1
                                                          2
                 JSTS Mathematics




                                                      4
0011 0010 1010 1101 0001 0100 1011
              Chapter : Indices and Surds

                         Presented by: Himani Asija
                               (P.G.T. Math,
                             Dps Vasant Kunj)


                                                          1
Indices and Surds
0011 0010 1010 1101 0001 0100 1011
                   Index, exponential, power




           a×a = a 1
                                                2
                                            2

                                     Base

                                            4   2
Indices Rule 1
          a ×a
             2         3
0011 0010 1010 1101 0001 0100 1011



          = a×a×a×a×a
          =a
                                              1
                                                       2
                 5




                                              4
                 2+3
          =a
                                                m+ n
                                     a ×a = a
                                      m   n

                                                       3
Indices Rule 2
              a ÷a
                 5         3
0011 0010 1010 1101 0001 0100 1011



                a×a×a×a×a


                                                  2
              =
                  a×a×a
                                              1
                                          4
              = a×a
                                                m−n
              =a     2               a ÷a = a
                                      m   n


                     5−3
              =a                                  4
Indices Rule 3
                5 3
           (a )
0011 0010 1010 1101 0001 0100 1011


                                           From Rule 1




                                                         2
           = a ×a ×a
                  5         5        5
                                          a ×a = a
                                           m    n        m+ n



                                                    1
                                                4
                  5+ 5+ 5
           =a
           =a     15
                                         (a ) = a
                                          m n       mn

                  5×3
           =a                                               5
Indices Rule 4
       a ×b
          3      3
0011 0010 1010 1101 0001 0100 1011


       = a×a×a×b×b×b

                                              1
                                                    2
       = (a × b)(a × b)(a × b)




                                              4
       = ( a × b)    3




                                     a × b = (ab)
                                      m   m         m

                                                        6
Indices Rule 5
        a ÷b
          3     3
0011 0010 1010 1101 0001 0100 1011

          a×a×a
        =




                                                    2
          b×b×b
           a a a
                                                1
                                               4
        = ( )( )( )
           b b b
           a 3
        =( )
           b                         a ÷ b = ( a ÷ b)
                                      m    m            m



                                                            7
Indices Rule 6, 7
                 3 = 27
                   3
0011 0010 1010 1101 0001 0100 1011
                                     ÷3
                 3 =9
                   2                       a =10




                                                        2
                                     ÷3               1


                                                    1
                                               −m
                 3 =3
                   1                       a        = m
                                     ÷3              a




                                           4
                    1
                 3 =?
                   0

                   −1    1           ÷3
                 3 =?    3
                   −2
                 3 =?
                          1 1
                           = 2
                                      ÷3
                          9 3
                   −3
                 3 =?
                         1   1
                           = 3        ÷3                  8
                         27 3
Indices Rule 8
            1 2        1
                
0011 0010 1010 1101 0001 × 2
                         0100 1011
        a  2    =a   2                 1
                
                                   a = a
                                         n    n




                                                       1
                                                             2
                 2                       m
       1                           a   n
                                             = a
                                              n    m
                                                       =( a)
                                                         n     m




                                                  4
      a2  = a
       
       
             1
          a = a= a
             2       2



                                                             9
Irrational Number
0011 0010 1010that 0001 0100 1011
  •Number 1101 cannot be expressed   as a fraction
  of two integers



           2
                                                     2
                                          6




                                              1
         π                  1
                             2           4           10
Think!
 Which of the following is NOT a irrational number?
                                                    2



                                                  x
                                          1 
                                         3   
0011 0010 1010 1101 0001 0100 1011


         25
             x                            27                1 2 1
                                                             ( ) =




                                                                2
                                                              3    9
 5=
    5
                                26                         1
                                                         4
                   1

                                                     Irrational number
    1
                   27




                                                           1

                                                               x
                                     Irrational number
                                                           36
                                                                         11
Surd Rules
       1        1        1 1           1   1       1
                           +
0011 0010 1010 1101 0001 0100 1011
    a ×a = a
       m        n        m n         (a ) = a
                                       m   n       mn




                                                   1
                                                        2
       1        1        1 1          1        1        1
                          −
    a ÷a = a
       m        n        m n         a × b = (ab)
                                      m        m        m




                                                   4
      1       1                 1
    a ÷ b = ( a ÷ b)
      m       m                 m


                    We can use the above rules to:
                      • simplify two or more surds or
                      •combining them into one single surd
                                                         12
Simplify each of the following surds


                 27 + 243
0011Ques.11010 1101 0001 0100 1011
     0010




                                                           2
               = 9 × 3 + 81× 3                       1     1        1
                                                  (ab) = a × b
                                                     m     m        m



                   (         ) (              )
                                                    1
                                                  4
               =       9× 3 +        81 × 3

