Introduction Case Studies
Importing satellite imagery into R
from NASA and the U.S. Geological Survey
Matt Moores
Warwick R Users’ Group
March 16, 2017
Introduction Case Studies
Outline
1 Introduction
2 Case Studies
Chlorophyll-a (MODIS)
Land Use Classification
Vegetation Index (Landsat 8)
Introduction Case Studies
Satellite Remote Sensing
Many applications:
Environmental monitoring
Land use (plant biomass)
Water quality (chlorophyll a)
Total column ozone
Agriculture
Economic development
Much of this data is available in the public domain
First Landsat satellite launched in 1972
Landsat 8 launched in February 2013
Landsat 5 decommissioned in June 2013
Land Remote Sensing Policy Act (1992) 15 USC 5641
Introduction Case Studies
Multivariate Spatial Observations
Satellite Pixel Width Spectral Bands
Landsat 8 30m 9+2
MODIS Aqua/Terra 500m 36
EO-1 Hyperion 30m 220
ESA Sentinel 10m 12
Introduction Case Studies
R Packages
raster : read GeoTIFF and other file formats
rasterVis : plotting spatial objects (lattice graphics)
sp : S4 classes SpatialPoints, etc.
rgdal : transform between coordinate systems
(R interface to GDAL & PROJ.4)
RStoolbox : read meta-data for Landsat
MODIS : download and process MODIS images
maps : vector shapefiles
mapdata : larger and/or higher-resolution shapefiles
ggmap : access to Google Maps, OpenStreetMap, etc.
Introduction Case Studies
Statistical Modelling
INLA : Gaussian Markov random fields (MRF)
http://r-inla.org
bayesImageS : pixel classification using discrete MRF
(Ising/Potts)
https://CRAN.R-project.org/package=
bayesImageS
PySSM : dynamic state space models
https://bitbucket.org/
christophermarkstrickland/pyssm
Introduction Case Studies
MODIS Ocean Colour
Concentration of chlorophyll a (mg/m3):
142 144 146 148
−20−18−16−14−12
(a)
longitude
latitude
0.00
0.05
0.10
0.15
0.20
0.25
Introduction Case Studies
Land Use Classification
National Land Cover Database (NLCD):
Introduction Case Studies
Landsat 8 Surface Reflectance
Normalised difference vegetation index (NDVI):
−3050000
−3045000
−3040000
−3035000
−3030000
490000 495000 500000 505000 510000 515000
−1.0 −0.5 0.0 0.5 1.0
Appendix
For Further Reading I
M. Moores, A. N. Pettitt & K. Mengersen
Scalable Bayesian inference for the inverse temperature of a hidden
Potts model.
arXiv:1503.08066 [stat.CO], 2015.
M. Moores, C. C. Drovandi, K. Mengersen & C. P. Robert
Pre-processing for approximate Bayesian computation in image
analysis.
Statistics & Computing 25(1): 23–33, 2015.
M. Falk, C. Alston, C. McGrory, S. Clifford, E. Heron, D. Leonte, M.
Moores, C. Walsh, A.N. Pettitt & K. Mengersen
Recent Bayesian approaches for spatial analysis of 2-D images with
application to environmental modelling.
Envir. Ecol. Stat. 22(3): 571–600, 2015.
M. Moores & K. Mengersen
Bayesian approaches to spatial inference: modelling and computational
challenges and solutions.
In Proc. 33rd
Int. Wkshp MaxEnt, AIP Conf. Proc. 1636: 112–117, 2014.
Appendix
For Further Reading II
H. Rue, S. Martino & N. Chopin
Approximate Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations.
J. R. Stat. Soc. Ser. B 71(2): 319–392, 2009.
C. M. Strickland, R. Burdett, K. Mengersen & R. Denham
PySSM: A Python Module for Bayesian Inference of Linear Gaussian
State Space Models.
J. Stat. Soft 57(6), 2014.
United States Geological Survey (USGS)
Landsat 8 Data Users Handbook.
Technical Report LSDS-1574, Version 2.0.
Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G.,
Coulston, J., Herold, N.D., Wickham, J.D., and Megown, K.
