SlideShare a Scribd company logo
1 of 28
Download to read offline
Numerical methods for
density driven groundwater flow with
uncertain data
Alexander Litvinenko,
joint work with
Dmitry Logashenko, Raul Tempone, Gabriel Wittum and David Keyes
RWTH Aachen and KAUST
GAMM 2019 Conference in Vienna, Austria
The structure of the talk
Major Goal: estimate propagation of uncertainties in the
density-driven groundwater flow.
Plan:
1. Density-driven groundwater flow problem
2. Stochastic modeling and stochastic methods
3. Modeling of porosity
4. Numerical methods
5. 2D numerical experiments
6. 3D numerical experiments
7. Conclusion
2
Motivation
As groundwater is an essential nutrition
and irrigation resource, its pollution may
lead to catastrophic consequences.
(seawater intrusion into coastal aquifers,
https://water.usgs.gov/ogw/gwrp/saltwater/salt.html )
Accurate modeling of the pollution of the
soil and groundwater aquifer is difficult
due to presence of uncertainties in geo-
logical parameters.
Applications: seawater intrusion into coastal aquifers, radioactive
waste disposal, contaminant plumes etc. 3
What do we compute?
The mean, variance, and pdf of QoIs
Compute when dangerous concentration in a point achieve a
certain level
Forecast the pollution map in 1-5-10 years
Estimate the risk that the pollutant concentration exceeds a
certain level
4
Governing equations
Domain D is filled with two phases: solid porous matrix and
solution of salt in water (brine)
∂t(φρ) + · (ρq) = 0, (1)
∂t(φρc) + · (ρcq − ρD c) = 0, (2)
where c is the mass fraction of the salt, the tensor field D
represents the molecular diffusion and the mechanical dispersion of
the salt. We assume the Darcy’s law for q:
q = −
K
µ
( p − ρg), (3)
where p(t, x) is the hydrostatic pressure and g the gravity,
ρ = ρ(c) density.
5
Governing equations
Assume permeability
K = KI, where K = K(φ) ∈ R, and I ∈ Rd×d
the identity matrix.
Use the linear dependence for the density:
ρ(c) = ρ0 + (ρ1 − ρ0)c,
where ρ0 and ρ1 denote the densities of pure water and the brine,
respectively.
Thus, c ∈ [0, 1] with c = 0 corresponding to the pure water and
c = 1 to the saturated solution.
Assume
D = φDmI,
Dm the coefficient of the molecular diffusion. We neglect the
dispersion.
Computational domains
c = 1c = 0
c = 0
c = 0
600 m
300 m
150 m
Schema of 3 layers 2D reservoir D = (0, 600) × (0, 150) and 3
realisations of the porosity.
φ(x) ∈ [0.05, 0.09], φ(x) ∈ [0.077, 0.11], and φ(x) ∈ [0.097, 0.115].
7
Two 3D reservoirs
(left) D = (0, 600) × (0, 600) × (0, 150) m3.
BC: Zero-flux for the entire fluid phase; concentration: c = 1 in
the red spot, c = 0 otherwise on the top and Neumann-0 at the
other boundaries.
8
Mathematical equation
We introduce uncertain porosity φ = φ(x, θ), x ∈ D,
θ = (θ1, ..., θM, ...), θi is a random variable.
Assume (Kozeny-Carman-like equation)
K(φ) = κKC ·
φ3
1 − φ2
, (4)
where κKC is a scaling factor.
9
Statistics
The empirical mean
c(t, x) ≈
Nq
i=1
wi c(t, x, θi )
def
=
Nq
i=1
wi ci ,
where Nq - number of quadrature points, wi quadrature weights, ci
are “scenarios”.
The empirical variance
Var[c](t, x) ≈
Nq
i=1
wi (c(t, x) − c(t, x, θi ))2
.
Exceedance probability (risks)
P(c > c∗
) ≈
#{c(θi ) : c(θi ) > c∗, i = 1, . . . , Ns}
Ns
.
10
gPCE based surrogate
c(t, x, θ) =
β∈J
cβ(t, x)Ψβ(θ) ≈ c(t, x, θ) =
β∈JM,p
cβ(t, x)Ψβ(θ),
where {Ψβ} is a multivariate Legendre basis, β = (β1, ..., βj , ...) a
multiindex and J a multiindex set.
Ψβ(θ) :=
∞
j=1
ψβj
(θj ); ∀θ ∈ RN
,
ψβj