               =3 3 +9 3
                                       Common Factor : 3
               = 3 (9 + 3)

               = 12 3                                          13
Simplify each of the following surds

 Question 2
                  175 + 112 − 28
0011 0010 1010 1101 0001 0100 1011


              = 25 × 7 + 16 × 7 − 4 × 7               1   1      1




                                                          2
                                                  (ab) = a × b
                                                      m   m      m



              =   (         ) (      ) (
                      25 × 7 + 16 × 7 −    4× 7
                                                  1
                                                  )



                                             4
              =5 7 +4 7 −2 7
                                           Common Factor : 7
              = 7 (5 + 4 − 2)

              =7 7
                                                          14
Simplify each of the following surds


                 4 3 × 12 ÷ 27
0011 0010 1010 1101 0001 0100 1011
 Question 3




                                             2
                 = 4 3 × 4 × 3 ÷ 3× 9

                 = 4 3×2 3 ÷3 3
                                         1
                                         4
                 = 3 (4 × 2) ÷ 3


                                     x
                   8 3    2 3
                 =     =2
                    3      3
                                             15
Simplify each of the following surds

Question 4
                 2 0001 0100 27 ÷ 343
0011 0010 1010 1101
                    21 × 1011
                    3
                 21× 27
              =2




                                                   2
                  343 49
                  3 × 27
                                               1
                                           4
               =2
                    49
                   81
              = 2(    )
                   49
                 2 81         2× 9         4
               =            =           =2
                   49          7           7       16
Simplify each of the following surds


  Question 5     8 3 ÷ 2 48 × 243
0011 0010 1010 1101 0001 0100 1011




                                                         2
              = 8 3 ÷ 2 16 × 3 × 81× 3

               = 8 3 ÷ 2( 16 ) 3 ×   ( ) ( 81)   3
                                                     1
                                                 4
                          ( )
              = 8 3 ÷8 3 ×9 3

               =9 3

                                                         17
Simplify each of the following surds
   Question 6


   (2     3 +3 2          )   2
0011 0010 1010 1101 0001 0100 1011

                   (2 a) 2 + 2ab3 ) (3 2 ) +(3 b) 2
 = ( 2 a3 + 3b2 ) = 3         (2  2            2




                                                                 2
 = ( 2)       ( 3)   2
                             (          )
                         + 2( 2 × 3) 3 × 2 + (3) 2 ( 2 ) 2

                                                             1
          2



 = ( 4 )( 3) + 2( 2 × 3) ( 6 ) + (9)(2)




                                                             4
 = 12 + 12( 6 ) + 18

 = 6(5 + 2 6 )


                                                                 18
Simplify each of the following surds
 Question 7



    ( 2 + 3 ) − (3 − 3 )
0011 0010 1010 1101 0001 0100 1011 2
                 2




                                                                        1
                                                                                  2
      =( 2 + 3 )
             a     2
                       −(3 − 3 )
                             b     2
                                       =     (2 +a 3 + 3 −b 3 )( 2 + 3 −(3 −b 3 ) )
                                                                   a




                                                                  4
                                              (
                                       = ( 5) 2 − 3 + 3 + 3       )
                                       = ( 5) ( − 1 + 2 3 )

                                       = 5(2 3 − 1)
                                                                                      19
Simplify each of the following surds
 Question 8

                   (2     3
                              ) (
                        3 −1 + 1− 4 3
0011 0010 1010 1101 0001 0100 1011              )   2



               (         )(             )
                                1 − 2(1) 4 3 + 4 3 2 
                                            2
                                                        (    ) ( )



                                                                         2
              = 2 3 −1 2 3 −1 +                      
                                                     



                                                                     1
               (         )(  2
              = 2 3 −1 2 3 −1 + 
                                
                                        )
                                1 − 8 3 + 4 3 2 
                                                 
                                                 
                                                            ( )




                                                                 4
                (             )(            )                (
                        2 3 2 − 4 3 + 1 + 1 − 8 3 + (16 × 3)
              = 2 3 −1 
                       
                                        
                                        
                                                                         )
                    (              )(
              = 2 3 − 1 13 − 4 3 + 49 − 8 3     ) (                  )
              = 26 3 − 24 − 13 + 4 3 + 49 − 8 3
              = 22 3 + 12 = 2(11 3 + 6)                                  20
Rationalization of the Denominator
 •Process of removing a surd from the denominator
0011 0010 1010 1101 0001 0100 1011
                   1
 •Example:
                    2



                                                          1
                                                              2
                 1
               =    ×1           =
                                        2




                                                          4
                  2                     2
                1    2
              =    ×
                                     Multiply together!
                 2   2

                        2          2
              =                 =
                  ( 2 )( 2 )      2                           21
2        2
 •Example:                 =     ×1                                    3 −2
                    3+2                                           =
                             3+2                                       3 −2
                               2     3−2                               Note!
0011 0010 1010 1101 0001 0100 1011 ×
                          =
                              3+2    3−2                          Multiply together!

