SlideShare a Scribd company logo
1
Adjunct Assistant Professor (Radiology)
The George Washington University School of Medicine and Health Sciences
Cari Borrás, D.Sc., FACR, FAAPM, FIOMP
Washington DC, USA
Chair, AAPM International Educational Activities Committee
Improving Patient Radiation
Protection or Evaluating Risks in
Medical Imaging?
What matters most?
Lecture Outline
▲ Radiation Protection Dosimetry Terms
▲ Radiology Dosimetry Terms
• Machine related
• Patient related
▲ Diagnostic Reference Levels
▲ Patient Organ Doses
• Measurements
• Look up Tables
• Monte Carlo Simulations
• Dicom Standards: RDSR & P-RDSR
2
3
Radiation Protection Dosimetric
Quantities and Units (ICRP / ICRU)
▲ Incorporate Exposures
• External and Internal
▲ Are Different For:
• Low doses of (low-LET) radiation < 0.5 Gy
o Stochastic (probabilistic) effects, LNT is applicable
• Cancer induction
• Hereditary diseases
• High doses of radiation
o Tissue reactions (deterministic effects), threshold exists
4
RP Dosimetric Quantities and Units
Absorbed Dose, D
Where d ε is the mean energy imparted by
ionizing radiation in a volume element and
d m is the mass of the matter in that volume
The SI unit is J kg-1 and the special name is
gray (Gy)
D = d ε / d m
5
RP Dosimetric Quantities and Units
Tissue Reactions
RBE : Relative Biological Effectiveness
differs for
• different biological endpoints and
• different tissues or organs
Dose to Tissue = Absorbed Dose * RBE
The SI unit is J kg-1 and the special name is gray (Gy)
6
RP Dosimetric Quantities and Units
Stochastic Effects
ICRP 26 (1977) ICRP 60 (1991) ICRP 103 (2007)
* Equivalent Dose Equivalent Dose#
Effective Dose
Equivalent
Effective Dose Effective Dose
* No specific term
# Radiation Weighted Dose proposed but not accepted
The SI unit is J kg-1 and the special name is sievert (Sv)
Evolution of Terminology
7
RP Dosimetric Quantities and Units
Stochastic Effects (Sv)
Equivalent Dose, HT, in a tissue T:
HT = ΣR wR D T,R
wR is the radiation weighting factor, which accounts for
the detriment caused by different types of radiation
relative to photon irradiation
D T,R is the absorbed dose averaged over the tissue
T due to radiation R
wR values are derived from in vivo and in vitro RBE studies
They are independent of dose and dose rate in the low dose region
8
Radiation Weighting Factors in
1991 (ICRP 60) and in 2007 (ICRP 103)
Radiation type and energy range 1991 2007
Photons 1 1
Electrons and muons 1 1
Protons (1991, 2007), pions (2007) 5 2
Alpha particles, fission fragments, heavy ions 20 20
Neutrons, energy < 10 keV 5
Continuous
Function
10 keV to 100 keV 10
> 100 keV to 2 MeV 20
> 2 MeV to 20 MeV 10
> 20 MeV 5
9
10
RP Dosimetric Quantities and Units
Stochastic Effects (Sv)
E = ΣT wT H T = ΣT ΣR wT wR D R,T
Effective Dose, E
ΣT wT = 1
wT represents the relative contribution of that
tissue or organ to the total detriment resulting
from uniform irradiation of the body
A uniform dose distribution in the whole body gives
an effective dose numerically equal to the radiation-
weighted dose in each organ and tissue of the body
11
Tissue Weighting Factors in 1977 and 1991
Tissue ICRP 26 ICRP 60
Bone surface 0.03 0.01
Bladder 0.05
Breast 0.15 0.05
Colon 0.12
Gonads 0.25 0.20
Liver 0.05
Lungs 0.12 0.12
Esophagus 0.05
Red bone marrow 0.12 0.12
Skin 0.01
Stomach 0.12
Thyroid 0.03 0.05
Remainder 0.30 0.05
TOTAL 1.0 1.0
12
Tissue Weighting Factors
ICRP 103 (2007)
* Remainder Tissues: Adrenals, Extrathoracic region, Gall bladder, Heart,
Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate, Small
intestine, Spleen, Thymus and Uterus/cervix
Tissue wT ∑ wT
Bone-marrow (red), Colon, Lung, Stomach, Breast,
Remainder Tissues*
0.12 0.72
Gonads 0.08 0.08
Bladder, Oesophagus, Liver, Thyroid 0.04 0.16
Bone surface, Brain, Salivary glands, Skin 0.01 0.04
Total 1.00
13
RP Dosimetric Quantities and Units
▲ Incorporate Exposures
• External
• Internal
In this presentation we will not discuss the
magnitudes for exposures from radionuclides:
Committed Equivalent Dose
Committed Effective Dose
14
RP Dosimetric Quantities and Units
Stochastic Effects
Collective Effective Dose, S
(due to Individual Effective Doses E1 and E2)
• d N / d E : number of individuals who experience
an effective dose between E and E + d E
• ΔT specifies the time period within which the
effective doses are summed
15
Limitations of
Equivalent and Effective Doses
▲ Are not directly measurable
▲ Point quantities needed for area monitoring (in
a non-isotropic radiation field, effective dose
depends on the body’s orientation in that field)
▲ Instruments for radiation monitoring need to
be calibrated in terms of a measurable
quantity for which calibration standards exist
Operational protection quantities are needed!
16
RP Operational Quantities - ICRU
Dose Equivalent, H
H = Q * D (Sv)
Where: D = Absorbed Dose
Q = Quality Factor, function of L∞ (LET)
Where: DL is the distribution
of D in L for the charged
particles contributing to D
At a point in tissue:
17
H*(10) and HP (10) – photons > 12 keV and neutrons
HP (0.07) – α and β particles and doses to extremities
Ω in RP usually not specified. Instead,
Maximum H’(0.07, Ω) is obtained
by rotating meter seeking maximum reading
Hp (3) – lens of the eyes
18
Conversion Coefficients
for External Exposure
(ICRU 57, 1998)
For Photons, Neutrons, Electrons
19
System of Quantities for Radiological Protection
Absorbed dose, D
Equivalent dose, HT, in an
organ or tissue T
Effective dose, E
Committed doses,
HT (τ) and E(τ)
Collective effective dose, S
For external exposure
Dose quantities for
area monitoring and
individual monitoring
For internal exposure
Activity quantities in
combination with
biokinetic models and
computations
Operational
Quantities
Dose Quantities
defined in the body
20
2003
2013
Are the radiation protection (RP)
dosimetry terms applicable to
patient exposures in diagnostic
medical imaging and
interventional radiology
procedures?
21
22
RP Dosimetric Quantities and Units
▲ Retrospective dose assessments
▲ Epidemiological studies without careful
consideration of the uncertainties and
limitations of the models and values used
▲ Estimation of specific individual human
exposures and risk
E is calculated averaging
gender, age and individual sensitivity
Caveats
Effective Dose should not be used for
23
RP Dosimetric Quantities and Units
Caveats
Dose to Individuals
Absorbed doses to organs or tissues should be
used with the most appropriate biokinetic
parameters, biological effectiveness of the
ionizing radiation and risk factor data, taking
into consideration the associated uncertainties.
Medical exposures fall in this category!
NCRP 160
(2009)
UNSCEAR 2008
(2010)
Effective Doses from Radiation Sources
in the US (UNSCEAR 2008 & NCRP 160)
25
26
Trends in average effective doses resulting from selected
diagnostic medical examinations (UNSCEAR 2008)
Examination
Average effective dose per examination (mSv)
Health care level I
1970–1979 1980–1990 1991–1996 1997–2007
Chest
radiography 0.25 0.14 0.14 0.07
Abdomen X-ray 1.9 1.1 0.53 0.82
Mammography 1.8 1 0.51 0.26
CT scan 1.3 4.4 8.8 7.4
Angiography 9.2 6.8 12 9.3
0
5
10
15
20
25
30
35
40
45
50
OrganDose(mGy)
Bone Marrow Breast Ovaries Heart Skin Thyroid
Sestamibi Rest/Stress
Dx Coronary Angiogram
CT Coronary Angio
CT Coronary Calcium
Chest X-ray
Cynthia McCollough, Ph.D.
Exam
Bone
Marrow Breast Ovaries Heart Skin Thyroid
Sestamibi Rest/Stress 9.40 6.40 15.40 13.10 6.0 8.50
Dx Coronary Angiogram 6.10 3.18 0.09 23.70 450.0 2.16
CT Coronary Angio 0.08 7.60 0.08 47.30 5.3 1.10
CT Coronary Calcium 0.02 2.40 0.02 14.74 1.6 0.30
Chest X-ray 0.05 0.15 0.00 0.23 0.5 0.06
Organ Dose (mGy)
Effective Dose vs Organ Doses
in Medical Exposures
Effective Dose is an adequate parameter to
intercompare doses from different radiological
techniques in order to optimize protection
However, to assess risks it is necessary to
determine organ doses
28
29
30
Increasing levels of uncertainty at each step of the
dose and risk estimation process using effective dose
Durand et al. 2012
31
BEIR VII, 2005
32
33
34
F Mettler 2012
35
Conclusion
For an assessment of the risk due to
induction of stochastic and deterministic
effects by medical x-ray imaging detailed
knowledge is required of organ doses,
absorbed-dose distribution, and the age
and gender of the group of patients
concerned, rather than effective dose.
ICRU 74
36J Harrison 2013
37J Harrison 2013
Dosimetric and Geometric Quantities for
Determination of Patient Dose (ICRU 74, 2005)
38
PKA represents the
integral of air kerma
across the entire x-ray
beam emitted from the
x-ray tube.
Its units are Gy cm2
Tolerance ± 35 % for
> 2.5 Gy cm2
The accuracy of the
display can be checked
directly or indirectly
39
ICRU
74
DLP
CTDI ICRU 87 2012
Ka,r (mGy)
“Interventional reference point”, “Cumulative reference point air
kerma”, “Cumulative dose”, “Patient entrance reference point”
40IEC 60601-2-43, 2000 & NCRP 168, 2010
The accuracy of the Ka,r display is
checked with an ion chamber
Tolerance ± 35 % for ≻ 100
mGy
Ka,r (mGy)
Ka,r approximates Ka,e for
adult patients undergoing
cardiac interventions, but
overestimates it for patients in
cerebrovascular interventions.
41
Protection Dosimetry
▲ Kai, Kae, PKA
▲ Maximum (Peak) Organ Dose
• Skin
• Eye Lens
▲ Stochastic Effects
▲ Deterministic Effects
Patient Follow-up may be needed in Interventional Radiology
These terms are the ones mostly used in Diagnostic Reference Levels
42
Radiation
Measurements
In air
In/On Phantom
On Patient
Radiation
Instrumentation
Ion Chamber
Film: Silver Halide
and Radiochromic
Diodes
TLD, OSL
4343
Determination of Ka,e
Ka,e
Ka,i
HJ Khoury, 2009 43
DIRECT INDIRECT
TLDs on patient skin X Ray tube output
Imaging parameters
444444
Radiography
45
PKA
Ka,i
HJ Khoury, 2009
Determination of PKA
DIRECT INDIRECT
X Ray tube output
Imaging parameters
Rad area
Removable
KAP meter
on collimator
exit
KAP (DAP)
Display on
control
46
2013
47
DirectIndirect
JA Seibert 2007
48
High pixel electronic noise can be reduced by
incorporating a solid state avalanche layer of
a-Se over the TFT array, which amplifies the
signal (HARP)
Summary of Digital Detectors
for Radiography / Fluoroscopy
JR Scheuermann, 2018JA Seibert, 2018
CR and DR systems assess the recorded signal through
histogram analysis
 Tests with defined beam conditions are used to verify
that correct indicators are being reported
 Recommended exposure indicator ranges are used by
technologists to check each radiographic exposure
JA Seibert 2018
Exposure Indicators
Region to assess signal indicator
Systems vary in the
region used to assess the
signal for an image.
Full Image
Regular regions
Corresponding
histograms JA Seibert 2018
Region to assess signal indicator
IEC 62494-1
 Gray histogram for the entire image
 Black histogram for the anatomic region
(relevant region)
JA Seibert 2018
Computation of an exposure indicator
Median value of the signal values determined in the histogram
of the relevant image region
Manufacturers have proprietary methods
 Algorithms, values, and calibration methods are widely
different, leading to confusion amongst users
 Inappropriate image segmentation can produce inaccuracies
and incorrect feedback values
JA Seibert 2018
Manufacturer Symbol 5 Gy 10 Gy 20 Gy
Canon REX 50 100 200
IDC (ST = 200) F# -1 0 1
Philips (CR-Fuji) EI 200 100 50
Philips (DR) EI 200 400 800
Fuji S 400 200 100
Carestream EI 1700 2000 2300
Siemens EI 500 1000 2000
Approximate EI Values vs. Receptor Exposure
….. The need for a standard is clearly evident
Estimated receptor exposure
JA Seibert 2018
IEC 62494-1
Calibration of Radiography EI value
Fuji – CR & DR
 Follow manufacturer documentation
 Measure incident AK
 Compare to indicated value / 100
JA Seibert 2018
Deviation Index (DI)
Exposure Indices
𝐷𝐼 = 10 × 𝑙𝑜𝑔10
𝐸𝐼
𝐸𝐼 𝑇(𝑏. 𝑣)
 EIT is a target index value that is to be determined for each body
part b, view , procedure type, and clinical site
 When EI equals EIT, DI = 0
DI = +3.0 for 2x target exposure
DI = -3.0 for ½x target exposure
± 1 is one step on a standard generator mAs
control or AEC compensation (ISO R5 scale)
JA Seibert 2018
Target Exposure Index - EIT
 EIT depends on detector type, examination type,
diagnostic question and other parameters
 Establishing EIT values requires feedback from
technologists and radiologists working with MP
 EIT values are (must be) provided as a data base in the
digital imaging system
 Be aware that systems have default values that might
be inappropriate – Must review all values & protocols!
JA Seibert 2018
Target exposure index, EIT
 Examples:
 CR adult PA chest, desired S#: EIT = 700
 CR pediatric chest EIT = 500
 Noting the efficiency of CR is ~½ that of DR, the EIT for DR devices
are adjusted accordingly
 DR adult chest EIT = 350
 DR pediatric chest EIT = 250
 Extremities: higher EIT
 Large patients: higher EIT ??
JA Seibert 2018
Acquisition technique differences with CR and DR
 A function of detector detective quantum efficiency
JA Seibert 2018
Caveats
 The EI does not describe patient dose
 EI is derived from detector signal (dose at the detector)
 Best indicator for patient dose is PKA (mGy-cm2)
 The EI is not a dose measurement tool
 Dose calibration only valid at one radiation quality
 Same EI obtained on different digital systems might not
have similar image quality
 Influence of detector DQE, scattered radiation, beam quality
JA Seibert 2018
Why is incident detector exposure index
(EI) important?
• Is proportional to the image SNR (for given DQE)
Signal to Noise Ratio “image quality”
• Is indirectly related to patient exposure
• Is not linked with image appearance as with screen-
film receptors
• Assists the technologist in identifying appropriate
“equivalent speed” and therefore SNR
JA Seibert 2010 60
61
JA Seibert 2018
Fluoroscopy
Image Intensifier
or
Flat Panel Detector
63
https://slideplayer.com/slide/1379353/8/images/23/Irrespective+of+the+image+receptor+system%2C+i.+e.jpg
Air Kerma Rate Measurements
The KAP meter
should be calibrated
for all the fluoro and
cine techniques used
clinically
64
65
66
Fluoroscopic Equipment Performance Evaluation (ACR 2016)
67
▲ Kerma Rate vs Phantom Thickness
• Variables
o Tube Potential (kV)
o Tube Current (mA)
o Pulse Width (ms)
o Cu filter (new angio systems)
▲ Maximum Patient Surface Kerma Rate
68
Automatic Brightness Control
Check: Fluoro and Cine
69
Flat Panel – Filtration Options
70
Variation of air kerma rate, tube potential, tube current and
Cu filtration vs water-equivalent phantom - FLUOROSCOPY
N. Lunelli, 2012
Flat Panel
71
IAEA NAHU No. 24
DOSIMETRY IN
DIAGNOSTIC
RADIOLOGY FOR
PAEDIATRIC
PATIENTS
2013
Fluoroscopic Equipment Performance Evaluation (ACR 2016) - cont
72
IAEA
73
73
In-Room Monitor Displays
(Siemens System)
73PKA Ka,r
74
J Boone 2013
CT Dosimetry
75
CT Dosimetry
Measurements can be done with the ion chamber in air at the
isocenter or in a CT (FDA) phantom using appropriate corrections
BSS
MSAD
I
D z dz
N I
N I