(·) are Legendre monomials,
cβ(t, x) ≈
1
Ψβ, Ψβ
Nq
i=1
Ψβ(t, θi )c(t, x, θi )wi ,
11
Truncation and approximation errors
See [Constantine’12, Sinsbeck’15,Conrad’13].
Et = c(t, x, θ)−c(t, x, θ)| =
β∈Jc
cβ(t, x)Ψβ(θ), JM,p∪Jc = J .
Additionally, cβ(t, x) ≈ cβ(t, x):
Ea =
β∈JM,p
cβ(t, x)Ψβ(θ) −
β∈JM,p
cβ(t, x)Ψβ(θ)
Et+Ea =
β∈Jc
cβ(t, x)Ψβ(θ)
truncation error
+
β∈JM,p
(cβ(t, x) − cβ(t, x))Ψβ(θ)
approximation error
.
12
Utilized numerical methods
UG4 is a flexible software system for simulating PDE based models
on high performance parallel clusters (G. Wittum and his group).
Computation of one scenario:
1. Spatial discretization on unstructured grids.
2. Implicit Euler schema in time.
3. Newton method with line search.
4. Solution of linearized systems by BiCGStab with multigrid
preconditioning (V-cycle, ILU-smoothers).
5. Parallelisation is based on the distribution of the domain
between cores.
M scenarios are computed in parallel.
Run on 4-8 spatial grid levels with n = 0.5 . . . 8 Mio grid points.
Used 1 . . . 800 Shaheen nodes, computation time is 2-24 hours,
1000-1800 time steps, modeling time interval 5 − 8 years.
13
Ex.1: 2D example with 1 RV and small variance
φ(x, ω) = 0.09 + 0.005ξ(cos(x/300) + sin(y/150)),
where ξ ∼ U[−1, 1], in 5.5 years.
1st row: c(x) ∈ (0, 1) computed via qMC (200 simulations) and
via gPCE4 (m = 1, p = 4);
2nd row: Var[c]qMC ∈ (0, 0.021), Var[c]gPCE4 ∈ (0, 0.023).
Observed: 9 GL points gives almost the same result as 200 qMC.
14
Ex.2: 2D example with 2 RVs and larger variance
φ(x, ω) = 0.1 + 0.01(ξ1 cos(x/1200) + ξ2 sin(y/300)),
where ξ1, ξ2 ∼ U[−1, 1], in 1.5 years.
1st row: c(x), computed via qMC (1500 simulations) and via
gPCE, c(x) ∈ (0, 1), Var[c]qMC ∈ (0, 0.076),
2nd row: Var[c]gPCE5 ∈ (0, 0.068), Var[c]gPCE7 ∈ (0, 0.0714),
Var[c]gPCE9 ∈ (0, 0.0847).
Observed: Our surrogate and qMC give similar c.
Var[c] computed by surrogate of order 7 is most close to the qMC
variance. 15
Ex.3: Difficulties caused by uncertain porosity
Relative small variations in the porosity may result in 3 different
realizations of the mass fraction: with (a) 5 fingers; (b) 4 fingers;
(c) 4.5 fingers.
(a) (b) (c)
Non-linearity may result in several stationary solutions.
16
Ex.4: Evolution of variance in time
Below we plot Var[c] after 2.75, 5.5 and 8.25 years.
The variance is accumulated and growing.
(a) 2.75year,
Var[c](x) ∈ (0, 0.023)
(b) 5.5 year,
Var[c](x) ∈ (0, 0.055)
(c) 8.25year,
Var[c](x) ∈ (0, 0.07)
Results are obtained with 700 quasi qMC samples.
17
Ex.5. Elder’s problem with 5 RVs and three layers
φ(x, y, ω) =
0.08 + 0.01 5
i=1 θi sin(ixπ/600) sin(iyπ/150), 120 ≤ y ≤ 150.
0.06 + 0.01 5
i=1 θi sin(ixπ/600) sin(iyπ/150), 50 ≤ y < 120
0.09 + 0.01 5
i=1 θi sin(ixπ/600) sin(iyπ/150), 0 ≤ y < 50
(a) cgPCE; (b) cqMC in t = 5.5 years.
(c) Var[c]gPC (x, t) ∈ [0, 0.0466]; (d) Var[c]qMC (x, t) ∈ [0, 0.0556].
(e) porosity φ ∈ [0.0514, 0.09]; (f) c(x, t, 0) − c(x, t) (difference
between deterministic solution (corresponding to θ = 0) and the
mean value in t = 5.5 years,
18
Ex.6: 3D reservoir
φ(x, θ) = 0.1 + exp(θ1 sin(πx/600) + θ2 sin(πy/600) + θ3 sin(πz/150) + θ1 sin(πx/600)+
+ θ1 sin(πx/600) sin(πy/600) + θ2 sin(πx/600) sin(πz/150) + θ3 sin(πy/600) sin(πz/150)).
(a) (b)
Five isosurfaces of c after 9.6 years
19
Ex.7: Isosurfaces of Var[c] in 3D reservoir
(a) (b)
Var[c] after 4.8 years, N ≈ 8 · 106 grid points.
20
Ex.8: Propagation of the contamination
Evolution of the mean concentration in time after a) 0, b) 0.55, c)