                                       (                )


                                                                                       2
     Objective is                   2 3−2
                           =
       to remove
                               (           )(                 )       Conjugate Surds




                                                                            1
      surds from                   3+2 3−2
     denominator
                                   (            )



                                                                      4
                                   2 3−2
                          =
                             ( 3 ) − ( 2)
                                       2            2             (a + b)(a − b) = a 2 − b 2


                            2( 3 − 2 ) 2                      3−4
                          =            =
                               ( 3 − 4)                     ( − 1)
                          = −2 3 + 4                                                      22
Re-look into the question:                       2
                                                 3+2
0011 0010 1010 1101 0001 0100 1011      2    3−2
     Multiply conjugate              =     ×
           surds                       3+2   3−2




                                                                              2
                                                     (
                                                  2 3−2               )
                                                                      1
                                     =
   Multiply denominator
                                         (       3+2 3−2 )(               )



                                                         4
     and numerator


                                     =
                                             (
                                             2 3−2            )
   (a + b)(a − b) = a − b
                    2       2            ( 3)    2
                                                     − ( 2)
                                                                  2



                                       2 3−4
                                     =       = 4−2 3
                                         −1          23
Question                                         2
 Rationalize the denominators:                   7 −2
0011 0010 1010 1101 0001 0100 1011      2     7 +2
      Multiply conjugate             =      ×
            surds                      7 −2   7 +2




                                                                              2
                                                     (
                                                  2 7 +2              )
                                                                          1
                                     =
   Multiply denominator
                                         (               )(
                                                 7 −2 7 +2                )



                                                                      4
     and numerator


                                     =
                                             (
                                             2 7 +2           )
  (a + b)(a − b) = a − b
                   2       2             ( 7)    2
                                                     − ( 2)
                                                                  2




                                     =
                                       2 7 +2(=
                                                2 7 +2            )       (   )
                                        7−4       3 24
Question                                 3 −3
  Rationalize the denominators:            3 −1

0011 0010 1010 1101 0001 0100 1011      3 −3   3 +1
     Multiply conjugate               =      ×
           surds                        3 −1   3 +1




                                                                             2
                                       (   3 −3    )(    3 +1        )
                                                                         1
                                     =
   Multiply denominator
                                       (   3 −1    )(    3 +1        )



                                                           4
     and numerator


                                     =
                                       ( 3)   2
                                                  + 3 −3 3 −3
                                              ( 3)   2
                                                         − (1)
                                                                 2

        (a + b)(a − b) = a 2 − b 2


                                     =
                                       3− 2 3 −3 − 2 3
                                                =      =− 3
                                                             (           )
                                          3 −1     2    25
Question                                2 2 +1
 Rationalize the denominators:           4 2 −3

                                         2 2 +1                4 2 +3
                                     =                 ×
      Multiply conjugate
0011 0010 1010 1101 0001 0100 1011
                                         4 2 −3                4 2 +3
             surds




                                                                        2
                                         2 2 +1                4 2 +3
                                     =                 ×



                                                                1
   Multiply denominator                  4 2 −3                4 2 +3
     and numerator




                                                       4
                                     =
                                         (2         )(
                                               2 +1 4 2 + 3 )
                                              (4 2 ) − ( 3)
                                                   2       2



        (a + b)(a − b) = a 2 − b 2
                                     =
                                         (16 + 6    2 +4 2 +3     )
                                                   32 − 9

                                         19 + 10 2                      26
                                     =
                                             23
Question                      3 2 −2 3
 Rationalize the denominators: 3 2 + 2 3
                                              3 2 −2 3                         3 2 −2 3
                                          =                                ×
      Multiply conjugate
0011 0010 1010 1101 0001 0100 1011
                                              3 2+2 3                          3 2 −2 3
               surds
                                              (3    2 −2 3 ⋅ 3 2 −2 3  )(                   )




                                                                                                2
                                      =
                                              (3    2 +2 3 ⋅ 3 2 −2 3  )(                   )

                                                                                   1
   Multiply denominator
     and numerator                             (3                  )   2




                                                                               4
                                                    2 −2 3
                                      =
                                              (3 2 ) − ( 2 3 )
                                                     2                     2




  (a + b)(a − b) = a 2 − b 2
                                      =
                                        (3 2 )      2
                                                           (     )( ) (
                                                         −23 2 2 3 + 2 3            )   2



                                                         (3 2 ) − ( 2 3 )
                                                               2               2