1
2
2
( )
U .S. C D R H
MSAD
I
D z dzN I
I
I




1
2
2
, ( ) CTDI
N T
D z dz
T
T




1
7
7
( )
EC
CTDI
T
D z dz
 
 

1
( ) DLP CTDI T NW
i
 
CTDI CTDI CTDIW cm c cm p 






1
3
2
310 10, ,
CT Dosimetry Before Helical CT
77
AAPM TG 246, 2019
78
Volume CTDIW (CTDIvol)
CTDIvol = CTDIW • N • T / I
where:
I = the table increment per axial scan, or the table increment
per rotation of the x-ray tube in a helical scan. In helical CT,
the term pitch (P) is defined as the ratio of the table
increment per tube rotation to the nominal (total) width of the
radiation beam. Hence,
Pitch = I / (N • T) and CTDIvol = CTDIW /pitch
CTDIvol is the parameter that best estimates the average dose
at a point with the scan volume for a particular scan protocol.
Dose Length Product (DLP)
DLP = CTDIvol (mGy) • scan length (cm)
CT Dosimetry After Helical CT
79
Axial scan
Helical scan
Current dose reporting methods
▲ Computed Tomography Dose Index, CTDIvol (mGy)
• Provides dose comparison for scan protocols or scanners
• Useful for obtaining “benchmark” data
• Not good for estimating patient dose
▲ Dose Length Product (DLP): CTDIvol × scan length
• Volume dose delivered to the patient (mGy-cm)
• In limited scan range, DLP is less useful, e.g., density-time
studies such as brain perfusion
▲ Effective Dose: a crude measure of whole body dose
• Conversion factors are generated from Monte Carlo transport
methods in standardized phantoms
• Not intended for individual patient dose metrics
• Estimated from DLP
Adapted from JA Seibert 2011
81
J Boone 2013
82
J Boone 2013
Dose estimate conversion factors for body size
JA Seibert 2011
2011
Family of physical phantoms
Cynthia McCollough, Mayo Clinic
standard phantoms
Tom Toth & Keith Strauss
Monte Carlo phantoms (1 – 50 cm)
John M. Boone, UC Davis
Anthropomorphic Monte Carlo phantoms
Mike McNitt-Gray, UCLA
AAPM Task Group 204 – Size-Specific CT Dose
JA Seibert 2011
effective diameter
Relativedose
CTDIvol
JA Seibert 2011
lateral dimension
AP dimension
Effective
diameter
same
area
Determine effective diameter
JA Seibert 2011
patient size (effective diameter)
dose
CTDIvol
32 cm PMMA
normalization point
Normalize scanner output to CTDIvol
JA Seibert 2011
conversionfactor
CTDIvol
32 cm
after normalization
1.0
patient size
Normalized output
JA Seibert 2011
ConversionFactor
JA Seibert 2011
90J Boone 2013
92
J Boone 2011
93
J Boone 2013
94
ICRU Method
J Boone 2011
95
beam profileJ Boone 2011
96J Boone 2011
97
J Boone 2013
CT Dose by Convolution AAPM TG 246, 2019
99AAPM TG 246, 2019
100
Protection Dosimetry
▲ Kai, Kae, PKA
▲ Maximum (Peak) Organ Dose
• Skin
• Eye Lens
▲ Stochastic Effects
▲ Deterministic Effects
Patient Follow-up may be needed in Interventional Radiology
These terms are used for Diagnostic Refence Levels
101
To Optimize Radiation Protection
The best way is to establish
Diagnostic Reference Levels (DRLs)
… derived from
the data from wide
scale quality
surveys … for the
most frequent
examinations in
diagnostic
radiology...
UK 2000
75% Percentile
J. L. Heron 2013
D Hart et al. 2012
104
www.eu-alara.net/index.php/surveys-mainmenu-53/36-ean-surveys/156-drls.html www.hc-
sc.gc.ca/ewh-semt/pubs/radiation/safety-code_35-securite/index-eng.php
NCRP 172
C J Martin et al. Approaches to aspects of optimisation of protection in diagnostic radiology
in six continents. IOP PUBLISHING, J. Radiol. Prot. Accepted June 2013
105
Achievable dose
A dose which serves as a
goal for optimization
efforts. This dose is
achievable by standard
techniques and
technologies in
widespread use, while
maintaining clinical image
quality adequate for the
diagnostic purpose. The
achievable dose is typically
set at the median value of
the dose distribution.
2012
NCRP recommended DRLs and
achievable doses (mGy) -
Radiography
106
NCRP recommended DRLs and achievable
doses - Fluoro
107
mGy
NCRP recommended DRLs and achievable
doses (mGy) - CT
108
109
Cody & McCullough 2011
110
McNitt-Gray, 2014
DRL Requirements – BSS
A review is conducted to determine whether the
optimization of protection and safety for patients
is adequate, or whether corrective action is
required if, for a given radiological procedure:
i. typical doses or activities exceed the relevant
diagnostic reference level; or
ii. typical doses or activities fall substantially
below the relevant diagnostic reference level
and the exposures do not provide useful
diagnostic information or do not yield the
expected medical benefit to the patient. 111
Patient Organ Doses
▲ Medical Imaging
• Radiography
• Mammography
• Fluoroscopy
• CT
▲ Interventional Radiology
112
Organ Dose Determination
▲ Direct Radiation Measurements
▲ Table Look Up
▲ Monte Carlo Simulations using Patient and Radiation
Transport Modeling
• Mathematical phantoms
• Special features of the active bone marrow
• Voxel phantoms
• Anthropometric phantoms
▲ Calculations from Imaging System Dose Metrics
• and/or „Dose Report‟
▲ DICOM Standards
113
Threshold doses for approximately 1% morbidity incidence
114
ICRP 118 , 2012
115
Trends in average effective doses resulting from selected
diagnostic medical examinations (UNSCEAR 2008)
Examination
Average effective dose per examination (mSv)
Health care level I
1970–1979 1980–1990 1991–1996 1997–2007
Chest
radiography 0.25 0.14 0.14 0.07
Abdomen X-ray 1.9 1.1 0.53 0.82
Mammography 1.8 1 0.51 0.26
CT scan 1.3 4.4 8.8 7.4
Angiography 9.2 6.8 12 9.3
Effective Dose vs Organ Doses
in Medical Exposures (ICRU, ICRP)
Effective Dose is an adequate parameter to
intercompare doses from different radiological
techniques in order to optimize protection
However, to assess risks
it is necessary to determine organ doses
116
117
The Essentials of Medical Imaging 3d Ed, 2012
Organ Doses
from Ka,i
(“Exposure”)
-
Radiography
118
http://www.fda.gov/cdrh/ohip/organdose.html
119DRMelo 2016
Organ Doses from Diagnostic Radiography
DR Melo 2016
120
www.grupodoin.com
121
Patient Dose - Mammography
 Kerma in Air
 Reproducibility and Linearity
 Average Glandular Dose
 Half Value Layer
 Thickness of Compressed Breast
 Estimation of Breast Tissue Composition
(Dg)av = (DgN)av * Ka,i
122L Rothenberg 2009
Organ Doses from Ka,i (“Exposure”) -
Fluoroscopy
123
http://www.fda.gov/cdrh/ohip/organdose.html
124
Thermoluminiscent dosimeters being placed on patient
undergoing fluoroscopic examination
to measure dose
NRPB
125
Skin Dose Measurements - TLD
SILVA et al., 2009
TLDs placed directly
on a patient’s back
Matrix of TLDs placed on a sheet
under a patient undergoing a
cardiac interventional procedure
126
Placement of Radiosensitive Indicators
Skin Dose Assessment - Neuroembolization
Suzuki AJNR 29 Jun-Jul 2008
127
Matrix of Photoluminiscent Dosimeters
Moritake et al, 2008Cerebral embolization
A and B, Nonoptimal lateral projection without and with subtraction where the left eye is irradiated.
R.M. Sánchez et al. AJNR Am J Neuroradiol 2016;37:402-407
©2016 by American Society of Neuroradiology
Position of the OSL dosimeters on patient eyes.
R.M. Sánchez et al. AJNR Am J Neuroradiol 2016;37:402-407
©2016 by American Society of Neuroradiology
Adult patient doses received during interventional cerebral
procedures performed in Recife
Dosimeters
: TLD-100
131
In Interventional Exams, Maximum Skin Dose and PKA can be
Determined with Film: Silver Halide and Radiochromic
Film Position (Cardio)
Radiochromic Films (Neuro)
132
133
Curvas de Calibração
com scanner e densitômetros
Silva et al., 2009
134
Skin Dose (DT) Calculations
Ka,e = Ka,r ftable (SRD/SSD)2 BSF
DT = Ka,e ( ) ≃ Ka,e 1.06
Ka,e: Entrance surface Air Kerma
Ka,r: Air Kerma at Reference Point
ftable: Table and pad attenuation
factor
SRD: Source-reference distance
SSD: Source-entrance surface
µen,a / ρ: Air
mean energy
absorption
coefficient
µen,T / ρ: Skin
mean energy
absorption
coefficient
µen,T
ρ
µen,a
ρ
135
Coronary Angioplasty Results
Loc Dose (Gy)
A 0.43
B 2.27
C 3.92
D 0.57
E 3.56
F 3.97
G 2.28
H 1.39
I 0.41
J 0.9
L 1.39
M 1.22
N 0.28
SILVA et al., 2009
136
Maximum Skin Dose - Results
Neuroradiology Interventions
N. Lunelli, 2012
Reaction in the patient –
MSD=8030 mGy
Patient Exposure Form
JA Seibert 2018
Patient Exposure Assessment
JA Seibert 2018
CT Dose Reporting…… HOW?
▲ Scanner dose measurement indicators: CTDIvol & DLP
▲ How to get the CT provided data?
• Dose summary page and Optical Character Recognition
• Open-source or commercial “dose gathering” products
Image
DOSE
Summary
page
Adapted from JA Seibert 2011
http://www.impactscan.org/ctdosimetry.htm
CT
Dosimetry
140
Radimetrics eXposure: Dose calculation engine
• Receives CT study
• Extracts patient dose
metric information
• Pushes dose metrics
to radiology report
• Maintains database
• Provides dashboards
142
JA Seibert 2013
Summary
▲ Neither CTDIvol nor DLP should be used to
estimate effective dose or potential cancer risk
for any individual patient
▲ Estimation of organ dose and use of age- and
gender-specific risk coefficients are necessary to
determine individual risk
▲ Investigations using Monte Carlo photon
transport within CT scan data, identification /
segmentation of organs, and tabulating organ
doses are a start to individual, customized dose
measurements
JA Seibert 2011
Radiation Dose to Pediatric Patients
of Different Body Stature from CT
Exams Using Deformable Realistic
Phantoms
HPS, 59th Annual Meeting, Baltimore, MD, 2014
Stabin, M. et al. Vanderbilt University Nashville, TN, USA
• Using the Geant4 Monte Carlo toolkit, created a
radiation transport code to simulate patients
undergoing exams on a CT scanner similar to that
at Vanderbilt University Children's Hospital.
• Used measured values of dose in a physical
phantom to calibrate the simulated output from the
Geant CT source.
Adults
15-yr-olds
10-yr-olds
5-yr-olds
1-yr-olds
12-yr-olds
7 and 8-yr-olds
Stabin et al., 2014
Segmented organs in 9-year-old female patient
Stabin et al., 2014
Organ Name Dose (mGy)
Body 10.7
Esophagus 11.2
Liver 13.1
Gall bladder 11.7
Stomach 12.5
Spleen 10.9
Heart 13.6
Pancreas 12.1
Bladder 11.9
Small intestine 12.2
Uterus 10.8
Skin 10.1
Thyroid 9.0
Lungs 12.7
Kidneys 13.5
Adrenals 12.8
Ovaries 10.1
Skeleton 22.6
Effective Dose (ICRP 103) (mSv) 13.0