1.1, d) 2.2 years. The cutting plane is (150, y, z). 21
Ex.9: Evolution of probability density function in a point
PDFs at aquifer point (100, 0, −25) after (a) 0.6, (b) 1.2, (c) 1.8,
and (d) 2.4 years.
22
Ex.10: Isosurfaces of Var[c] in 3D reservoir
(a) (b)
Isosurfaces of the variance of the mass fraction after 3 years;
(a) Var[c]0.05; (b) Var[c]0.15.
23
Ex.11: 3D reservoir with three layers
1st row: three layers of the porosity; two profiles of c;
2nd row: isosurface |cdet − c|0.25; isosurfaces Var[c]0.05 and
Var[c]0.12.
24
Conclusion
Solved time-dependent density driven flow problem with
uncertain porosity and permeability in 2D and 3D
Computed propagation of uncertainties in porosity into the
mass fraction. Computed the mean, variance, exceedance
probabilities, quantiles, risks.
Such QoIs as the number of fingers, their size, shape,
propagation time can be unstable
For moderate perturbations, our gPCE surrogate results are
similar to qMC results.
Used highly scalable solver on up to 800 computing nodes,
25
Acknowledgement
1. Alexander von Humboldt foundation
2. Elmar Zander (TU Braunschweig) for the sglib library.
3. KAUST, Shaheen project k1051, 2.7 Mio hours.
4. KAUST Supercomputing Lab.
5. KAUST Visualization Lab.
THANK YOU FOR YOUR ATTENTION !
26
Literature
1. S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum, A massively parallel geometric multigrid solver
on hierarchically distributed grids, Computing and visualization in science 16, 4 (2013), pp 151-164, DOI:
10.1007/s00791-014-0231-x
2. A. Vogel, S. Reiter, M. Rupp, A. N¨agel, and G. Wittum, UG4 – a novel flexible software system for
simulating PDE based models on high performance computers. Computing and visualization in science 16,
4 (2013), pp 165-179, DOI: 10.1007/s00791-014-0232-9
3. A. Schneider, H. Zhao, J. Wolf, D. Logashenko, S. Reiter, M. Howahr, M. Eley, M. Gelleszun, H.
Wiederhold, Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea, E3S
Web of Conferences 54, 00031 (2018), DOI:10.1051/e3sconf/20185400031
4. P. Waehnert, W.Hackbusch, M. Espig, A. Litvinenko, H. Matthies: Efficient low-rank approximation of the
stochastic Galerkin matrix in the tensor format, Computers & Mathematics with Applications, 67 (4), pp
818-829, 2014
5. A. Litvinenko, D. Keyes, V. Khoromskaia, B. N. Khoromskij, H. G. Matthies, Tucker Tensor Analysis of
Matern Functions in Spatial Statistics, DOI: 10.1515/cmam-2018-0022, Computational Methods in
Applied Mathematics , 2018.
6. A. Litvinenko, Application of hierarchical matrices for solving multiscale problems, Ph.D. Dissertation,
Leipzig University, Germany, http://www.wire.tu-bs.de/mitarbeiter/litvinen/diss.pdf
27
Literature
7. S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Computation of the Response Surface in the
Tensor Train data format arXiv preprint arXiv:1406.2816, 2014
8. S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Polynomial Chaos Expansion of Random
Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format,
IAM/ASA J. Uncertainty Quantification 3 (1), pp 1109-1135, 2015
9. A. Litvinenko, H.G. Matthies, T.A. El-Moselhy, Sampling and low-rank tensor approximation of the
response surface, Monte Carlo and Quasi-Monte Carlo Methods 2012, pp 535-551, Springer, 2013.
10. A. Litvinenko, H.G. Matthies, Inverse problems and uncertainty quantification, arXiv:1312.5048, 2013.
11. A. Litvinenko, H.G. Matthies, Sparse data representation of random fields, PAMM: Proceedings in Applied
Mathematics and Mechanics 9 (1), pp 587-588, 2009.
28