                     1     1      1
                   a × b = (ab)
                     m     m      m
                                      =
                                          ( 9 × 2) − 12 6 + ( 4 × 3)
                                                ( 9 × 2 ) − ( 4 × 3)
                                        30 − 12 6
                                      =           = 5−2 6                                       27
                                             6
Question                                                        7 3+2 5
 Rationalize the denominators:                                   3 5 −2 3

0011 0010 1010 1101 0001 0100 = 7 3 + 2
      Multiply conjugate      1011                5 3 5+2 3
                                                   ×
                                            3 5−2 3 3 5+2 3
              surds
                                            (7           )(        )




                                                                                2
                                                 3+2 5 3 5+2 3
                                        =
                                            (3           )(
                                                 5−2 3 3 5+2 3     )




                                                                            1
                                            (21 15 + 42 + 30 + 4 15 )
     Multiply denominator               =
                                                    ( 45 − 12)




                                                                            4
       and numerator
                                            25 15 + 72
                                        =
                                               33




           (a + b)(a − b) = a 2 − b 2


                                                                                28
Question Rationalize the denominators:

                                               1      1
                                                   +
     Determine the LCM
0011 0010 1010 1101 0001 0100 1011            3+ 7   3− 7
       (   3+ 7   )(   3− 7   )




                                                                            2
                                          1   (      3− 7   )           1   (       3+ 7   )
                                       =      (             ) +             (              )


                                                                       1
   Multiply denominator                  3+ 7
                                                     3− 7
                                                                       3− 7
                                                                                    3+ 7

     and numerator




                                                                  4
                                        3− 7                   3+ 7
                         =                     +
                                 (       )(
                                     3+ 7 3− 7      ) (           )(
                                                            3+ 7 3− 7           )
                           3− 7+ 3+ 7                    2 3
                         =
                             (
                           3+ 7 3− 7    )(      )      =
                                                         3−7
                                                         2 3     3
                                                       =     =−
                                                          −4    2                   29
Question
                                                                        3− 5      3+ 5
  Rationalize the denominators:                                                 +
                                                                      ( 5 + 3) ( 3 − 5)2
                                                                              2


 Expand the denominators  =
0011 0010 1010 1101 0001 0100 1011
                                                               3− 5
                                                                              +
                                                                                        3+ 5
                                                      ( 5 )2 + 2 5 3 + ( 3)2 ( 3)2 − 2 3 5 + ( 5 )2
                                                                 3− 5         3+ 5




                                                                                            2
                                                            =             +
                      =
                            3− 5
                                    +
                                       3+ 5                   5 + 2 15 + 3 3 − 2 15 + 5
                          2(4 + 15 ) 2(4 − 15 )




                                                                                   1
                                                             3− 5        3+ 5
                                                        =            +
                                                           8 + 2 15 8 − 2 15




                                                                              4
Find the LCM 24( 4 − ) 15 )(+ + 15 )+
          3− 5 ( − 15     3
                            4
                              5  (4                      15 )
          =               ×          +            ×
              2(4 + 15 ) (4 − 15 )       2(4 − 15 ) (4 + 15 )




                         (12 − 3 15 − 4 5 + 75 ) + (12 + 3 15 + 4 5 + 75 )
                       =
                                            2(16 − 15)
                        2(12 + 75 )
                      =                                         = 12 + 5 3                     30
                            2(1)
Question                      5+3 2 3− 2
                                      +
 Rationalize the denominators: 4 − 2 5 4 − 2 5

0011 0010 1010 1101 0001 0100 1011       5+3 2 +3− 2
                                     =
                                            4−2 5




                                                                    2
       Same denominator                8+ 2 2 4+ 2 5
                                     =       ×



                                                                1
                                       4−2 5 4+2 5




                                                          4
                                         (8 + 2 2 )(4 + 2 5 )
                                     =
                                         (4 − 2 5 )(4 + 2 5 )
       Rationalization
                                         32 + 16 5 + 8 2 + 4 10
                                     =
                                                 16 − 20

                      32 + 16 5 + 8 2 + 4 10
                  =                          = −8 − 4 5 − 2 2 − 10
                                −4                                   31
 5+ 3                1
                                                               Find k + 2
                                                                        2
                                              k =     
  Question : given                                5− 3
                                                                     k
                                                                        1
         5+ 3
                                   2                               k + 2
                                                                     2

    k =
     2
                                                                      k
         5− 3
               
0011 0010 1010 1101 0001 0100 1011                           8 + 2 15 8 − 2 15
                                                           =         +
   k2          =
                 (   5+ 3  )   2
                                                             8 − 2 15 8 + 2 15




                                                                                                                         2
                 (   5−   3)
                               2
                                    1 8 − 2 15
                                      =                      (8 + 2 15 ) (        8 + 2 15   )+        (8 − 2 15 )       (8 − 2 15 )
                                                           =
                                                             (8 − 2 15 ) (                             (8 + 2 15 )
                                   k 2 8 + 2 15