Dose values for a selection of organs for a 9 year-old female patient.
Stabin et al., 2014
9
10
11
12
13
14
15
16
17
0 2 4 6 8 10 12 14 16
Dose(mGyormSv)
Age (yr)
50th Percentiles, Age
esophagus (7) lungs (12)
liver (13) gall bladder (14)
kidneys (15) adrenals (16)
stomach (17) spleen (18)
ED
10
10,5
11
11,5
12
12,5
13
13,5
0 10 20 30 40 50 60 70 80 90 100
Dose(mGyormSv)
Percentile
10-yr-olds, Percentiles
esophagus (7) lungs (12)
liver (13) gall bladder (14)
kidneys (15) adrenals (16)
stomach (17) spleen (18)
ED
Stabin et al., 2014
Conclusions
• As with internal dosimetry, using deformable
NURBS phantoms greatly facilitates the
development of phantom-based dosimetry.
• We have used a Geant4-based CT dosimetry
program to calculate doses to a wide range of
patient and phantom models.
• These data can be used to produce patient-
individualized organ and effective doses that
are far better than CT scanner reported doses.
Stabin et al., 2014
So, what should be used for
patient risk?
▲ Using Monte Carlo photon transport on organ-segmented CT scan data of
patients
▲ Estimation of specific individual’s organ doses
▲ Accumulating organ dose for each instance
▲ Applying age- and sex-specific risk coefficients
. . . . . .
▲ This is a large undertaking, and will take time for implementation
JA Seibert 2011
organ dosesCT scan & patient
parameters
Monte Carlo modeling should be
the basis for patient CT dosimetry
Monte
Carlo
JA Seibert 2011
152
AAPM TG 246, 2019
153
AAPM TG 246, 2019
DICOM Standards
154
▲ DICOM Header
▲ DICOM Services
• e.g. modality performance procedure step
(MPPS)
▲ Radiation Dose Structured Report (RDSR)
▲ Patient-RDSR (P-RDSR)
155SILVA et al., 2009
156
Standard dose
report
E. Vañó, 2018
DICOM RDSR
DICOM RDSR from Philips (rooms 3-4 San Carlos Hospital)
157
Radiation Dose Structured Report 67: pages, 30 runs of fluoro + 10 runs of cine; all
technical, dose and geometry details included (part 3 Fluoro example)
Irradiation Event X-Ray Data
Acquisition Plane : Single Plane
DateTime Started : 2013-08-12, 12:51:07.958
Irradiation Event Type : Fluoroscopy
Reference Point Definition : 15cm below BeamIsocenter
Irradiation Event UID :
1.3.46.670589.28.3711502481496.20130812125107317.
1
Dose Area Product = 1.8E-06 Gy.m2
Dose (RP) = 0.00017185537709Gy
Positioner Primary Angle = 1.6 °
Positioner Secondary Angle = -0.1°
X-Ray Filters
X-Ray Filter Type : Strip filter
X-Ray Filter Material : Copper or Copper compound
X-Ray Filter Thickness Minimum = 0.9 mm
X-Ray Filter Thickness Maximum = 0.9 mm
X-Ray Filters
X-Ray Filter Type : Strip filter
X-Ray Filter Material : Aluminum or Aluminum
compound
X-Ray Filter Thickness Minimum = 1 mm
X-Ray Filter Thickness Maximum = 1 mm
Fluoro Mode : Pulsed
Pulse Rate = 7.5 pulse/s
Number of Pulses = 11no units
X-Ray Tube Current = 120 mA
Distance Source to Isocenter = 765 mm
KVP = 97.97 kV
Pulse Width = 9.2 ms
Irradiation Duration = 1.466 s
Patient Table Relationship : headfirst
Patient Orientation : recumbent
Patient Orientation Modifier : supine
Target Region : Chest
Number of Frames = 11no units
SubImages per Frame = 1 no units
Wedges and Shutters
Bottom Shutter = 82.5mm
Left Shutter = 82.5mm
Right Shutter = 82.5mm
Top Shutter = 82.5mm
Beam Position
Longitudinal Beam Position = 1562mm
Beam Angle = 0 °
Table Height Position = 920 mm
E. Vañó, 2018
DICOM RDSR from Philips (rooms 3-4 San Carlos Hospital)
158
Radiation Dose Structured Report 67: pages, 30 runs of fluoro + 10 runs of cine; all technical,
dose and geometry details included (part 4 cine example)
Irradiation Event X-Ray Data (series 1 manual
note)
Acquisition Plane : Single Plane
DateTime Started : 2013-08-12, 12:52:31.098
Irradiation Event Type : Stationary Acquisition
Reference Point Definition : 15cm below
BeamIsocenter
Acquired Image : Image X-Ray Angiographic
Image Storage (SOP Instance UID: )
Irradiation Event UID :
1.3.46.670589.28.3711502481496.201308121252
30407.1
Dose Area Product = 0.0004013 Gy.m2
Dose (RP) = 0.06913345231013Gy
Positioner Primary Angle = 11.8°
Positioner Secondary Angle = -0.1°
X-Ray Filters
X-Ray Filter Type : No Filter
X-Ray Tube Current = 865.6 mA
Distance Source to Isocenter = 765 mm
KVP = 82.57 kV
Pulse Width = 7.3 ms
Distance Source to Detector = 1068mm
Irradiation Duration = 5.2 s
Patient Table Relationship : headfirst
Patient Orientation : recumbent
Patient Orientation Modifier : supine
Target Region : Chest
Number of Frames = 78no units
SubImages per Frame = 1 no units
Wedges and Shutters
Bottom Shutter = 67.5mm
Left Shutter = 67mm
Right Shutter = 67mm
Top Shutter = 67.5mm
Beam Position
Longitudinal Beam Position = 1562mm
Beam Angle = 0 °
Table Height Position = 920 mm
E. Vañó, 2018
Study level – summary of a procedure II
Sample of the graphical representation of
DICOM RDSR data of a neuro-
interventional study carried out in a bi-
plane cath-lab, that allows to see the
different fluoroscopy and acquisition
modes used during the procedure.
J.M. Fernandez-Soto et al., 2016
Sample of a radiochromic film image
placed at the patient back in an
interventional cardiology procedure
(right) and two types of dose maps
obtained from the DICOM RDSR for the
same procedure. This also allows the
estimation of the maximum dose at the
skin entrance.
Skin Dose Maps
(JM Fernandez-Soto et al., 2016)
RDSR - Radiography
162
Supplement 191 Patient Dose SR
• Current Radiation Dose SR contains only information about the x-ray system or information
the x-ray system can determine, e.g.:
• radiation output, geometry, x-ray source, detector system, etc.
• Estimation of patient/organ dose requires knowledge of:
• Radiation beam characteristics that interact with patient
• Models of the patient/organs
• Models of radiation interaction within the patient
• Methods to do patient dose estimations are being developed and improved continuously
• storage of these estimations in a different object would allow more versatile utilization of
the data
163D. Pelc, 2016
164
RDSR
IOD
- X-Ray exposure techniques
- Table, Gantry Angle, Beam
Geometry, collimation, …
- Dose measures: CTDI, DAP, ...
X-Ray
Equipment
Modality
IOD
Patient Dose Determination: Data Flow Requirements
Organ Dose
Reporter
System
Modality Frame of Reference
(FOR)
Signifies part of Supplement 191 Patient RDSR
D. Pelc, 2016
165Signifies part of Supplement 191 Patient RDSR
RDSR
IOD
- X-Ray exposure techniques
- Table, Gantry Angle, Beam
Geometry, collimation, …
- Dose measures: CTDI, DAP, ...
X-Ray
Equipment
Modality
IOD
Organ Dose
Reporter
System
Patient Model
Registration
IOD
Equipment Information
- Table dimension
- Attenuating material, …
Modality Frame of Reference
(FOR)
Patient Model
FOR
Patient Dose Determination: Data Flow Requirements
D. Pelc, 2016
166Signifies part of Supplement 191 Patient RDSR
RDSR
IOD
- X-Ray exposure techniques
- Table, Gantry Angle, Beam
Geometry, collimation, …
- Dose measure: CTDI, DAP, ...
Registration
IOD
X-Ray
Equipment
Modality
IOD
Patient Model
Organ Dose
Reporter
System
Patient
Dose SR
Calculated data for
documentation and reference
to images and RDSR’s
Patient Dose Determination: Data Flow Requirements
Equipment Information
- Table dimension
- Attenuating material, …
Patient Dose 2D view/map
(e.g. iso-dose map)
Patient Dose Surface
3D map/view
Modality Frame of Reference
(FOR)
Patient Model
FOR
D. Pelc, 2016
Final Considerations: What Matters Most?
▲ Patient organ doses will be useful for refining dose response
curves and carry out epidemiological studies
▲ Will determining patient doses allow us to estimate patient risk?
▲ Risk is population-based, it cannot be applied to a single
individual! Risk is a probability!!
▲ Do we need individualized dosimetry for radiation protection?
▲ If the goal is to protect the patient, can we just use diagnostic
reference levels, which are usually machine parameters,
something much simpler to determine than organ doses?
▲ Can we report such parameters in the patient chart? Some
countries / states require it….
Agency
Regulatory Requirement
(ID: Individual Dose)
FDA &
NEMA
Kai limit for fluoroscopy. Dg limit for
mammography.
All new CT scanners to comply with the NEMA
XR-25 Dose Check Standard
State of
California
ID: CTDIvol and DLP included in each patient
record and transferred to PACS. Effective dose
limits for repeated exams unless approved by a
physician. All CT facilities accredited.
State of Texas
Kai limits for some radiography exams. Maintain
records for output of fluoroscopically-guided
interventions to include cumulative Ka,r or PKA.
ID for CT: Dose recording and reporting plus
skin dose determination. Recommends
establishing a “CT reference level” and patient
follow up when value is exceeded.
.
Agency Accreditation Requirements
The Joint
Commission
CT: CTDIvol and DLP or SSDE specific for
each exam, summarized by series or anatomic
area and retrievable. Review and analyze
values if they exceed expected dose index
ranges. Compare with external benchmarks.
Fluoro: Establish radiation exposure and skin
dose threshold levels. If exceeded, review
procedure and evaluate patient (>15 Gy =
Sentinel event). Ka,r or PKA documented in a
retrievable format.
Both: Evaluation of equipment performance
and imaging protocols.
American
College of
Radiology
Dg limit, CTDIvol limit for adult and pediatric
head and abdomen CT scans. DRLs
recommended.
Example from a California Patient CT Chart
This patient received a total of 1 exposure event(s) during this CT
examination. The CTDIvol and DLP radiation dose values for each exposure
are: Exposure: 1; Series: 2; Anatomy: Neck; Phantom: 32 cm; CTDIvol: 19;
DLP: 498 The dose indicators for CT are the volume Computed
Tomography (CT) Dose Index (CTDIvol) and the Dose Length Product
(DLP), and are measured in units of mGy and mGy-cm, respectively. These
indicators are not patient dose, but values generated from the CT scanner
acquisition factors. The report includes radiation exposure data for
exposures received during this examination. If multiple reports are
produced from this examination, the exposure data is duplicated in each
report. The exposure data reported is indicative, but not determinative, of
the radiation dose received by this patient.
171Bushberg 2014