Completion of the 2011 National Land Cover Database for the
conterminous United States – Representing a decade of land cover
change information.
Photogramm. Eng. Remote Sens. 81(5): 345–354, 2015.

Importing satellite imagery into R from NASA and the U.S. Geological Survey

  • 1.
    Introduction Case Studies Importingsatellite imagery into R from NASA and the U.S. Geological Survey Matt Moores Warwick R Users’ Group March 16, 2017
  • 2.
    Introduction Case Studies Outline 1Introduction 2 Case Studies Chlorophyll-a (MODIS) Land Use Classification Vegetation Index (Landsat 8)
  • 3.
    Introduction Case Studies SatelliteRemote Sensing Many applications: Environmental monitoring Land use (plant biomass) Water quality (chlorophyll a) Total column ozone Agriculture Economic development Much of this data is available in the public domain First Landsat satellite launched in 1972 Landsat 8 launched in February 2013 Landsat 5 decommissioned in June 2013 Land Remote Sensing Policy Act (1992) 15 USC 5641
  • 4.
    Introduction Case Studies MultivariateSpatial Observations Satellite Pixel Width Spectral Bands Landsat 8 30m 9+2 MODIS Aqua/Terra 500m 36 EO-1 Hyperion 30m 220 ESA Sentinel 10m 12
  • 5.
    Introduction Case Studies RPackages raster : read GeoTIFF and other file formats rasterVis : plotting spatial objects (lattice graphics) sp : S4 classes SpatialPoints, etc. rgdal : transform between coordinate systems (R interface to GDAL & PROJ.4) RStoolbox : read meta-data for Landsat MODIS : download and process MODIS images maps : vector shapefiles mapdata : larger and/or higher-resolution shapefiles ggmap : access to Google Maps, OpenStreetMap, etc.
  • 6.
    Introduction Case Studies StatisticalModelling INLA : Gaussian Markov random fields (MRF) http://r-inla.org bayesImageS : pixel classification using discrete MRF (Ising/Potts) https://CRAN.R-project.org/package= bayesImageS PySSM : dynamic state space models https://bitbucket.org/ christophermarkstrickland/pyssm
  • 7.
    Introduction Case Studies MODISOcean Colour Concentration of chlorophyll a (mg/m3): 142 144 146 148 −20−18−16−14−12 (a) longitude latitude 0.00 0.05 0.10 0.15 0.20 0.25
  • 8.
    Introduction Case Studies LandUse Classification National Land Cover Database (NLCD):
  • 9.
    Introduction Case Studies Landsat8 Surface Reflectance Normalised difference vegetation index (NDVI): −3050000 −3045000 −3040000 −3035000 −3030000 490000 495000 500000 505000 510000 515000 −1.0 −0.5 0.0 0.5 1.0
  • 10.
    Appendix For Further ReadingI M. Moores, A. N. Pettitt & K. Mengersen Scalable Bayesian inference for the inverse temperature of a hidden Potts model. arXiv:1503.08066 [stat.CO], 2015. M. Moores, C. C. Drovandi, K. Mengersen & C. P. Robert Pre-processing for approximate Bayesian computation in image analysis. Statistics & Computing 25(1): 23–33, 2015. M. Falk, C. Alston, C. McGrory, S. Clifford, E. Heron, D. Leonte, M. Moores, C. Walsh, A.N. Pettitt & K. Mengersen Recent Bayesian approaches for spatial analysis of 2-D images with application to environmental modelling. Envir. Ecol. Stat. 22(3): 571–600, 2015. M. Moores & K. Mengersen Bayesian approaches to spatial inference: modelling and computational challenges and solutions. In Proc. 33rd Int. Wkshp MaxEnt, AIP Conf. Proc. 1636: 112–117, 2014.
  • 11.
    Appendix For Further ReadingII H. Rue, S. Martino & N. Chopin Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 71(2): 319–392, 2009. C. M. Strickland, R. Burdett, K. Mengersen & R. Denham PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models. J. Stat. Soft 57(6), 2014. United States Geological Survey (USGS) Landsat 8 Data Users Handbook. Technical Report LSDS-1574, Version 2.0. Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81(5): 345–354, 2015.