                                                                                                        1
                                                                              ×                                      ×
                                                                                  8 + 2 15   )                           (8 − 2 15 )
             (5 + 2       15 + 3       )




                                                                                             4
   k   2
           =
             (5 − 2       15 + 3       )                    =
                                                              (8 + 2 15 ) + (8 − 2 15 )
                                                                          2                        2


                                                                 (8 − 2 15 )(8 + 2 15 )
       k =
           8 + 2 15
           2                                               =
                                                               (64 + 32
                                                                      15 + 60 + 64 − 32 15 + 60   ) (                                  )
           8 − 2 15                                                        ( 64 − 60)
                                        1       1          =
                                                             (124 + 124)
                                          =
                                       k 2 8 + 2 15              ( 4)
                                            8 − 2 15           248
                                                           =       = 62                                                       32
                                                                4
1       1
            OR                                          =
                                       Rationalize   k 2 31 + 8 15

           5+ 3     k First
                         2
                                                                 1     31 − 8 15
     k2 =                                            =             ×
           5− 3                                           31 + 8 15 31 − 8 15
                
0011 0010 1010 1101 0001 0100 1011

  k2 = [
               (
              5+ 3
                   2

                        ]2    )                       =
                                                              31 − 8 15
            (       )(
            5− 3 5+ 3                   )                  ( 961 − 64 × 15)                1




                                                                                          2
                                                                                       k + 2
                                                                                         2
           (5 + 2 15 + 3)                                   31 − 8 15                     k

                                                                                1
 k2 = [                           ]2                   =
              ( 5 − 3)                                     ( 961 − 960)




                                                                        4
                                                                              = 31 + 8 15 + 31 − 8 15
            8 + 2 15
  k2 = [                 ]2                               = 31− 8 15          = 62
                2