More Related Content

What's hot

History of Radiotherapy
History of RadiotherapyHistory of Radiotherapy
History of Radiotherapy
Deepika Malik
 
Radiation Protection
Radiation ProtectionRadiation Protection
Radiation Protection
Santam Chakraborty
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
Kiran Ramakrishna
 
Linear Accelerator Acceptance, Commissioning and Annual QA
Linear Accelerator Acceptance, Commissioning and Annual QALinear Accelerator Acceptance, Commissioning and Annual QA
Linear Accelerator Acceptance, Commissioning and Annual QA
Miami Cancer Institute
 
Radiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh ShresthaRadiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh Shrestha
Avinesh Shrestha
 
medical radiation safety awareness
medical radiation safety awarenessmedical radiation safety awareness
medical radiation safety awareness
Mmedsc Hahm
 
TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)
Vinay Desai
 
OSLD Prsentation
OSLD PrsentationOSLD Prsentation
OSLD Prsentation
sa'ad attwneh
 
Cavity theory-Radiation physics
Cavity theory-Radiation physicsCavity theory-Radiation physics
Cavity theory-Radiation physics
Kathiravan E M
 
ELECTRON BEAM THERAPY
ELECTRON BEAM THERAPYELECTRON BEAM THERAPY
ELECTRON BEAM THERAPY
Sathish Kumar
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
Umar Tauqir
 
BASIC RADIOBIOLOGY FOR RADIOTHERAPY
BASIC RADIOBIOLOGY FOR RADIOTHERAPYBASIC RADIOBIOLOGY FOR RADIOTHERAPY
BASIC RADIOBIOLOGY FOR RADIOTHERAPY
Nik Noor Ashikin Nik Ab Razak
 
Dosimetry concepts and dosimeters
Dosimetry concepts and dosimetersDosimetry concepts and dosimeters
Dosimetry concepts and dosimeters
sailakshmi pullookkara
 
Radiation protection in nuclear medicine shafiee
Radiation protection in nuclear medicine shafieeRadiation protection in nuclear medicine shafiee
Radiation protection in nuclear medicine shafiee
Urmia Nuclear Medicine Center
 
Computed Tomography Dose Index
Computed Tomography Dose IndexComputed Tomography Dose Index
Computed Tomography Dose Index
Anjan Dangal
 
Radiation protection Overview
Radiation protection  OverviewRadiation protection  Overview
Radiation protection Overview
lidgor
 
Absolute Dosimetry_12.03.2019.pptx
Absolute Dosimetry_12.03.2019.pptxAbsolute Dosimetry_12.03.2019.pptx
Absolute Dosimetry_12.03.2019.pptx
AshikurRahman204838
 
Dosimetry 2
Dosimetry  2Dosimetry  2
Dosimetry 2
Md. Motiur Rahman
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
jyotimannath
 
Epid
EpidEpid

What's hot (20)

History of Radiotherapy
History of RadiotherapyHistory of Radiotherapy
History of Radiotherapy
 
Radiation Protection
Radiation ProtectionRadiation Protection
Radiation Protection
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
 
Linear Accelerator Acceptance, Commissioning and Annual QA
Linear Accelerator Acceptance, Commissioning and Annual QALinear Accelerator Acceptance, Commissioning and Annual QA
Linear Accelerator Acceptance, Commissioning and Annual QA
 
Radiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh ShresthaRadiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh Shrestha
 
medical radiation safety awareness
medical radiation safety awarenessmedical radiation safety awareness
medical radiation safety awareness
 
TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)
 
OSLD Prsentation
OSLD PrsentationOSLD Prsentation
OSLD Prsentation
 
Cavity theory-Radiation physics
Cavity theory-Radiation physicsCavity theory-Radiation physics
Cavity theory-Radiation physics
 
ELECTRON BEAM THERAPY
ELECTRON BEAM THERAPYELECTRON BEAM THERAPY
ELECTRON BEAM THERAPY
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
 
BASIC RADIOBIOLOGY FOR RADIOTHERAPY
BASIC RADIOBIOLOGY FOR RADIOTHERAPYBASIC RADIOBIOLOGY FOR RADIOTHERAPY
BASIC RADIOBIOLOGY FOR RADIOTHERAPY
 
Dosimetry concepts and dosimeters
Dosimetry concepts and dosimetersDosimetry concepts and dosimeters
Dosimetry concepts and dosimeters
 
Radiation protection in nuclear medicine shafiee
Radiation protection in nuclear medicine shafieeRadiation protection in nuclear medicine shafiee
Radiation protection in nuclear medicine shafiee
 
Computed Tomography Dose Index
Computed Tomography Dose IndexComputed Tomography Dose Index
Computed Tomography Dose Index
 
Radiation protection Overview
Radiation protection  OverviewRadiation protection  Overview
Radiation protection Overview
 
Absolute Dosimetry_12.03.2019.pptx
Absolute Dosimetry_12.03.2019.pptxAbsolute Dosimetry_12.03.2019.pptx
Absolute Dosimetry_12.03.2019.pptx
 
Dosimetry 2
Dosimetry  2Dosimetry  2
Dosimetry 2
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
 
Epid
EpidEpid
Epid
 

Similar to Improving Patient Radiation Protection or Evaluating Risks in Medical Imaging? What matters most?

Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Eduardo Medina Gironzini
 
Radiation protection
Radiation protection Radiation protection
Radiation protection
Varshu Goel
 
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh KenethUnderstanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Nchanji Nkeh Keneth
 
Stereotactic body radiotherapy
Stereotactic body radiotherapyStereotactic body radiotherapy
Stereotactic body radiotherapy
Nanditha Nukala
 
Ircu
IrcuIrcu
Radiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicineRadiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicine
SGPGIMS
 
Radiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicineRadiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicine
SGPGIMS
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protection
sanyengere
 
IMRT in Head & Neck Cancer
IMRT in Head & Neck CancerIMRT in Head & Neck Cancer
IMRT in Head & Neck Cancer
Jyotirup Goswami
 
Radiation oncology
Radiation oncologyRadiation oncology
Radiation oncology
Rad Tech
 
Room 11B_ Session name_1715_Ogbudu.pptx
Room 11B_ Session name_1715_Ogbudu.pptxRoom 11B_ Session name_1715_Ogbudu.pptx
Room 11B_ Session name_1715_Ogbudu.pptx
henrypat2
 
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil TumainiEssentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
Basil Tumaini
 
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
Dr. Rituparna Biswas
 
Icru – 83 dr. upasna
Icru – 83  dr. upasnaIcru – 83  dr. upasna
Icru – 83 dr. upasna
Upasna Saxena
 
Radiation Protection Better titles and descriptions lead to more readers
Radiation Protection Better titles and descriptions lead to more readersRadiation Protection Better titles and descriptions lead to more readers
Radiation Protection Better titles and descriptions lead to more readers
sudheendrapv
 
Srs and sbrt 2 dr.kiran
Srs and sbrt 2 dr.kiranSrs and sbrt 2 dr.kiran
Srs and sbrt 2 dr.kiran
Kiran Ramakrishna
 
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
irjes
 
Adaptive radiotherapy in head and neck cancer
Adaptive radiotherapy in head and neck cancerAdaptive radiotherapy in head and neck cancer
Adaptive radiotherapy in head and neck cancer
Dr. Rituparna Biswas
 
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
European School of Oncology
 
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRTAN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
Melissa McClement
 

Similar to Improving Patient Radiation Protection or Evaluating Risks in Medical Imaging? What matters most? (20)

Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
 
Radiation protection
Radiation protection Radiation protection
Radiation protection
 
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh KenethUnderstanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
 
Stereotactic body radiotherapy
Stereotactic body radiotherapyStereotactic body radiotherapy
Stereotactic body radiotherapy
 
Ircu
IrcuIrcu
Ircu
 
Radiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicineRadiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicine
 
Radiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicineRadiation safety in diagnostic nuclear medicine
Radiation safety in diagnostic nuclear medicine
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protection
 
IMRT in Head & Neck Cancer
IMRT in Head & Neck CancerIMRT in Head & Neck Cancer
IMRT in Head & Neck Cancer
 
Radiation oncology
Radiation oncologyRadiation oncology
Radiation oncology
 
Room 11B_ Session name_1715_Ogbudu.pptx
Room 11B_ Session name_1715_Ogbudu.pptxRoom 11B_ Session name_1715_Ogbudu.pptx
Room 11B_ Session name_1715_Ogbudu.pptx
 
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil TumainiEssentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
Essentials of radiation therapy and cancer immunotherapy by Dr. Basil Tumaini
 
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
NTCP MODELLING OF ACUTE TOXICITY IN CARCINOMA CERVIX TREATED WITH CONCURRENT ...
 