More Related Content

What's hot

Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerChristian Robert
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distancesChristian Robert
 
Bayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorBayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorJulyan Arbel
 
5 gusev
5 gusev5 gusev
5 gusevYandex
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...msejjournal
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Slides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsSlides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsFrank Nielsen
 

What's hot (8)

Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distances
 
Bayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorBayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve prior
 
5 gusev
5 gusev5 gusev
5 gusev
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Slides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsSlides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histograms
 

Similar to Talk litvinenko gamm19

Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterHang-Hyun Jo
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Crimsonpublishers-Mechanicalengineering
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentationJamesSprittles
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014Cristina Staicu
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...SYRTO Project
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 

Similar to Talk litvinenko gamm19 (20)

Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disaster
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...
 
Hsu etal-2009
Hsu etal-2009Hsu etal-2009
Hsu etal-2009
 
Presentation
PresentationPresentation
Presentation
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 

More from Alexander Litvinenko

Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Alexander Litvinenko
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Alexander Litvinenko
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Alexander Litvinenko
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewAlexander Litvinenko
 

More from Alexander Litvinenko (20)

Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an Overview
 

Recently uploaded

办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一F dds
 
Abu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community ppAbu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community pp202215407
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresvasubhanot1234
 
ENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawnitinraj1000000
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BHbill846304
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesDr. Salem Baidas
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...Delhi Escorts
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"syalehistoricalreview
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girlsssuser7cb4ff
 

Recently uploaded (20)

办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
 
Abu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community ppAbu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community pp
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measures
 
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
 
ENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental law
 
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BH
 
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and Challenges
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"s
 
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
 
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls ServicesGandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
 
Model Call Girl in Rajiv Chowk Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Rajiv Chowk Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Rajiv Chowk Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Rajiv Chowk Delhi reach out to us at 🔝9953056974🔝
 