 k 2 = (4 + 15 ) 2 = 16 + 2 × 4 × 15 + 15
                     = 31+ 8 15




                                                                                              33
Homework
0011 0010 1010 1101 0001 0100 1011




                                                                   2
                                  Find an


                                                               1
                                  attached




                                                      4
                                  worksheet

               Remember:
               Success is 99%perspiration and 1% inspiration




                                                                   34

Indices and surds

  • 1.
    1 2 JSTS Mathematics 4 0011 0010 1010 1101 0001 0100 1011 Chapter : Indices and Surds Presented by: Himani Asija (P.G.T. Math, Dps Vasant Kunj) 1
  • 2.
    Indices and Surds 00110010 1010 1101 0001 0100 1011 Index, exponential, power a×a = a 1 2 2 Base 4 2
  • 3.
    Indices Rule 1 a ×a 2 3 0011 0010 1010 1101 0001 0100 1011 = a×a×a×a×a =a 1 2 5 4 2+3 =a m+ n a ×a = a m n 3
  • 4.
    Indices Rule 2 a ÷a 5 3 0011 0010 1010 1101 0001 0100 1011 a×a×a×a×a 2 = a×a×a 1 4 = a×a m−n =a 2 a ÷a = a m n 5−3 =a 4
  • 5.
    Indices Rule 3 5 3 (a ) 0011 0010 1010 1101 0001 0100 1011 From Rule 1 2 = a ×a ×a 5 5 5 a ×a = a m n m+ n 1 4 5+ 5+ 5 =a =a 15 (a ) = a m n mn 5×3 =a 5
  • 6.
    Indices Rule 4 a ×b 3 3 0011 0010 1010 1101 0001 0100 1011 = a×a×a×b×b×b 1 2 = (a × b)(a × b)(a × b) 4 = ( a × b) 3 a × b = (ab) m m m 6
  • 7.
    Indices Rule 5 a ÷b 3 3 0011 0010 1010 1101 0001 0100 1011 a×a×a = 2 b×b×b a a a 1 4 = ( )( )( ) b b b a 3 =( ) b a ÷ b = ( a ÷ b) m m m 7
  • 8.
    Indices Rule 6,7 3 = 27 3 0011 0010 1010 1101 0001 0100 1011 ÷3 3 =9 2 a =10 2 ÷3 1 1 −m 3 =3 1 a = m ÷3 a 4 1 3 =? 0 −1 1 ÷3 3 =? 3 −2 3 =? 1 1 = 2 ÷3 9 3 −3 3 =? 1 1 = 3 ÷3 8 27 3
  • 9.
    Indices Rule 8 1 2 1   0011 0010 1010 1101 0001 × 2 0100 1011 a 2 =a 2 1     a = a n n 1 2 2 m  1 a n = a n m =( a) n m 4 a2  = a     1 a = a= a 2 2 9
  • 10.
    Irrational Number 0011 00101010that 0001 0100 1011 •Number 1101 cannot be expressed as a fraction of two integers 2 2 6 1 π 1 2 4 10
  • 11.
    Think! Which ofthe following is NOT a irrational number? 2 x  1  3  0011 0010 1010 1101 0001 0100 1011 25 x  27  1 2 1 ( ) = 2 3 9 5= 5 26 1 4 1 Irrational number 1 27 1 x Irrational number 36 11
  • 12.
    Surd Rules 1 1 1 1 1 1 1 + 0011 0010 1010 1101 0001 0100 1011 a ×a = a m n m n (a ) = a m n mn 1 2 1 1 1 1 1 1 1 − a ÷a = a m n m n a × b = (ab) m m m 4 1 1 1 a ÷ b = ( a ÷ b) m m m We can use the above rules to: • simplify two or more surds or •combining them into one single surd 12
  • 13.
    Simplify each ofthe following surds 27 + 243 0011Ques.11010 1101 0001 0100 1011 0010 2 = 9 × 3 + 81× 3 1 1 1 (ab) = a × b m m m ( ) ( ) 1 4 = 9× 3 + 81 × 3 =3 3 +9 3 Common Factor : 3 = 3 (9 + 3) = 12 3 13
  • 14.
    Simplify each ofthe following surds Question 2 175 + 112 − 28 0011 0010 1010 1101 0001 0100 1011 = 25 × 7 + 16 × 7 − 4 × 7 1 1 1 2 (ab) = a × b m m m = ( ) ( ) ( 25 × 7 + 16 × 7 − 4× 7 1 ) 4 =5 7 +4 7 −2 7 Common Factor : 7 = 7 (5 + 4 − 2) =7 7 14
  • 15.