Icru – 83 dr. upasna
Icru – 83  dr. upasnaIcru – 83  dr. upasna
Icru – 83 dr. upasna
 
Radiation Protection Better titles and descriptions lead to more readers
Radiation Protection Better titles and descriptions lead to more readersRadiation Protection Better titles and descriptions lead to more readers
Radiation Protection Better titles and descriptions lead to more readers
 
Srs and sbrt 2 dr.kiran
Srs and sbrt 2 dr.kiranSrs and sbrt 2 dr.kiran
Srs and sbrt 2 dr.kiran
 
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
EFFECTS OF X-RAY RADIATION EXPOSURE TOWARD LYMPHOCYTES OF RADIOGRAPHERS IN AB...
 
Adaptive radiotherapy in head and neck cancer
Adaptive radiotherapy in head and neck cancerAdaptive radiotherapy in head and neck cancer
Adaptive radiotherapy in head and neck cancer
 
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
NY Prostate Cancer Conference - B.W. Cox - Highlights of Day 2 breakout sessi...
 
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRTAN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
 

More from Eduardo Medina Gironzini

29 años de la FRALC
29 años de la FRALC29 años de la FRALC
29 años de la FRALC
Eduardo Medina Gironzini
 
Protección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niñosProtección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niños
Eduardo Medina Gironzini
 
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Eduardo Medina Gironzini
 
La Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en MedicinaLa Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en Medicina
Eduardo Medina Gironzini
 
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Eduardo Medina Gironzini
 
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento NuclearHerramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
Eduardo Medina Gironzini
 
Retos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del PacienteRetos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del Paciente
Eduardo Medina Gironzini
 
Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...
Eduardo Medina Gironzini
 
Protección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CTProtección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CT
Eduardo Medina Gironzini
 
Protección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología PediátricaProtección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología Pediátrica
Eduardo Medina Gironzini
 
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Eduardo Medina Gironzini
 
Protección Radiológica en Radiología Dental
Protección Radiológica en Radiología DentalProtección Radiológica en Radiología Dental
Protección Radiológica en Radiología Dental
Eduardo Medina Gironzini
 
Protección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en MamografíaProtección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en Mamografía
Eduardo Medina Gironzini
 
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Eduardo Medina Gironzini
 
El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...
Eduardo Medina Gironzini
 
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
Eduardo Medina Gironzini
 
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Eduardo Medina Gironzini
 
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
Eduardo Medina Gironzini
 
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivosLos campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
Eduardo Medina Gironzini
 
Niveles de Referencia de Diagnóstico en Radiología Pediátrica
Niveles de Referencia de Diagnóstico en Radiología PediátricaNiveles de Referencia de Diagnóstico en Radiología Pediátrica
Niveles de Referencia de Diagnóstico en Radiología Pediátrica
Eduardo Medina Gironzini
 

More from Eduardo Medina Gironzini (20)

29 años de la FRALC
29 años de la FRALC29 años de la FRALC
29 años de la FRALC
 
Protección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niñosProtección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niños
 
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
 
La Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en MedicinaLa Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en Medicina
 
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
 
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento NuclearHerramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
 
Retos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del PacienteRetos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del Paciente
 
Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...
 
Protección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CTProtección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CT
 
Protección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología PediátricaProtección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología Pediátrica
 
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
 
Protección Radiológica en Radiología Dental
Protección Radiológica en Radiología DentalProtección Radiológica en Radiología Dental
Protección Radiológica en Radiología Dental
 
Protección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en MamografíaProtección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en Mamografía
 
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
 
El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...
 
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
 
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
 
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
 
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivosLos campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
 
Niveles de Referencia de Diagnóstico en Radiología Pediátrica
Niveles de Referencia de Diagnóstico en Radiología PediátricaNiveles de Referencia de Diagnóstico en Radiología Pediátrica
Niveles de Referencia de Diagnóstico en Radiología Pediátrica
 

Recently uploaded

REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptxREGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
LaniyaNasrink
 
vonoprazan A novel drug for GERD presentation
vonoprazan A novel drug for GERD presentationvonoprazan A novel drug for GERD presentation
vonoprazan A novel drug for GERD presentation
Dr.pavithra Anandan
 
The Nervous and Chemical Regulation of Respiration
The Nervous and Chemical Regulation of RespirationThe Nervous and Chemical Regulation of Respiration
The Nervous and Chemical Regulation of Respiration
MedicoseAcademics
 
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotesPromoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
PsychoTech Services
 
Outbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptxOutbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptx
Pratik328635
 
Artificial Intelligence Symposium (THAIS)
Artificial Intelligence Symposium (THAIS)Artificial Intelligence Symposium (THAIS)
Artificial Intelligence Symposium (THAIS)
Josep Vidal-Alaball
 
Histololgy of Female Reproductive System.pptx
Histololgy of Female Reproductive System.pptxHistololgy of Female Reproductive System.pptx
Histololgy of Female Reproductive System.pptx
AyeshaZaid1
 
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptxCLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
Government Dental College & Hospital Srinagar
 
Does Over-Masturbation Contribute to Chronic Prostatitis.pptx
Does Over-Masturbation Contribute to Chronic Prostatitis.pptxDoes Over-Masturbation Contribute to Chronic Prostatitis.pptx
Does Over-Masturbation Contribute to Chronic Prostatitis.pptx
walterHu5
 
Post-Menstrual Smell- When to Suspect Vaginitis.pptx
Post-Menstrual Smell- When to Suspect Vaginitis.pptxPost-Menstrual Smell- When to Suspect Vaginitis.pptx
Post-Menstrual Smell- When to Suspect Vaginitis.pptx
FFragrant
 
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
rishi2789
 
Osteoporosis - Definition , Evaluation and Management .pdf
Osteoporosis - Definition , Evaluation and Management .pdfOsteoporosis - Definition , Evaluation and Management .pdf
Osteoporosis - Definition , Evaluation and Management .pdf
Jim Jacob Roy
 
How to choose the best dermatologists in Indore.
How to choose the best dermatologists in Indore.How to choose the best dermatologists in Indore.
How to choose the best dermatologists in Indore.
Gokuldas Hospital
 
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdfCHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
rishi2789
 
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấuK CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
HongBiThi1
 
Chapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptxChapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptx
Earlene McNair
 
June 2024 Oncology Cartoons By Dr Kanhu Charan Patro
June 2024 Oncology Cartoons By Dr Kanhu Charan PatroJune 2024 Oncology Cartoons By Dr Kanhu Charan Patro
June 2024 Oncology Cartoons By Dr Kanhu Charan Patro
Kanhu Charan
 
CBL Seminar 2024_Preliminary Program.pdf
CBL Seminar 2024_Preliminary Program.pdfCBL Seminar 2024_Preliminary Program.pdf
CBL Seminar 2024_Preliminary Program.pdf
suvadeepdas911
 
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
rishi2789
 
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USENARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
Dr. Ahana Haroon
 

Recently uploaded (20)

REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptxREGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
 
vonoprazan A novel drug for GERD presentation
vonoprazan A novel drug for GERD presentationvonoprazan A novel drug for GERD presentation
vonoprazan A novel drug for GERD presentation
 
The Nervous and Chemical Regulation of Respiration
The Nervous and Chemical Regulation of RespirationThe Nervous and Chemical Regulation of Respiration
The Nervous and Chemical Regulation of Respiration
 
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotesPromoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
Promoting Wellbeing - Applied Social Psychology - Psychology SuperNotes
 
Outbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptxOutbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptx
 
Artificial Intelligence Symposium (THAIS)
Artificial Intelligence Symposium (THAIS)Artificial Intelligence Symposium (THAIS)
Artificial Intelligence Symposium (THAIS)
 
Histololgy of Female Reproductive System.pptx
Histololgy of Female Reproductive System.pptxHistololgy of Female Reproductive System.pptx
Histololgy of Female Reproductive System.pptx
 
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptxCLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
CLEAR ALIGNER THERAPY IN ORTHODONTICS .pptx
 
Does Over-Masturbation Contribute to Chronic Prostatitis.pptx
Does Over-Masturbation Contribute to Chronic Prostatitis.pptxDoes Over-Masturbation Contribute to Chronic Prostatitis.pptx
Does Over-Masturbation Contribute to Chronic Prostatitis.pptx
 
Post-Menstrual Smell- When to Suspect Vaginitis.pptx
Post-Menstrual Smell- When to Suspect Vaginitis.pptxPost-Menstrual Smell- When to Suspect Vaginitis.pptx
Post-Menstrual Smell- When to Suspect Vaginitis.pptx
 
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 1_ANTI TB DRUGS.pdf
 
Osteoporosis - Definition , Evaluation and Management .pdf
Osteoporosis - Definition , Evaluation and Management .pdfOsteoporosis - Definition , Evaluation and Management .pdf
Osteoporosis - Definition , Evaluation and Management .pdf
 
How to choose the best dermatologists in Indore.
How to choose the best dermatologists in Indore.How to choose the best dermatologists in Indore.
How to choose the best dermatologists in Indore.
 
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdfCHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
 
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấuK CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
K CỔ TỬ CUNG.pdf tự ghi chép, chữ hơi xấu
 
Chapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptxChapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptx
 
June 2024 Oncology Cartoons By Dr Kanhu Charan Patro
June 2024 Oncology Cartoons By Dr Kanhu Charan PatroJune 2024 Oncology Cartoons By Dr Kanhu Charan Patro
June 2024 Oncology Cartoons By Dr Kanhu Charan Patro
 
CBL Seminar 2024_Preliminary Program.pdf
CBL Seminar 2024_Preliminary Program.pdfCBL Seminar 2024_Preliminary Program.pdf
CBL Seminar 2024_Preliminary Program.pdf
 
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
 
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USENARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
 

Improving Patient Radiation Protection or Evaluating Risks in Medical Imaging? What matters most?