Talk litvinenko gamm19

  • 1. Numerical methods for density driven groundwater flow with uncertain data Alexander Litvinenko, joint work with Dmitry Logashenko, Raul Tempone, Gabriel Wittum and David Keyes RWTH Aachen and KAUST GAMM 2019 Conference in Vienna, Austria
  • 2. The structure of the talk Major Goal: estimate propagation of uncertainties in the density-driven groundwater flow. Plan: 1. Density-driven groundwater flow problem 2. Stochastic modeling and stochastic methods 3. Modeling of porosity 4. Numerical methods 5. 2D numerical experiments 6. 3D numerical experiments 7. Conclusion 2
  • 3. Motivation As groundwater is an essential nutrition and irrigation resource, its pollution may lead to catastrophic consequences. (seawater intrusion into coastal aquifers, https://water.usgs.gov/ogw/gwrp/saltwater/salt.html ) Accurate modeling of the pollution of the soil and groundwater aquifer is difficult due to presence of uncertainties in geo- logical parameters. Applications: seawater intrusion into coastal aquifers, radioactive waste disposal, contaminant plumes etc. 3
  • 4. What do we compute? The mean, variance, and pdf of QoIs Compute when dangerous concentration in a point achieve a certain level Forecast the pollution map in 1-5-10 years Estimate the risk that the pollutant concentration exceeds a certain level 4
  • 5. Governing equations Domain D is filled with two phases: solid porous matrix and solution of salt in water (brine) ∂t(φρ) + · (ρq) = 0, (1) ∂t(φρc) + · (ρcq − ρD c) = 0, (2) where c is the mass fraction of the salt, the tensor field D represents the molecular diffusion and the mechanical dispersion of the salt. We assume the Darcy’s law for q: q = − K µ ( p − ρg), (3) where p(t, x) is the hydrostatic pressure and g the gravity, ρ = ρ(c) density. 5
  • 6. Governing equations Assume permeability K = KI, where K = K(φ) ∈ R, and I ∈ Rd×d the identity matrix. Use the linear dependence for the density: ρ(c) = ρ0 + (ρ1 − ρ0)c, where ρ0 and ρ1 denote the densities of pure water and the brine, respectively. Thus, c ∈ [0, 1] with c = 0 corresponding to the pure water and c = 1 to the saturated solution. Assume D = φDmI, Dm the coefficient of the molecular diffusion. We neglect the dispersion.
  • 7. Computational domains c = 1c = 0 c = 0 c = 0 600 m 300 m 150 m Schema of 3 layers 2D reservoir D = (0, 600) × (0, 150) and 3 realisations of the porosity. φ(x) ∈ [0.05, 0.09], φ(x) ∈ [0.077, 0.11], and φ(x) ∈ [0.097, 0.115]. 7
  • 8. Two 3D reservoirs (left) D = (0, 600) × (0, 600) × (0, 150) m3. BC: Zero-flux for the entire fluid phase; concentration: c = 1 in the red spot, c = 0 otherwise on the top and Neumann-0 at the other boundaries. 8
  • 9. Mathematical equation We introduce uncertain porosity φ = φ(x, θ), x ∈ D, θ = (θ1, ..., θM, ...), θi is a random variable. Assume (Kozeny-Carman-like equation) K(φ) = κKC · φ3 1 − φ2 , (4) where κKC is a scaling factor. 9
  • 10. Statistics The empirical mean c(t, x) ≈ Nq i=1 wi c(t, x, θi ) def = Nq i=1 wi ci , where Nq - number of quadrature points, wi quadrature weights, ci are “scenarios”. The empirical variance Var[c](t, x) ≈ Nq i=1 wi (c(t, x) − c(t, x, θi ))2 . Exceedance probability (risks) P(c > c∗ ) ≈ #{c(θi ) : c(θi ) > c∗, i = 1, . . . , Ns} Ns . 10
  • 11. gPCE based surrogate c(t, x, θ) = β∈J cβ(t, x)Ψβ(θ) ≈ c(t, x, θ) = β∈JM,p cβ(t, x)Ψβ(θ), where {Ψβ} is a multivariate Legendre basis, β = (β1, ..., βj , ...) a multiindex and J a multiindex set. Ψβ(θ) := ∞ j=1 ψβj (θj ); ∀θ ∈ RN , ψβj (·) are Legendre monomials, cβ(t, x) ≈ 1 Ψβ, Ψβ Nq i=1 Ψβ(t, θi )c(t, x, θi )wi , 11