    Simplify each ofthe following surds 4 3 × 12 ÷ 27 0011 0010 1010 1101 0001 0100 1011 Question 3 2 = 4 3 × 4 × 3 ÷ 3× 9 = 4 3×2 3 ÷3 3 1 4 = 3 (4 × 2) ÷ 3 x 8 3 2 3 = =2 3 3 15
  • 16.
    Simplify each ofthe following surds Question 4 2 0001 0100 27 ÷ 343 0011 0010 1010 1101 21 × 1011 3 21× 27 =2 2 343 49 3 × 27 1 4 =2 49 81 = 2( ) 49 2 81 2× 9 4 = = =2 49 7 7 16
  • 17.
    Simplify each ofthe following surds Question 5 8 3 ÷ 2 48 × 243 0011 0010 1010 1101 0001 0100 1011 2 = 8 3 ÷ 2 16 × 3 × 81× 3 = 8 3 ÷ 2( 16 ) 3 × ( ) ( 81) 3 1 4 ( ) = 8 3 ÷8 3 ×9 3 =9 3 17
  • 18.
    Simplify each ofthe following surds Question 6 (2 3 +3 2 ) 2 0011 0010 1010 1101 0001 0100 1011 (2 a) 2 + 2ab3 ) (3 2 ) +(3 b) 2 = ( 2 a3 + 3b2 ) = 3 (2 2 2 2 = ( 2) ( 3) 2 ( ) + 2( 2 × 3) 3 × 2 + (3) 2 ( 2 ) 2 1 2 = ( 4 )( 3) + 2( 2 × 3) ( 6 ) + (9)(2) 4 = 12 + 12( 6 ) + 18 = 6(5 + 2 6 ) 18
  • 19.
    Simplify each ofthe following surds Question 7 ( 2 + 3 ) − (3 − 3 ) 0011 0010 1010 1101 0001 0100 1011 2 2 1 2 =( 2 + 3 ) a 2 −(3 − 3 ) b 2 = (2 +a 3 + 3 −b 3 )( 2 + 3 −(3 −b 3 ) ) a 4 ( = ( 5) 2 − 3 + 3 + 3 ) = ( 5) ( − 1 + 2 3 ) = 5(2 3 − 1) 19
  • 20.
    Simplify each ofthe following surds Question 8 (2 3 ) ( 3 −1 + 1− 4 3 0011 0010 1010 1101 0001 0100 1011 ) 2 ( )( ) 1 − 2(1) 4 3 + 4 3 2  2 ( ) ( ) 2 = 2 3 −1 2 3 −1 +     1 ( )( 2 = 2 3 −1 2 3 −1 +   ) 1 − 8 3 + 4 3 2    ( ) 4 ( )( ) (  2 3 2 − 4 3 + 1 + 1 − 8 3 + (16 × 3) = 2 3 −1     ) ( )( = 2 3 − 1 13 − 4 3 + 49 − 8 3 ) ( ) = 26 3 − 24 − 13 + 4 3 + 49 − 8 3 = 22 3 + 12 = 2(11 3 + 6) 20
  • 21.
    Rationalization of theDenominator •Process of removing a surd from the denominator 0011 0010 1010 1101 0001 0100 1011 1 •Example: 2 1 2 1 = ×1 = 2 4 2 2 1 2 = × Multiply together! 2 2 2 2 = = ( 2 )( 2 ) 2 21
  • 22.
    2 2 •Example: = ×1 3 −2 3+2 = 3+2 3 −2 2 3−2 Note! 0011 0010 1010 1101 0001 0100 1011 × = 3+2 3−2 Multiply together! ( ) 2 Objective is 2 3−2 = to remove ( )( ) Conjugate Surds 1 surds from 3+2 3−2 denominator ( ) 4 2 3−2 = ( 3 ) − ( 2) 2 2 (a + b)(a − b) = a 2 − b 2 2( 3 − 2 ) 2 3−4 = = ( 3 − 4) ( − 1) = −2 3 + 4 22
  • 23.
    Re-look into thequestion: 2 3+2 0011 0010 1010 1101 0001 0100 1011 2 3−2 Multiply conjugate = × surds 3+2 3−2 2 ( 2 3−2 ) 1 = Multiply denominator ( 3+2 3−2 )( ) 4 and numerator = ( 2 3−2 ) (a + b)(a − b) = a − b 2 2 ( 3) 2 − ( 2) 2 2 3−4 = = 4−2 3 −1 23
  • 24.
    Question 2 Rationalize the denominators: 7 −2 0011 0010 1010 1101 0001 0100 1011 2 7 +2 Multiply conjugate = × surds 7 −2 7 +2 2 ( 2 7 +2 ) 1 = Multiply denominator ( )( 7 −2 7 +2 ) 4 and numerator = ( 2 7 +2 ) (a + b)(a − b) = a − b 2 2 ( 7) 2 − ( 2) 2 = 2 7 +2(= 2 7 +2 ) ( ) 7−4 3 24
  • 25.
    Question 3 −3 Rationalize the denominators: 3 −1 0011 0010 1010 1101 0001 0100 1011 3 −3 3 +1 Multiply conjugate = × surds 3 −1 3 +1 2 ( 3 −3 )( 3 +1 ) 1 = Multiply denominator ( 3 −1 )( 3 +1 ) 4 and numerator = ( 3) 2 + 3 −3 3 −3 ( 3) 2 − (1) 2 (a + b)(a − b) = a 2 − b 2 = 3− 2 3 −3 − 2 3 = =− 3 ( ) 3 −1 2 25
  • 26.
    Question 2 2 +1 Rationalize the denominators: 4 2 −3 2 2 +1 4 2 +3 = × Multiply conjugate 0011 0010 1010 1101 0001 0100 1011 4 2 −3 4 2 +3 surds 2 2 2 +1 4 2 +3 = × 1 Multiply denominator 4 2 −3 4 2 +3 and numerator 4 = (2 )( 2 +1 4 2 + 3 ) (4 2 ) − ( 3) 2 2 (a + b)(a − b) = a 2 − b 2 = (16 + 6 2 +4 2 +3 ) 32 − 9 19 + 10 2 26 = 23
