E x x y :Solu tion 0 1 2 3 4 5 0 1 2 3 4 5 H e r e g iv e n t h a t y 1 2, 1 .2, 2 .1, 2 .8, 4 .1, 4 .9 , 6 .2 a n d 4 .2, 6 .8, 9 .8, 1 3 .4 , 1 5 .5, 1 9 .6 . T a k in g y = 1 2 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's in v e r s e in t e r p o la t io n f o r m u la ; x x x x x x y y y y y y             
  • 74. 74 Numerical Techniques:Solution 1 2 3 4 5 1 2 3 4 5 0 1 0 1 0 2 0 3 0 4 0 5 1 0 1 2 1 3 1 4 1 5 0 1 3 4 5 2 0 2 1 2 3 2 (y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y x f y y y y y y y y y y x x y y y y y y y y y y y y y y y y y y                                    0 1 2 4 5 2 3 4 2 5 3 0 3 1 3 2 3 4 3 5 0 1 2 3 5 0 1 2 3 4 4 4 0 4 1 4 2 4 3 4 5 5 0 5 1 5 (y )(y )(y )(y )(y ) )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y y y y y y x x y y y y y y y y y y y y y y y y y x y y y y y y y                                    5 2 5 3 5 4 )(y )(y ) x y y y   
  • 75. 75 Numerical Techniques:Solution (y ) (1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 1 .2 (4 .2 6 .8 )(4 .2 9 .8 )(4 .2 1 3 .4 )(4 .2 1 5 .5)(4 .2 1 9 .6 ) (1 2 4 .2)(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 2 .1 (6 .8 4 .2)(6 .8 9 .8 )(6 .8 1 3 .4 )(6 .8 1 5 .5)(6 .8 1 9 .6 ) ( x f                          1 2 4 .2)(1 2 6 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 2 .8 (9 .8 4 .2)(9 .8 6 .8 )(9 .8 1 3 .4 )(9 .8 1 5 .5)(9 .8 1 9 .6 ) (1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 5 .5)(1 2 1 9 .6 ) 4 .1 (1 3 .4 4 .2)(1 3 .4 6 .8 )(1 3 .4 9 .8 )(1 3 .4 1 5 .5)(1 3 .4 1 9 .6 ) (1 2 4 .                          2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 9 .6 ) 4 .9 (1 5 .5 4 .2)(1 5 .5 6 .8 )(1 5 .5 9 .8 )(1 5 .5 1 3 .4 )(1 5 .5 1 9 .6 ) (1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5) 6 .2 (1 9 .6 4 .2)(1 9 .6 6 .8 )(1 9 .6 9 .8 )(1 9 .6 1 3 .4 )(1 9 .6 1 5 .5)                      
  • 76. 76 Numerical Techniques :Solution 0.022 0.234 1.252 3.419 0.964 0.055x       3.55x 
  • 77. 77 Numerical Techniques 2 : A p p ly L an g ran g es fo rm u la in versely to o b tain a ro o t o f th e eq u atio n ( ) 0, g iven th at (3 0 ) -3 0, (3 4 ) 1 3, (3 8) 3 an d (4 2 ) 1 8 .        E x f x f f f f :Solu tion 0 1 2 3 0 1 2 3 H e r e g iv e n t h a t y 0, 3 0, 3 4 , 3 8, 4 2 a n d 3 0, 1 3, 3, 1 8 . T a k in g y = 0 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's in v e r s e in t e r p o la t io n f o r m u la ; x x x x y y y y           
  • 78. 78 Numerical Techniques:Solution 1 2 3 0 2 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 0 1 3 0 1 2 2 3 2 0 2 1 2 3 3 0 3 1 3 2 (y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) x f y y y y y y x x y y y y y y y y y y y y x x y y y y y y                                   (0 1 3)(0 3)(0 1 8 ) (0 3 0 )(0 3)(0 1 8 ) 3 0 3 4 ( 3 0 1 3)( 3 0 3)( 3 0 1 8 ) ( 1 3 3 0 )( 1 3 3)( 1 3 1 8 ) (0 3 0 )(0 1 3)(0 1 8 ) (0 3 0 )(0 1 3)(0 3) 3 8 4 2 (3 3 0 )(3 1 3)(3 1 8 ) (1 8 3 0 )(1 8 1 3)(1 8 3) x                                       
  • 79. 79 Numerical Techniques :Solution (1 3)( 3)( 1 8 ) (3 0 )( 3)( 1 8 ) 3 0 3 4 ( 1 7 )( 3 3)( 4 8 ) (1 7 )( 1 6 )( 3 1) (3 0 )(1 3)( 1 8 ) (3 0 )(1 3)( 3) 3 8 4 2 (3 3)(1 6 )( 1 5) (4 8 )(3 1)(1 5) x                      0.782 6.532 33.682 2.202x      3 7 .2 3x 