  • 1. 1 Adjunct Assistant Professor (Radiology) The George Washington University School of Medicine and Health Sciences Cari Borrás, D.Sc., FACR, FAAPM, FIOMP Washington DC, USA Chair, AAPM International Educational Activities Committee Improving Patient Radiation Protection or Evaluating Risks in Medical Imaging? What matters most?
  • 2. Lecture Outline ▲ Radiation Protection Dosimetry Terms ▲ Radiology Dosimetry Terms • Machine related • Patient related ▲ Diagnostic Reference Levels ▲ Patient Organ Doses • Measurements • Look up Tables • Monte Carlo Simulations • Dicom Standards: RDSR & P-RDSR 2
  • 3. 3 Radiation Protection Dosimetric Quantities and Units (ICRP / ICRU) ▲ Incorporate Exposures • External and Internal ▲ Are Different For: • Low doses of (low-LET) radiation < 0.5 Gy o Stochastic (probabilistic) effects, LNT is applicable • Cancer induction • Hereditary diseases • High doses of radiation o Tissue reactions (deterministic effects), threshold exists
  • 4. 4 RP Dosimetric Quantities and Units Absorbed Dose, D Where d ε is the mean energy imparted by ionizing radiation in a volume element and d m is the mass of the matter in that volume The SI unit is J kg-1 and the special name is gray (Gy) D = d ε / d m
  • 5. 5 RP Dosimetric Quantities and Units Tissue Reactions RBE : Relative Biological Effectiveness differs for • different biological endpoints and • different tissues or organs Dose to Tissue = Absorbed Dose * RBE The SI unit is J kg-1 and the special name is gray (Gy)
  • 6. 6 RP Dosimetric Quantities and Units Stochastic Effects ICRP 26 (1977) ICRP 60 (1991) ICRP 103 (2007) * Equivalent Dose Equivalent Dose# Effective Dose Equivalent Effective Dose Effective Dose * No specific term # Radiation Weighted Dose proposed but not accepted The SI unit is J kg-1 and the special name is sievert (Sv) Evolution of Terminology
  • 7. 7 RP Dosimetric Quantities and Units Stochastic Effects (Sv) Equivalent Dose, HT, in a tissue T: HT = ΣR wR D T,R wR is the radiation weighting factor, which accounts for the detriment caused by different types of radiation relative to photon irradiation D T,R is the absorbed dose averaged over the tissue T due to radiation R wR values are derived from in vivo and in vitro RBE studies They are independent of dose and dose rate in the low dose region
  • 8. 8 Radiation Weighting Factors in 1991 (ICRP 60) and in 2007 (ICRP 103) Radiation type and energy range 1991 2007 Photons 1 1 Electrons and muons 1 1 Protons (1991, 2007), pions (2007) 5 2 Alpha particles, fission fragments, heavy ions 20 20 Neutrons, energy < 10 keV 5 Continuous Function 10 keV to 100 keV 10 > 100 keV to 2 MeV 20 > 2 MeV to 20 MeV 10 > 20 MeV 5
  • 9. 9
  • 10. 10 RP Dosimetric Quantities and Units Stochastic Effects (Sv) E = ΣT wT H T = ΣT ΣR wT wR D R,T Effective Dose, E ΣT wT = 1 wT represents the relative contribution of that tissue or organ to the total detriment resulting from uniform irradiation of the body A uniform dose distribution in the whole body gives an effective dose numerically equal to the radiation- weighted dose in each organ and tissue of the body
  • 11. 11 Tissue Weighting Factors in 1977 and 1991 Tissue ICRP 26 ICRP 60 Bone surface 0.03 0.01 Bladder 0.05 Breast 0.15 0.05 Colon 0.12 Gonads 0.25 0.20 Liver 0.05 Lungs 0.12 0.12 Esophagus 0.05 Red bone marrow 0.12 0.12 Skin 0.01 Stomach 0.12 Thyroid 0.03 0.05 Remainder 0.30 0.05 TOTAL 1.0 1.0
  • 12. 12 Tissue Weighting Factors ICRP 103 (2007) * Remainder Tissues: Adrenals, Extrathoracic region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate, Small intestine, Spleen, Thymus and Uterus/cervix Tissue wT ∑ wT Bone-marrow (red), Colon, Lung, Stomach, Breast, Remainder Tissues* 0.12 0.72 Gonads 0.08 0.08 Bladder, Oesophagus, Liver, Thyroid 0.04 0.16 Bone surface, Brain, Salivary glands, Skin 0.01 0.04 Total 1.00
  • 13. 13 RP Dosimetric Quantities and Units ▲ Incorporate Exposures • External • Internal In this presentation we will not discuss the magnitudes for exposures from radionuclides: Committed Equivalent Dose Committed Effective Dose
  • 14. 14 RP Dosimetric Quantities and Units Stochastic Effects Collective Effective Dose, S (due to Individual Effective Doses E1 and E2) • d N / d E : number of individuals who experience an effective dose between E and E + d E • ΔT specifies the time period within which the effective doses are summed
  • 15. 15 Limitations of Equivalent and Effective Doses ▲ Are not directly measurable ▲ Point quantities needed for area monitoring (in a non-isotropic radiation field, effective dose depends on the body’s orientation in that field) ▲ Instruments for radiation monitoring need to be calibrated in terms of a measurable quantity for which calibration standards exist Operational protection quantities are needed!
  • 16. 16 RP Operational Quantities - ICRU Dose Equivalent, H H = Q * D (Sv) Where: D = Absorbed Dose Q = Quality Factor, function of L∞ (LET) Where: DL is the distribution of D in L for the charged particles contributing to D At a point in tissue:
  • 17. 17 H*(10) and HP (10) – photons > 12 keV and neutrons HP (0.07) – α and β particles and doses to extremities Ω in RP usually not specified. Instead, Maximum H’(0.07, Ω) is obtained by rotating meter seeking maximum reading Hp (3) – lens of the eyes
  • 18. 18 Conversion Coefficients for External Exposure (ICRU 57, 1998) For Photons, Neutrons, Electrons
  • 19. 19 System of Quantities for Radiological Protection Absorbed dose, D Equivalent dose, HT, in an organ or tissue T Effective dose, E Committed doses, HT (τ) and E(τ) Collective effective dose, S For external exposure Dose quantities for area monitoring and individual monitoring For internal exposure Activity quantities in combination with biokinetic models and computations Operational Quantities Dose Quantities defined in the body
  • 21. Are the radiation protection (RP) dosimetry terms applicable to patient exposures in diagnostic medical imaging and interventional radiology procedures? 21
  • 22. 22 RP Dosimetric Quantities and Units ▲ Retrospective dose assessments ▲ Epidemiological studies without careful consideration of the uncertainties and limitations of the models and values used ▲ Estimation of specific individual human exposures and risk E is calculated averaging gender, age and individual sensitivity Caveats Effective Dose should not be used for
  • 23. 23 RP Dosimetric Quantities and Units Caveats Dose to Individuals Absorbed doses to organs or tissues should be used with the most appropriate biokinetic parameters, biological effectiveness of the ionizing radiation and risk factor data, taking into consideration the associated uncertainties. Medical exposures fall in this category!
  • 25. Effective Doses from Radiation Sources in the US (UNSCEAR 2008 & NCRP 160) 25
  • 26. 26 Trends in average effective doses resulting from selected diagnostic medical examinations (UNSCEAR 2008) Examination Average effective dose per examination (mSv) Health care level I 1970–1979 1980–1990 1991–1996 1997–2007 Chest radiography 0.25 0.14 0.14 0.07 Abdomen X-ray 1.9 1.1 0.53 0.82 Mammography 1.8 1 0.51 0.26 CT scan 1.3 4.4 8.8 7.4 Angiography 9.2 6.8 12 9.3
  • 27. 0 5 10 15 20 25 30 35 40 45 50 OrganDose(mGy) Bone Marrow Breast Ovaries Heart Skin Thyroid Sestamibi Rest/Stress Dx Coronary Angiogram CT Coronary Angio CT Coronary Calcium Chest X-ray Cynthia McCollough, Ph.D. Exam Bone Marrow Breast Ovaries Heart Skin Thyroid Sestamibi Rest/Stress 9.40 6.40 15.40 13.10 6.0 8.50 Dx Coronary Angiogram 6.10 3.18 0.09 23.70 450.0 2.16 CT Coronary Angio 0.08 7.60 0.08 47.30 5.3 1.10 CT Coronary Calcium 0.02 2.40 0.02 14.74 1.6 0.30 Chest X-ray 0.05 0.15 0.00 0.23 0.5 0.06 Organ Dose (mGy)
  • 28. Effective Dose vs Organ Doses in Medical Exposures Effective Dose is an adequate parameter to intercompare doses from different radiological techniques in order to optimize protection However, to assess risks it is necessary to determine organ doses 28
  • 29. 29
  • 30. 30 Increasing levels of uncertainty at each step of the dose and risk estimation process using effective dose Durand et al. 2012
  • 32. 32
  • 33. 33
  • 35. 35 Conclusion For an assessment of the risk due to induction of stochastic and deterministic effects by medical x-ray imaging detailed knowledge is required of organ doses, absorbed-dose distribution, and the age and gender of the group of patients concerned, rather than effective dose. ICRU 74
  • 38. Dosimetric and Geometric Quantities for Determination of Patient Dose (ICRU 74, 2005) 38 PKA represents the integral of air kerma across the entire x-ray beam emitted from the x-ray tube. Its units are Gy cm2 Tolerance ± 35 % for > 2.5 Gy cm2 The accuracy of the display can be checked directly or indirectly
  • 40. Ka,r (mGy) “Interventional reference point”, “Cumulative reference point air kerma”, “Cumulative dose”, “Patient entrance reference point” 40IEC 60601-2-43, 2000 & NCRP 168, 2010 The accuracy of the Ka,r display is checked with an ion chamber Tolerance ± 35 % for ≻ 100 mGy Ka,r (mGy) Ka,r approximates Ka,e for adult patients undergoing cardiac interventions, but overestimates it for patients in cerebrovascular interventions.
  • 41. 41 Protection Dosimetry ▲ Kai, Kae, PKA ▲ Maximum (Peak) Organ Dose • Skin • Eye Lens ▲ Stochastic Effects ▲ Deterministic Effects Patient Follow-up may be needed in Interventional Radiology These terms are the ones mostly used in Diagnostic Reference Levels
  • 42. 42 Radiation Measurements In air In/On Phantom On Patient Radiation Instrumentation Ion Chamber Film: Silver Halide and Radiochromic Diodes TLD, OSL
  • 43. 4343 Determination of Ka,e Ka,e Ka,i HJ Khoury, 2009 43 DIRECT INDIRECT TLDs on patient skin X Ray tube output Imaging parameters
  • 45. 45 PKA Ka,i HJ Khoury, 2009 Determination of PKA DIRECT INDIRECT X Ray tube output Imaging parameters Rad area Removable KAP meter on collimator exit KAP (DAP) Display on control
  • 48. 48 High pixel electronic noise can be reduced by incorporating a solid state avalanche layer of a-Se over the TFT array, which amplifies the signal (HARP) Summary of Digital Detectors for Radiography / Fluoroscopy JR Scheuermann, 2018JA Seibert, 2018
  • 49. CR and DR systems assess the recorded signal through histogram analysis  Tests with defined beam conditions are used to verify that correct indicators are being reported  Recommended exposure indicator ranges are used by technologists to check each radiographic exposure JA Seibert 2018 Exposure Indicators
  • 50. Region to assess signal indicator Systems vary in the region used to assess the signal for an image. Full Image Regular regions Corresponding histograms JA Seibert 2018
  • 51. Region to assess signal indicator IEC 62494-1  Gray histogram for the entire image  Black histogram for the anatomic region (relevant region) JA Seibert 2018
  • 52. Computation of an exposure indicator Median value of the signal values determined in the histogram of the relevant image region Manufacturers have proprietary methods  Algorithms, values, and calibration methods are widely different, leading to confusion amongst users  Inappropriate image segmentation can produce inaccuracies and incorrect feedback values JA Seibert 2018
  • 53. Manufacturer Symbol 5 Gy 10 Gy 20 Gy Canon REX 50 100 200 IDC (ST = 200) F# -1 0 1 Philips (CR-Fuji) EI 200 100 50 Philips (DR) EI 200 400 800 Fuji S 400 200 100 Carestream EI 1700 2000 2300 Siemens EI 500 1000 2000 Approximate EI Values vs. Receptor Exposure ….. The need for a standard is clearly evident Estimated receptor exposure JA Seibert 2018 IEC 62494-1