  • 27.
    Question 3 2 −2 3 Rationalize the denominators: 3 2 + 2 3 3 2 −2 3 3 2 −2 3 = × Multiply conjugate 0011 0010 1010 1101 0001 0100 1011 3 2+2 3 3 2 −2 3 surds (3 2 −2 3 ⋅ 3 2 −2 3 )( ) 2 = (3 2 +2 3 ⋅ 3 2 −2 3 )( ) 1 Multiply denominator and numerator (3 ) 2 4 2 −2 3 = (3 2 ) − ( 2 3 ) 2 2 (a + b)(a − b) = a 2 − b 2 = (3 2 ) 2 ( )( ) ( −23 2 2 3 + 2 3 ) 2 (3 2 ) − ( 2 3 ) 2 2 1 1 1 a × b = (ab) m m m = ( 9 × 2) − 12 6 + ( 4 × 3) ( 9 × 2 ) − ( 4 × 3) 30 − 12 6 = = 5−2 6 27 6
  • 28.
    Question 7 3+2 5 Rationalize the denominators: 3 5 −2 3 0011 0010 1010 1101 0001 0100 = 7 3 + 2 Multiply conjugate 1011 5 3 5+2 3 × 3 5−2 3 3 5+2 3 surds (7 )( ) 2 3+2 5 3 5+2 3 = (3 )( 5−2 3 3 5+2 3 ) 1 (21 15 + 42 + 30 + 4 15 ) Multiply denominator = ( 45 − 12) 4 and numerator 25 15 + 72 = 33 (a + b)(a − b) = a 2 − b 2 28
  • 29.
    Question Rationalize thedenominators: 1 1 + Determine the LCM 0011 0010 1010 1101 0001 0100 1011 3+ 7 3− 7 ( 3+ 7 )( 3− 7 ) 2 1 ( 3− 7 ) 1 ( 3+ 7 ) = ( ) + ( ) 1 Multiply denominator 3+ 7 3− 7 3− 7 3+ 7 and numerator 4 3− 7 3+ 7 = + ( )( 3+ 7 3− 7 ) ( )( 3+ 7 3− 7 ) 3− 7+ 3+ 7 2 3 = ( 3+ 7 3− 7 )( ) = 3−7 2 3 3 = =− −4 2 29
  • 30.
    Question 3− 5 3+ 5 Rationalize the denominators: + ( 5 + 3) ( 3 − 5)2 2 Expand the denominators = 0011 0010 1010 1101 0001 0100 1011 3− 5 + 3+ 5 ( 5 )2 + 2 5 3 + ( 3)2 ( 3)2 − 2 3 5 + ( 5 )2 3− 5 3+ 5 2 = + = 3− 5 + 3+ 5 5 + 2 15 + 3 3 − 2 15 + 5 2(4 + 15 ) 2(4 − 15 ) 1 3− 5 3+ 5 = + 8 + 2 15 8 − 2 15 4 Find the LCM 24( 4 − ) 15 )(+ + 15 )+ 3− 5 ( − 15 3 4 5 (4 15 ) = × + × 2(4 + 15 ) (4 − 15 ) 2(4 − 15 ) (4 + 15 ) (12 − 3 15 − 4 5 + 75 ) + (12 + 3 15 + 4 5 + 75 ) = 2(16 − 15) 2(12 + 75 ) = = 12 + 5 3 30 2(1)
  • 31.
    Question 5+3 2 3− 2 + Rationalize the denominators: 4 − 2 5 4 − 2 5 0011 0010 1010 1101 0001 0100 1011 5+3 2 +3− 2 = 4−2 5 2 Same denominator 8+ 2 2 4+ 2 5 = × 1 4−2 5 4+2 5 4 (8 + 2 2 )(4 + 2 5 ) = (4 − 2 5 )(4 + 2 5 ) Rationalization 32 + 16 5 + 8 2 + 4 10 = 16 − 20 32 + 16 5 + 8 2 + 4 10 = = −8 − 4 5 − 2 2 − 10 −4 31
  • 32.
     5+ 3 1 Find k + 2 2 k =  Question : given  5− 3   k 1  5+ 3 2 k + 2 2 k = 2  k  5− 3   0011 0010 1010 1101 0001 0100 1011 8 + 2 15 8 − 2 15 = + k2 = ( 5+ 3 ) 2 8 − 2 15 8 + 2 15 2 ( 5− 3) 2 1 8 − 2 15 = (8 + 2 15 ) ( 8 + 2 15 )+ (8 − 2 15 ) (8 − 2 15 ) = (8 − 2 15 ) ( (8 + 2 15 ) k 2 8 + 2 15 1 × × 8 + 2 15 ) (8 − 2 15 ) (5 + 2 15 + 3 ) 4 k 2 = (5 − 2 15 + 3 ) = (8 + 2 15 ) + (8 − 2 15 ) 2 2 (8 − 2 15 )(8 + 2 15 ) k = 8 + 2 15 2 = (64 + 32 15 + 60 + 64 − 32 15 + 60 ) ( ) 8 − 2 15 ( 64 − 60) 1 1 = (124 + 124) = k 2 8 + 2 15 ( 4) 8 − 2 15 248 = = 62 32 4
  • 33.
    1 1 OR = Rationalize k 2 31 + 8 15  5+ 3 k First 2 1 31 − 8 15 k2 =   = ×  5− 3 31 + 8 15 31 − 8 15   0011 0010 1010 1101 0001 0100 1011 k2 = [ ( 5+ 3 2 ]2 ) = 31 − 8 15 ( )( 5− 3 5+ 3 ) ( 961 − 64 × 15) 1 2 k + 2 2 (5 + 2 15 + 3) 31 − 8 15 k 1 k2 = [ ]2 = ( 5 − 3) ( 961 − 960) 4 = 31 + 8 15 + 31 − 8 15 8 + 2 15 k2 = [ ]2 = 31− 8 15 = 62 2 k 2 = (4 + 15 ) 2 = 16 + 2 × 4 × 15 + 15 = 31+ 8 15 33
  • 34.
    Homework 0011 0010 10101101 0001 0100 1011 2 Find an 1 attached 4 worksheet Remember: Success is 99%perspiration and 1% inspiration 34