  • 80. 80 Numerical Techniques N ew ton - D evided D ifference Form ula 0 1 0 1 1 0 0 1 1 0 L e t f (x ) b e g iv e n a t (n + 1 ) d is t in c t p o in t s x , , ..., . W e d e f in e t h e f ir s t d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x a n d x a s ( ) ( ) f (x , ) .........(1) n x x f x f x x x x    1 0 1 2 1 2 0 0 1 2 2 0 T h e s e c o n d d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x , x a n d x is d e f in e a s ( , x ) ( , x ) f (x , , x ) ........(2) f x f x x x x    11 2 0 1 0 1 2 0 a n d in g e n e r a l th e n d iv id e d d if f e r e n c e is d e f in e a s ( , x ,..., x ) ( , x ,...., x ) f (x , , x ,...., x ) ........(3) th n n n n f x f x x x x    
  • 81. 81 Numerical TechniquesDevided Difference Table 0 0 1 0 0 1 1 0 1 1 1 2 0 1 0 1 2 2 0 2 1 1 2 3 0 1 2 1 2 0 1 2 3 2 1 3 0 2 2 2 3 1 2 1 2 3 3 1 ( ) 1 2 3 ( ) ( ) ( , x ) ( ) ( , x ) ( , x ) ( , x , x ) ( ) ( ) ( , x , x ) ( , x , x ) ( , x ) ( , x , x , x ) ( ) ( , x ) ( , x ) ( , x , x ) ( st n d rd x f x D D D D D D f x f x f x x x x f x f x f x f x x x f x f x f x f x f x f x x x x x x f x f x f x f x x x f x                3 2 2 3 3 2 3 3 ( ) ( ) , x ) ( ) f x f x x x x f x   
  • 82. 82 Numerical Techniques N ew ton-D evided D ifference Form ula 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 E x -1 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d 1 0 2 5 1 0 f(1 ) a n d f(9 ) fo rm th e fo llo w in g ta b le : . 2 1 7 1 2 4 9 9 9 x y    :Solution
  • 83. 83 Numerical Techniques :Solu tion 1 2 3 4 1 2 1 2 1 0 1 0 1 4 1 1 2 1 7 1 7 1 4 1 2 0 5 1 2 7 3 9 4 1 1 7 0 5 0 1 0 1 1 2 4 7 1 7 7 3 9 1 5 2 1 0 0 5 1 2 4 1 7 5 3 9 1 7 1 0 2 9 9 9 1 2 4 1 7 5 1 0 5 1 0 9 9 9 s t n d r d th x y D D D D D D D D                                  
  • 84. 84 Numerical Techniques :Solu tion 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 ( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x               T o fin d : f(1 ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1) (1) 2 (1 1) (1) (1 1)(1 0 ) (1) (1 1)(1 0 )(1 2) (1) (1) (1) 2 2 2 2 (1) (1) 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ f P f P f P                           _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  • 85. 85 Numerical Techniques :Solu tion ( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x               T o fin d : f(9 ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (9) (9) 2 (9 1) (1) (9 1)(9 0 ) (1) (9 1)(9 0 )(9 2) (1) (9) (9) 2 1 0 1 1 0 9 1 1 0 9 7 1 (9) (9) 2 1 0 9 0 6 3 0 (9) f P f P f P f P                                       (9) 7 2 8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
  • 86. 86 Numerical Techniques E x -2 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d 1 0 1 3 th e p o ly n o m ia l s a tis fy in g th e d a ta : . ( ) 2 1 0 1 x f x y    :Solution
  • 87. 87 Numerical Techniques:Solution 1 2 3 1 2 1 2 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 11 0 6 3 1 2 4 1 0 1 1 12 3 0 6 1 0 1 3 1 2 3 1 s t n d r d x y D D D D D D                          
  • 88. 88 Numerical Techniques:Solution 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 2 3 3 3 3 1 ( ) 2 ( x 1) ( 1) ( x 1) ( x 0 ) (0 ) ( x 1) ( x 0 ) ( x 1) 2 4 1 ( ) 2 1 0 ( 1) 2 4 1 ( ) 2 1 0 ( ) 2 4 ( ) 2 1 0 2 4 2 4 2 5 ( ) 1 2 4 2 4 2 5 2 4 ( ) 2 4 P x P x x x x P x x x x x x P x x x x P x x x P x                                             