  • 54. Calibration of Radiography EI value Fuji – CR & DR  Follow manufacturer documentation  Measure incident AK  Compare to indicated value / 100 JA Seibert 2018
  • 55. Deviation Index (DI) Exposure Indices 𝐷𝐼 = 10 × 𝑙𝑜𝑔10 𝐸𝐼 𝐸𝐼 𝑇(𝑏. 𝑣)  EIT is a target index value that is to be determined for each body part b, view , procedure type, and clinical site  When EI equals EIT, DI = 0 DI = +3.0 for 2x target exposure DI = -3.0 for ½x target exposure ± 1 is one step on a standard generator mAs control or AEC compensation (ISO R5 scale) JA Seibert 2018
  • 56. Target Exposure Index - EIT  EIT depends on detector type, examination type, diagnostic question and other parameters  Establishing EIT values requires feedback from technologists and radiologists working with MP  EIT values are (must be) provided as a data base in the digital imaging system  Be aware that systems have default values that might be inappropriate – Must review all values & protocols! JA Seibert 2018
  • 57. Target exposure index, EIT  Examples:  CR adult PA chest, desired S#: EIT = 700  CR pediatric chest EIT = 500  Noting the efficiency of CR is ~½ that of DR, the EIT for DR devices are adjusted accordingly  DR adult chest EIT = 350  DR pediatric chest EIT = 250  Extremities: higher EIT  Large patients: higher EIT ?? JA Seibert 2018
  • 58. Acquisition technique differences with CR and DR  A function of detector detective quantum efficiency JA Seibert 2018
  • 59. Caveats  The EI does not describe patient dose  EI is derived from detector signal (dose at the detector)  Best indicator for patient dose is PKA (mGy-cm2)  The EI is not a dose measurement tool  Dose calibration only valid at one radiation quality  Same EI obtained on different digital systems might not have similar image quality  Influence of detector DQE, scattered radiation, beam quality JA Seibert 2018
  • 60. Why is incident detector exposure index (EI) important? • Is proportional to the image SNR (for given DQE) Signal to Noise Ratio “image quality” • Is indirectly related to patient exposure • Is not linked with image appearance as with screen- film receptors • Assists the technologist in identifying appropriate “equivalent speed” and therefore SNR JA Seibert 2010 60
  • 64. The KAP meter should be calibrated for all the fluoro and cine techniques used clinically 64
  • 65. 65
  • 66. 66
  • 67. Fluoroscopic Equipment Performance Evaluation (ACR 2016) 67
  • 68. ▲ Kerma Rate vs Phantom Thickness • Variables o Tube Potential (kV) o Tube Current (mA) o Pulse Width (ms) o Cu filter (new angio systems) ▲ Maximum Patient Surface Kerma Rate 68 Automatic Brightness Control Check: Fluoro and Cine
  • 69. 69 Flat Panel – Filtration Options
  • 70. 70 Variation of air kerma rate, tube potential, tube current and Cu filtration vs water-equivalent phantom - FLUOROSCOPY N. Lunelli, 2012 Flat Panel
  • 71. 71 IAEA NAHU No. 24 DOSIMETRY IN DIAGNOSTIC RADIOLOGY FOR PAEDIATRIC PATIENTS 2013
  • 72. Fluoroscopic Equipment Performance Evaluation (ACR 2016) - cont 72
  • 74. 74 J Boone 2013 CT Dosimetry
  • 75. 75 CT Dosimetry Measurements can be done with the ion chamber in air at the isocenter or in a CT (FDA) phantom using appropriate corrections
  • 76. BSS MSAD I D z dz N I N I     1 2 2 ( ) U .S. C D R H MSAD I D z dzN I I I     1 2 2 , ( ) CTDI N T D z dz T T     1 7 7 ( ) EC CTDI T D z dz      1 ( ) DLP CTDI T NW i   CTDI CTDI CTDIW cm c cm p        1 3 2 310 10, , CT Dosimetry Before Helical CT
  • 78. 78 Volume CTDIW (CTDIvol) CTDIvol = CTDIW • N • T / I where: I = the table increment per axial scan, or the table increment per rotation of the x-ray tube in a helical scan. In helical CT, the term pitch (P) is defined as the ratio of the table increment per tube rotation to the nominal (total) width of the radiation beam. Hence, Pitch = I / (N • T) and CTDIvol = CTDIW /pitch CTDIvol is the parameter that best estimates the average dose at a point with the scan volume for a particular scan protocol. Dose Length Product (DLP) DLP = CTDIvol (mGy) • scan length (cm) CT Dosimetry After Helical CT
  • 80. Current dose reporting methods ▲ Computed Tomography Dose Index, CTDIvol (mGy) • Provides dose comparison for scan protocols or scanners • Useful for obtaining “benchmark” data • Not good for estimating patient dose ▲ Dose Length Product (DLP): CTDIvol × scan length • Volume dose delivered to the patient (mGy-cm) • In limited scan range, DLP is less useful, e.g., density-time studies such as brain perfusion ▲ Effective Dose: a crude measure of whole body dose • Conversion factors are generated from Monte Carlo transport methods in standardized phantoms • Not intended for individual patient dose metrics • Estimated from DLP Adapted from JA Seibert 2011
  • 83. Dose estimate conversion factors for body size JA Seibert 2011 2011
  • 84. Family of physical phantoms Cynthia McCollough, Mayo Clinic standard phantoms Tom Toth & Keith Strauss Monte Carlo phantoms (1 – 50 cm) John M. Boone, UC Davis Anthropomorphic Monte Carlo phantoms Mike McNitt-Gray, UCLA AAPM Task Group 204 – Size-Specific CT Dose JA Seibert 2011
  • 87. patient size (effective diameter) dose CTDIvol 32 cm PMMA normalization point Normalize scanner output to CTDIvol JA Seibert 2011
  • 88. conversionfactor CTDIvol 32 cm after normalization 1.0 patient size Normalized output JA Seibert 2011
  • 91.
  • 98. CT Dose by Convolution AAPM TG 246, 2019
  • 100. 100 Protection Dosimetry ▲ Kai, Kae, PKA ▲ Maximum (Peak) Organ Dose • Skin • Eye Lens ▲ Stochastic Effects ▲ Deterministic Effects Patient Follow-up may be needed in Interventional Radiology These terms are used for Diagnostic Refence Levels
  • 101. 101 To Optimize Radiation Protection The best way is to establish Diagnostic Reference Levels (DRLs) … derived from the data from wide scale quality surveys … for the most frequent examinations in diagnostic radiology... UK 2000 75% Percentile
  • 102. J. L. Heron 2013
  • 103. D Hart et al. 2012
  • 104. 104 www.eu-alara.net/index.php/surveys-mainmenu-53/36-ean-surveys/156-drls.html www.hc- sc.gc.ca/ewh-semt/pubs/radiation/safety-code_35-securite/index-eng.php NCRP 172 C J Martin et al. Approaches to aspects of optimisation of protection in diagnostic radiology in six continents. IOP PUBLISHING, J. Radiol. Prot. Accepted June 2013
  • 105. 105 Achievable dose A dose which serves as a goal for optimization efforts. This dose is achievable by standard techniques and technologies in widespread use, while maintaining clinical image quality adequate for the diagnostic purpose. The achievable dose is typically set at the median value of the dose distribution. 2012
  • 106. NCRP recommended DRLs and achievable doses (mGy) - Radiography 106
  • 107. NCRP recommended DRLs and achievable doses - Fluoro 107 mGy
  • 108. NCRP recommended DRLs and achievable doses (mGy) - CT 108
  • 111. DRL Requirements – BSS A review is conducted to determine whether the optimization of protection and safety for patients is adequate, or whether corrective action is required if, for a given radiological procedure: i. typical doses or activities exceed the relevant diagnostic reference level; or ii. typical doses or activities fall substantially below the relevant diagnostic reference level and the exposures do not provide useful diagnostic information or do not yield the expected medical benefit to the patient. 111
  • 112. Patient Organ Doses ▲ Medical Imaging • Radiography • Mammography • Fluoroscopy • CT ▲ Interventional Radiology 112
  • 113. Organ Dose Determination ▲ Direct Radiation Measurements ▲ Table Look Up ▲ Monte Carlo Simulations using Patient and Radiation Transport Modeling • Mathematical phantoms • Special features of the active bone marrow • Voxel phantoms • Anthropometric phantoms ▲ Calculations from Imaging System Dose Metrics • and/or „Dose Report‟ ▲ DICOM Standards 113
  • 114. Threshold doses for approximately 1% morbidity incidence 114 ICRP 118 , 2012
  • 115. 115 Trends in average effective doses resulting from selected diagnostic medical examinations (UNSCEAR 2008) Examination Average effective dose per examination (mSv) Health care level I 1970–1979 1980–1990 1991–1996 1997–2007 Chest radiography 0.25 0.14 0.14 0.07 Abdomen X-ray 1.9 1.1 0.53 0.82 Mammography 1.8 1 0.51 0.26 CT scan 1.3 4.4 8.8 7.4 Angiography 9.2 6.8 12 9.3
  • 116. Effective Dose vs Organ Doses in Medical Exposures (ICRU, ICRP) Effective Dose is an adequate parameter to intercompare doses from different radiological techniques in order to optimize protection However, to assess risks it is necessary to determine organ doses 116
  • 117. 117 The Essentials of Medical Imaging 3d Ed, 2012
  • 119. 119DRMelo 2016 Organ Doses from Diagnostic Radiography DR Melo 2016
  • 121. 121 Patient Dose - Mammography  Kerma in Air  Reproducibility and Linearity  Average Glandular Dose  Half Value Layer  Thickness of Compressed Breast  Estimation of Breast Tissue Composition (Dg)av = (DgN)av * Ka,i
  • 123. Organ Doses from Ka,i (“Exposure”) - Fluoroscopy 123 http://www.fda.gov/cdrh/ohip/organdose.html
  • 124. 124 Thermoluminiscent dosimeters being placed on patient undergoing fluoroscopic examination to measure dose NRPB
  • 125. 125 Skin Dose Measurements - TLD SILVA et al., 2009 TLDs placed directly on a patient’s back Matrix of TLDs placed on a sheet under a patient undergoing a cardiac interventional procedure
  • 126. 126 Placement of Radiosensitive Indicators Skin Dose Assessment - Neuroembolization Suzuki AJNR 29 Jun-Jul 2008
  • 127. 127 Matrix of Photoluminiscent Dosimeters Moritake et al, 2008Cerebral embolization
  • 128. A and B, Nonoptimal lateral projection without and with subtraction where the left eye is irradiated. R.M. Sánchez et al. AJNR Am J Neuroradiol 2016;37:402-407 ©2016 by American Society of Neuroradiology
  • 129. Position of the OSL dosimeters on patient eyes. R.M. Sánchez et al. AJNR Am J Neuroradiol 2016;37:402-407 ©2016 by American Society of Neuroradiology
  • 130. Adult patient doses received during interventional cerebral procedures performed in Recife Dosimeters : TLD-100
  • 131. 131 In Interventional Exams, Maximum Skin Dose and PKA can be Determined with Film: Silver Halide and Radiochromic Film Position (Cardio)
  • 133. 133 Curvas de Calibração com scanner e densitômetros Silva et al., 2009
  • 134. 134 Skin Dose (DT) Calculations Ka,e = Ka,r ftable (SRD/SSD)2 BSF DT = Ka,e ( ) ≃ Ka,e 1.06 Ka,e: Entrance surface Air Kerma Ka,r: Air Kerma at Reference Point ftable: Table and pad attenuation factor SRD: Source-reference distance SSD: Source-entrance surface µen,a / ρ: Air mean energy absorption coefficient µen,T / ρ: Skin mean energy absorption coefficient µen,T ρ µen,a ρ
  • 135. 135 Coronary Angioplasty Results Loc Dose (Gy) A 0.43 B 2.27 C 3.92 D 0.57 E 3.56 F 3.97 G 2.28 H 1.39 I 0.41 J 0.9 L 1.39 M 1.22 N 0.28 SILVA et al., 2009
  • 136. 136 Maximum Skin Dose - Results Neuroradiology Interventions N. Lunelli, 2012 Reaction in the patient – MSD=8030 mGy
  • 137. Patient Exposure Form JA Seibert 2018
  • 139. CT Dose Reporting…… HOW? ▲ Scanner dose measurement indicators: CTDIvol & DLP ▲ How to get the CT provided data? • Dose summary page and Optical Character Recognition • Open-source or commercial “dose gathering” products Image DOSE Summary page Adapted from JA Seibert 2011
  • 141.
  • 142. Radimetrics eXposure: Dose calculation engine • Receives CT study • Extracts patient dose metric information • Pushes dose metrics to radiology report • Maintains database • Provides dashboards 142 JA Seibert 2013