  • 12. Truncation and approximation errors See [Constantine’12, Sinsbeck’15,Conrad’13]. Et = c(t, x, θ)−c(t, x, θ)| = β∈Jc cβ(t, x)Ψβ(θ), JM,p∪Jc = J . Additionally, cβ(t, x) ≈ cβ(t, x): Ea = β∈JM,p cβ(t, x)Ψβ(θ) − β∈JM,p cβ(t, x)Ψβ(θ) Et+Ea = β∈Jc cβ(t, x)Ψβ(θ) truncation error + β∈JM,p (cβ(t, x) − cβ(t, x))Ψβ(θ) approximation error . 12
  • 13. Utilized numerical methods UG4 is a flexible software system for simulating PDE based models on high performance parallel clusters (G. Wittum and his group). Computation of one scenario: 1. Spatial discretization on unstructured grids. 2. Implicit Euler schema in time. 3. Newton method with line search. 4. Solution of linearized systems by BiCGStab with multigrid preconditioning (V-cycle, ILU-smoothers). 5. Parallelisation is based on the distribution of the domain between cores. M scenarios are computed in parallel. Run on 4-8 spatial grid levels with n = 0.5 . . . 8 Mio grid points. Used 1 . . . 800 Shaheen nodes, computation time is 2-24 hours, 1000-1800 time steps, modeling time interval 5 − 8 years. 13
  • 14. Ex.1: 2D example with 1 RV and small variance φ(x, ω) = 0.09 + 0.005ξ(cos(x/300) + sin(y/150)), where ξ ∼ U[−1, 1], in 5.5 years. 1st row: c(x) ∈ (0, 1) computed via qMC (200 simulations) and via gPCE4 (m = 1, p = 4); 2nd row: Var[c]qMC ∈ (0, 0.021), Var[c]gPCE4 ∈ (0, 0.023). Observed: 9 GL points gives almost the same result as 200 qMC. 14
  • 15. Ex.2: 2D example with 2 RVs and larger variance φ(x, ω) = 0.1 + 0.01(ξ1 cos(x/1200) + ξ2 sin(y/300)), where ξ1, ξ2 ∼ U[−1, 1], in 1.5 years. 1st row: c(x), computed via qMC (1500 simulations) and via gPCE, c(x) ∈ (0, 1), Var[c]qMC ∈ (0, 0.076), 2nd row: Var[c]gPCE5 ∈ (0, 0.068), Var[c]gPCE7 ∈ (0, 0.0714), Var[c]gPCE9 ∈ (0, 0.0847). Observed: Our surrogate and qMC give similar c. Var[c] computed by surrogate of order 7 is most close to the qMC variance. 15
  • 16. Ex.3: Difficulties caused by uncertain porosity Relative small variations in the porosity may result in 3 different realizations of the mass fraction: with (a) 5 fingers; (b) 4 fingers; (c) 4.5 fingers. (a) (b) (c) Non-linearity may result in several stationary solutions. 16
  • 17. Ex.4: Evolution of variance in time Below we plot Var[c] after 2.75, 5.5 and 8.25 years. The variance is accumulated and growing. (a) 2.75year, Var[c](x) ∈ (0, 0.023) (b) 5.5 year, Var[c](x) ∈ (0, 0.055) (c) 8.25year, Var[c](x) ∈ (0, 0.07) Results are obtained with 700 quasi qMC samples. 17
  • 18. Ex.5. Elder’s problem with 5 RVs and three layers φ(x, y, ω) = 0.08 + 0.01 5 i=1 θi sin(ixπ/600) sin(iyπ/150), 120 ≤ y ≤ 150. 0.06 + 0.01 5 i=1 θi sin(ixπ/600) sin(iyπ/150), 50 ≤ y < 120 0.09 + 0.01 5 i=1 θi sin(ixπ/600) sin(iyπ/150), 0 ≤ y < 50 (a) cgPCE; (b) cqMC in t = 5.5 years. (c) Var[c]gPC (x, t) ∈ [0, 0.0466]; (d) Var[c]qMC (x, t) ∈ [0, 0.0556]. (e) porosity φ ∈ [0.0514, 0.09]; (f) c(x, t, 0) − c(x, t) (difference between deterministic solution (corresponding to θ = 0) and the mean value in t = 5.5 years, 18
  • 19. Ex.6: 3D reservoir φ(x, θ) = 0.1 + exp(θ1 sin(πx/600) + θ2 sin(πy/600) + θ3 sin(πz/150) + θ1 sin(πx/600)+ + θ1 sin(πx/600) sin(πy/600) + θ2 sin(πx/600) sin(πz/150) + θ3 sin(πy/600) sin(πz/150)). (a) (b) Five isosurfaces of c after 9.6 years 19
  • 20. Ex.7: Isosurfaces of Var[c] in 3D reservoir (a) (b) Var[c] after 4.8 years, N ≈ 8 · 106 grid points. 20