  • 89. 89 Numerical Techniques T he O p erators:  (1) D iffe re n c e O p e ra to rs ( , a n d ) : (a) T h e F o rw ard d ifferen ce o p erato r is d e n o ted b y , d efin ed as ( ) ( ) ( ). (b ) T h e B ack w ard d ifferen ce o p erato r is d en o ted b y , d efin ed as ( ) ( ) ( ). (c ) T h e C en tral d ifferen ce o p erato r i f x f x h f x f x f x f x h           s d en o ted b y , d efin ed as ( ) 2 2 W h ere 'h ' is th e d ifferen ce b etw een th e co n secu tive valu es o f th e in d ep en d en t va riab le "x " is called th e in terval o f d ifferen cin g . h h f x f x f x                
  • 90. 90 Numerical Techniques 2 2 2 2 2 2 2 N o w ( ) ( ( )) ( ) ( ) ( ) [ ( 1)] ( ......(1)) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......(1)) ( ) ( 1) [ ]..................( 2 ) x x x x h x h x h x h x h x h x f x f x e e e e e fr o m e e e e e e e e fr o m e e e                                  1 E x -1 : E v a lu a te th e fo llo w in g ( ) ( e ) ( ) (lo g ) ( ) (ta n ). : n x i ii x iii x S o lu tio n H ere w e k n o w th at h e d ifferen tial o p erato r ( ) ( ) ( ).f x f x h f x    ( ) ( ) ( ) x x h x h i L e t f x e th e r e fo r e f x h e e e      ( ) ( ) ( ) ( ) ( 1).................(1) x x h x x h f x f x h f x e e e e e e          
  • 91. 91 Numerical Techniques 3 2 3 2 3 2 3 2 3 2 3 3 ( ) ( ( )) ( ) ( ) ( ) [( 1) [ ] ( ......( 2 )) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......( 2 )) ( ) ( 1) [ ]..................(3) x x x h x x h x h x h x h x h x S im ila r ly f x f x e e e e e fr o m e e e e e e e e fr o m e e e                              F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral ( ) ( 1) [ ] n x h n x e e e   
  • 92. 92 Numerical Techniques 3 2 3 2 3 2 3 2 3 2 3 3 ( ) ( ( )) ( ) ( ) ( ) [( 1) [ ] ( ......( 2 )) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......( 2 )) ( ) ( 1) [ ]..................(3) x x x h x x h x h x h x h x h x S im ila r ly f x f x e e e e e fr o m e e e e e e e e fr o m e e e                              F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral ( ) ( 1) [ ] n x h n x e e e   
  • 93. 93 Numerical Techniques ( ) ( ) lo g ( ) a n d ( ) lo g ( ) w e k n o w th a t ( ) ( ) - ( ) ( ) ( ) ( ) .........(1) ( ) ( ) - ( ) lo g ( ) lo g ( ) lo g ( ) ( ) lo g ( ) lo g ( ) ( ) lo g ( ) lo g ii L e t f x f x f x h f x h b u t f x f x h f x f x h f x f x N o w f x f x h f x f x f x h f x f x h f x f x f x f x                                   ( ) ( .......(1) ) ( ) ( ) lo g ( ) lo g 1 ( ) f x fr o m f x f x f x f x               
  • 94. 94 Numerical Techniques 1 1 1 1 1 1 1 1 1 1 1 1 ( ) ( ) ta n a n d ( ) ta n ( ) ( ) ( ) - ( ) ta n ta n ( ) ta n ta n ta n ta n ta n ta n 1 ( ) 1 ta n ta n 1 ( ) iii L e t f x x f x h x h N o w f x f x h f x x x h x x h x x x x h h x x x h                                                               
  • 95. 95 Numerical Techniques (2) S h ift O p e ra to r (E ) : T h e sh ift o p erato r is d en o ted b y E , d efin ed as E ( ) ( ).f x f x h  2 N o w E ( ) ( ( )) ( ( )) ( ) ( 2 )f x E E f x E f x h f x h h f x h        3 2 S im ilarly E ( ) ( ( )) ( ( 2 )) ( 2 ) ( 3 )f x E E f x E f x h f x h h f x h        1 In g e n e ra l E ( ) ( ) E ( ) ( ) E ( ) ( ) n n f x f x n h f x f x h a n d f x f x n h            R e la tio n b e tw e e n D iffe re n c e o p e ra to r a n d S h ift o p e ra to r H ere w e k n o w th at h e d ifferen ce o p erato r ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) 1 1 f x f x h f x f x E f x f x f x E f x E o r E                   