  • 143. Summary ▲ Neither CTDIvol nor DLP should be used to estimate effective dose or potential cancer risk for any individual patient ▲ Estimation of organ dose and use of age- and gender-specific risk coefficients are necessary to determine individual risk ▲ Investigations using Monte Carlo photon transport within CT scan data, identification / segmentation of organs, and tabulating organ doses are a start to individual, customized dose measurements JA Seibert 2011
  • 144. Radiation Dose to Pediatric Patients of Different Body Stature from CT Exams Using Deformable Realistic Phantoms HPS, 59th Annual Meeting, Baltimore, MD, 2014 Stabin, M. et al. Vanderbilt University Nashville, TN, USA • Using the Geant4 Monte Carlo toolkit, created a radiation transport code to simulate patients undergoing exams on a CT scanner similar to that at Vanderbilt University Children's Hospital. • Used measured values of dose in a physical phantom to calibrate the simulated output from the Geant CT source.
  • 146. Segmented organs in 9-year-old female patient Stabin et al., 2014
  • 147. Organ Name Dose (mGy) Body 10.7 Esophagus 11.2 Liver 13.1 Gall bladder 11.7 Stomach 12.5 Spleen 10.9 Heart 13.6 Pancreas 12.1 Bladder 11.9 Small intestine 12.2 Uterus 10.8 Skin 10.1 Thyroid 9.0 Lungs 12.7 Kidneys 13.5 Adrenals 12.8 Ovaries 10.1 Skeleton 22.6 Effective Dose (ICRP 103) (mSv) 13.0 Dose values for a selection of organs for a 9 year-old female patient. Stabin et al., 2014
  • 148. 9 10 11 12 13 14 15 16 17 0 2 4 6 8 10 12 14 16 Dose(mGyormSv) Age (yr) 50th Percentiles, Age esophagus (7) lungs (12) liver (13) gall bladder (14) kidneys (15) adrenals (16) stomach (17) spleen (18) ED 10 10,5 11 11,5 12 12,5 13 13,5 0 10 20 30 40 50 60 70 80 90 100 Dose(mGyormSv) Percentile 10-yr-olds, Percentiles esophagus (7) lungs (12) liver (13) gall bladder (14) kidneys (15) adrenals (16) stomach (17) spleen (18) ED Stabin et al., 2014
  • 149. Conclusions • As with internal dosimetry, using deformable NURBS phantoms greatly facilitates the development of phantom-based dosimetry. • We have used a Geant4-based CT dosimetry program to calculate doses to a wide range of patient and phantom models. • These data can be used to produce patient- individualized organ and effective doses that are far better than CT scanner reported doses. Stabin et al., 2014
  • 150. So, what should be used for patient risk? ▲ Using Monte Carlo photon transport on organ-segmented CT scan data of patients ▲ Estimation of specific individual’s organ doses ▲ Accumulating organ dose for each instance ▲ Applying age- and sex-specific risk coefficients . . . . . . ▲ This is a large undertaking, and will take time for implementation JA Seibert 2011
  • 151. organ dosesCT scan & patient parameters Monte Carlo modeling should be the basis for patient CT dosimetry Monte Carlo JA Seibert 2011
  • 154. DICOM Standards 154 ▲ DICOM Header ▲ DICOM Services • e.g. modality performance procedure step (MPPS) ▲ Radiation Dose Structured Report (RDSR) ▲ Patient-RDSR (P-RDSR)
  • 157. DICOM RDSR from Philips (rooms 3-4 San Carlos Hospital) 157 Radiation Dose Structured Report 67: pages, 30 runs of fluoro + 10 runs of cine; all technical, dose and geometry details included (part 3 Fluoro example) Irradiation Event X-Ray Data Acquisition Plane : Single Plane DateTime Started : 2013-08-12, 12:51:07.958 Irradiation Event Type : Fluoroscopy Reference Point Definition : 15cm below BeamIsocenter Irradiation Event UID : 1.3.46.670589.28.3711502481496.20130812125107317. 1 Dose Area Product = 1.8E-06 Gy.m2 Dose (RP) = 0.00017185537709Gy Positioner Primary Angle = 1.6 ° Positioner Secondary Angle = -0.1° X-Ray Filters X-Ray Filter Type : Strip filter X-Ray Filter Material : Copper or Copper compound X-Ray Filter Thickness Minimum = 0.9 mm X-Ray Filter Thickness Maximum = 0.9 mm X-Ray Filters X-Ray Filter Type : Strip filter X-Ray Filter Material : Aluminum or Aluminum compound X-Ray Filter Thickness Minimum = 1 mm X-Ray Filter Thickness Maximum = 1 mm Fluoro Mode : Pulsed Pulse Rate = 7.5 pulse/s Number of Pulses = 11no units X-Ray Tube Current = 120 mA Distance Source to Isocenter = 765 mm KVP = 97.97 kV Pulse Width = 9.2 ms Irradiation Duration = 1.466 s Patient Table Relationship : headfirst Patient Orientation : recumbent Patient Orientation Modifier : supine Target Region : Chest Number of Frames = 11no units SubImages per Frame = 1 no units Wedges and Shutters Bottom Shutter = 82.5mm Left Shutter = 82.5mm Right Shutter = 82.5mm Top Shutter = 82.5mm Beam Position Longitudinal Beam Position = 1562mm Beam Angle = 0 ° Table Height Position = 920 mm E. Vañó, 2018
  • 158. DICOM RDSR from Philips (rooms 3-4 San Carlos Hospital) 158 Radiation Dose Structured Report 67: pages, 30 runs of fluoro + 10 runs of cine; all technical, dose and geometry details included (part 4 cine example) Irradiation Event X-Ray Data (series 1 manual note) Acquisition Plane : Single Plane DateTime Started : 2013-08-12, 12:52:31.098 Irradiation Event Type : Stationary Acquisition Reference Point Definition : 15cm below BeamIsocenter Acquired Image : Image X-Ray Angiographic Image Storage (SOP Instance UID: ) Irradiation Event UID : 1.3.46.670589.28.3711502481496.201308121252 30407.1 Dose Area Product = 0.0004013 Gy.m2 Dose (RP) = 0.06913345231013Gy Positioner Primary Angle = 11.8° Positioner Secondary Angle = -0.1° X-Ray Filters X-Ray Filter Type : No Filter X-Ray Tube Current = 865.6 mA Distance Source to Isocenter = 765 mm KVP = 82.57 kV Pulse Width = 7.3 ms Distance Source to Detector = 1068mm Irradiation Duration = 5.2 s Patient Table Relationship : headfirst Patient Orientation : recumbent Patient Orientation Modifier : supine Target Region : Chest Number of Frames = 78no units SubImages per Frame = 1 no units Wedges and Shutters Bottom Shutter = 67.5mm Left Shutter = 67mm Right Shutter = 67mm Top Shutter = 67.5mm Beam Position Longitudinal Beam Position = 1562mm Beam Angle = 0 ° Table Height Position = 920 mm E. Vañó, 2018
  • 159. Study level – summary of a procedure II Sample of the graphical representation of DICOM RDSR data of a neuro- interventional study carried out in a bi- plane cath-lab, that allows to see the different fluoroscopy and acquisition modes used during the procedure. J.M. Fernandez-Soto et al., 2016
  • 160. Sample of a radiochromic film image placed at the patient back in an interventional cardiology procedure (right) and two types of dose maps obtained from the DICOM RDSR for the same procedure. This also allows the estimation of the maximum dose at the skin entrance. Skin Dose Maps (JM Fernandez-Soto et al., 2016)
  • 162. 162
  • 163. Supplement 191 Patient Dose SR • Current Radiation Dose SR contains only information about the x-ray system or information the x-ray system can determine, e.g.: • radiation output, geometry, x-ray source, detector system, etc. • Estimation of patient/organ dose requires knowledge of: • Radiation beam characteristics that interact with patient • Models of the patient/organs • Models of radiation interaction within the patient • Methods to do patient dose estimations are being developed and improved continuously • storage of these estimations in a different object would allow more versatile utilization of the data 163D. Pelc, 2016
  • 164. 164 RDSR IOD - X-Ray exposure techniques - Table, Gantry Angle, Beam Geometry, collimation, … - Dose measures: CTDI, DAP, ... X-Ray Equipment Modality IOD Patient Dose Determination: Data Flow Requirements Organ Dose Reporter System Modality Frame of Reference (FOR) Signifies part of Supplement 191 Patient RDSR D. Pelc, 2016
  • 165. 165Signifies part of Supplement 191 Patient RDSR RDSR IOD - X-Ray exposure techniques - Table, Gantry Angle, Beam Geometry, collimation, … - Dose measures: CTDI, DAP, ... X-Ray Equipment Modality IOD Organ Dose Reporter System Patient Model Registration IOD Equipment Information - Table dimension - Attenuating material, … Modality Frame of Reference (FOR) Patient Model FOR Patient Dose Determination: Data Flow Requirements D. Pelc, 2016
  • 166. 166Signifies part of Supplement 191 Patient RDSR RDSR IOD - X-Ray exposure techniques - Table, Gantry Angle, Beam Geometry, collimation, … - Dose measure: CTDI, DAP, ... Registration IOD X-Ray Equipment Modality IOD Patient Model Organ Dose Reporter System Patient Dose SR Calculated data for documentation and reference to images and RDSR’s Patient Dose Determination: Data Flow Requirements Equipment Information - Table dimension - Attenuating material, … Patient Dose 2D view/map (e.g. iso-dose map) Patient Dose Surface 3D map/view Modality Frame of Reference (FOR) Patient Model FOR D. Pelc, 2016
  • 167. Final Considerations: What Matters Most? ▲ Patient organ doses will be useful for refining dose response curves and carry out epidemiological studies ▲ Will determining patient doses allow us to estimate patient risk? ▲ Risk is population-based, it cannot be applied to a single individual! Risk is a probability!! ▲ Do we need individualized dosimetry for radiation protection? ▲ If the goal is to protect the patient, can we just use diagnostic reference levels, which are usually machine parameters, something much simpler to determine than organ doses? ▲ Can we report such parameters in the patient chart? Some countries / states require it….
  • 168. Agency Regulatory Requirement (ID: Individual Dose) FDA & NEMA Kai limit for fluoroscopy. Dg limit for mammography. All new CT scanners to comply with the NEMA XR-25 Dose Check Standard State of California ID: CTDIvol and DLP included in each patient record and transferred to PACS. Effective dose limits for repeated exams unless approved by a physician. All CT facilities accredited. State of Texas Kai limits for some radiography exams. Maintain records for output of fluoroscopically-guided interventions to include cumulative Ka,r or PKA. ID for CT: Dose recording and reporting plus skin dose determination. Recommends establishing a “CT reference level” and patient follow up when value is exceeded. .
  • 169. Agency Accreditation Requirements The Joint Commission CT: CTDIvol and DLP or SSDE specific for each exam, summarized by series or anatomic area and retrievable. Review and analyze values if they exceed expected dose index ranges. Compare with external benchmarks. Fluoro: Establish radiation exposure and skin dose threshold levels. If exceeded, review procedure and evaluate patient (>15 Gy = Sentinel event). Ka,r or PKA documented in a retrievable format. Both: Evaluation of equipment performance and imaging protocols. American College of Radiology Dg limit, CTDIvol limit for adult and pediatric head and abdomen CT scans. DRLs recommended.
  • 170. Example from a California Patient CT Chart This patient received a total of 1 exposure event(s) during this CT examination. The CTDIvol and DLP radiation dose values for each exposure are: Exposure: 1; Series: 2; Anatomy: Neck; Phantom: 32 cm; CTDIvol: 19; DLP: 498 The dose indicators for CT are the volume Computed Tomography (CT) Dose Index (CTDIvol) and the Dose Length Product (DLP), and are measured in units of mGy and mGy-cm, respectively. These indicators are not patient dose, but values generated from the CT scanner acquisition factors. The report includes radiation exposure data for exposures received during this examination. If multiple reports are produced from this examination, the exposure data is duplicated in each report. The exposure data reported is indicative, but not determinative, of the radiation dose received by this patient.