  • 21. Ex.8: Propagation of the contamination Evolution of the mean concentration in time after a) 0, b) 0.55, c) 1.1, d) 2.2 years. The cutting plane is (150, y, z). 21
  • 22. Ex.9: Evolution of probability density function in a point PDFs at aquifer point (100, 0, −25) after (a) 0.6, (b) 1.2, (c) 1.8, and (d) 2.4 years. 22
  • 23. Ex.10: Isosurfaces of Var[c] in 3D reservoir (a) (b) Isosurfaces of the variance of the mass fraction after 3 years; (a) Var[c]0.05; (b) Var[c]0.15. 23
  • 24. Ex.11: 3D reservoir with three layers 1st row: three layers of the porosity; two profiles of c; 2nd row: isosurface |cdet − c|0.25; isosurfaces Var[c]0.05 and Var[c]0.12. 24
  • 25. Conclusion Solved time-dependent density driven flow problem with uncertain porosity and permeability in 2D and 3D Computed propagation of uncertainties in porosity into the mass fraction. Computed the mean, variance, exceedance probabilities, quantiles, risks. Such QoIs as the number of fingers, their size, shape, propagation time can be unstable For moderate perturbations, our gPCE surrogate results are similar to qMC results. Used highly scalable solver on up to 800 computing nodes, 25
  • 26. Acknowledgement 1. Alexander von Humboldt foundation 2. Elmar Zander (TU Braunschweig) for the sglib library. 3. KAUST, Shaheen project k1051, 2.7 Mio hours. 4. KAUST Supercomputing Lab. 5. KAUST Visualization Lab. THANK YOU FOR YOUR ATTENTION ! 26
  • 27. Literature 1. S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids, Computing and visualization in science 16, 4 (2013), pp 151-164, DOI: 10.1007/s00791-014-0231-x 2. A. Vogel, S. Reiter, M. Rupp, A. N¨agel, and G. Wittum, UG4 – a novel flexible software system for simulating PDE based models on high performance computers. Computing and visualization in science 16, 4 (2013), pp 165-179, DOI: 10.1007/s00791-014-0232-9 3. A. Schneider, H. Zhao, J. Wolf, D. Logashenko, S. Reiter, M. Howahr, M. Eley, M. Gelleszun, H. Wiederhold, Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea, E3S Web of Conferences 54, 00031 (2018), DOI:10.1051/e3sconf/20185400031 4. P. Waehnert, W.Hackbusch, M. Espig, A. Litvinenko, H. Matthies: Efficient low-rank approximation of the stochastic Galerkin matrix in the tensor format, Computers & Mathematics with Applications, 67 (4), pp 818-829, 2014 5. A. Litvinenko, D. Keyes, V. Khoromskaia, B. N. Khoromskij, H. G. Matthies, Tucker Tensor Analysis of Matern Functions in Spatial Statistics, DOI: 10.1515/cmam-2018-0022, Computational Methods in Applied Mathematics , 2018. 6. A. Litvinenko, Application of hierarchical matrices for solving multiscale problems, Ph.D. Dissertation, Leipzig University, Germany, http://www.wire.tu-bs.de/mitarbeiter/litvinen/diss.pdf 27
  • 28. Literature 7. S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Computation of the Response Surface in the Tensor Train data format arXiv preprint arXiv:1406.2816, 2014 8. S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format, IAM/ASA J. Uncertainty Quantification 3 (1), pp 1109-1135, 2015 9. A. Litvinenko, H.G. Matthies, T.A. El-Moselhy, Sampling and low-rank tensor approximation of the response surface, Monte Carlo and Quasi-Monte Carlo Methods 2012, pp 535-551, Springer, 2013. 10. A. Litvinenko, H.G. Matthies, Inverse problems and uncertainty quantification, arXiv:1312.5048, 2013. 11. A. Litvinenko, H.G. Matthies, Sparse data representation of random fields, PAMM: Proceedings in Applied Mathematics and Mechanics 9 (1), pp 587-588, 2009. 28