  • 96. 96 Numerical Techniques (3) D iffe re n tia l O p e ra to r (D ) : T h e D iffeen tial o p erato r is d en o ted b y D , d efin ed as D ( ) ( ) '( ). d f x f x f x d x   2 N o w D ( ) "( )f x f x 3 S im ilarly D ( ) "'( )f x f x In g en eral D ( ) ( ). n n f x f x  R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r 2 3 2 3 2 3 T a ylo r's se rie s w e h a v e , ( ) ( ) '( ) "( ) "'( ) ... 2 ! 3 ! ( ) ( ) ( ( )) ( ( )) ( ( )) .... 2 ! 3 ! B y h h f x h f x h f x f x f x h h E f x f x h D f x D f x D f x            
  • 97. 97 Numerical Techniques R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r 2 2 3 3 2 2 3 3 2 2 3 3 ( ) ( ) 1 ..... 2 ! 3 ! 1 ..... 2 ! 3 ! 1 ..... 2 ! 3 ! 1 ( 1 ) . h D h x h D h D h D E f x f x h D h D h D E h D h x h x E e e h x o r e E                                   
  • 98. 98 Numerical Techniques (4 ) A v e ra g in g O p e ra to r ( ) : 1 T h e averan g in g o p erato r is d en o ted b y , d efin ed as ( ) . 2 2 2 h h f x f x f x                    R e la tio n b e tw e e n A v e ra n g in g o p e ra to r a n d S h ift o p e ra to r   1 1 2 2 1 1 2 2 1 ( ) 2 2 2 1 ( ) ( ) ( ) ( ) ( ) 2 1 2 n h h f x f x f x f x E f x E f x E f x f x n h E E                                          
  • 99. 99 Numerical Techniques                 1 1 1 1 2 2 2 E x -1 : P ro v e th a t (i) 1 ( ) ( ) ( )E ii E E iii E E iv E Proof: W e k n o w th at ( ) ( ) ( )......(1) ( ) ( ) ( )......( 2 ) ( ) ......(3) 2 2 f x f x h f x f x f x f x h h h f x f x f x                        E ( ) ( )......( 4 )f x f x h  1 ( ) ......(5 ) 2 2 2 h h f x f x f x                  
  • 100. 100 Numerical Techniques     1 1 1 1 1 ( ) T o p ro v e : 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) 1 . i E f x f x f x h f x f x E f x E f x f x h f x E f x E                           
  • 101. 101 Numerical Techniques 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 ( ) T o p ro v e : ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ii E E h h f x f x f x f x E f x E f x f x E E f x E E                                         
  • 102. 102 Numerical Techniques         ( ) T o p ro v e : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iii a E E f x E f x E f x E f x f x h E f x E f x E f x h E f x f x h f x h h E f x f x h f x E f x f x E                                     
  • 103. 103 Numerical Techniques     ( ) T o p ro v e : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iii b E E f x E f x E f x f x h E f x f x h f x E f x f x E                        
  • 104. 104 Numerical Techniques 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 ( ) T o p r o v e : ( ) ( ) ( ) 2 ( ) 2 2 2 2 ( ) ( ) ( ) ( ) ( ) . iv E E f x E f x h E f x f x h h h h E f x f x f x E f x f x h f x E f x f x E                                                          
  • 105. 105 Numerical Techniques                        2 1 12 2 2 2 2 2 2 E x -2 : P ro v e th a t ( ) 1 1 ( ) 1 ( ) ( ) 2 4 2 2 i ii iii E iv E Proof:         1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 2 2 1 2 2 2 1 2 1 ( ) W e k n o w th at = an d 2 1 2 1 2 1 2 1 2 4 i E E E E E E E E E E E E E E E E                                                         
  • 106. 106 Numerical Techniques  2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 1 2 2 1 1 2 1 4 2 4 1 4 2 1 4 1 ......(1) 2 E E E E E E E E E E E E                                           2 1 12 2 2 2 1 2 1 2 1 N o w 1 1 1 2 2 1 1 1 2 2 2 2 2 1 2 2 1 ......( 2 ) 2 2 E E E E E E E E                                   2 1 2 2 2 2 2 2 F ro m ......(1 ) an d ......(2 ) w e h ave , 1 2 1 1 2 E E                       