SlideShare a Scribd company logo
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa1
Graphene transistorsGraphene transistors
andand
two dimensional electronicstwo dimensional electronics
G. Iannaccone, G. Fiori, S. Bruzzone, A. Betti
University of Pisa
Acknowledgments: EC FP7 Project GRADE (n. 317839 )
EC FP7 Project GO-NEXTs (n. 309201)
EC FP7 Project GRAND (n. 215752)
EC FP7 NoE Nanosil (n. 216171)
ESF FoNE Project DEWINT – CNR
IT PRIN GRANFET (Prot. 2008S2CLJ9)
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa2
Graphene as a material for electronicsGraphene as a material for electronics
• High mobility at room
temperature (>104
cm2
/Vs)
• Symmetric properties for
electrons and holes
• One-atom thin -> promising
for scaling
• Cheap and CMOS compatible
….but ….
… the zero energy gap is a
showstopper for use in
(digital) electronics ….
Graphene Band Structure
[nanodevice.fmns.rug.nl]
Giuseppe Iannaccone University of Pisa
ules of graphene nanoelectronics research
Increase gap, fabricate device, but
keep mobility high, keep reproducibility high3
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa4
Energy gap and the Off stateEnergy gap and the Off state
Small energy gap enables
leakage via interband
tunneling current => high Ioff
EFS
EFD
source channel drain
Poor off state
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa5
Energy gap and the Off stateEnergy gap and the Off state
 Several options to induce a bandgap have been
pursued  manufacturability challenges
Small energy gap enables
interband leakage => high Ioff
EFS
EFD
source channel drain
EFS
EFD
source channel drain
Poor off state Good off state
Giuseppe Iannaccone University of Pisa
Graphene NanoRibbons
6
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa7
Impressive GNR ExperimentsImpressive GNR Experiments
X. Li et al., Science 319, 1229 (2008)
X. Li et al. PRL 100, 206803 (2008)
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa8
Device modeling tool: NanoTCAD VIDESDevice modeling tool: NanoTCAD VIDES
 3D Non-Equilibrium Green’s Functions
(NEGF) solver
 Fully coherent transport
 Generic 3D structures
• CNT and GNR FETs (TB atomistic)
• Bilayer graphene FETs (TB atomistic)
• Semiconductor NW Transistors (EMA
+ TB atomistic)
• hBCN
 New version of the code as a python
module – all documentation and code
at: http://vides.nanotcad.com and on
the nanohub.org
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa9
Energy gap of graphene nanoribbonsEnergy gap of graphene nanoribbons
 Nanoribbons always have a semiconducting gap
 Huge gap variations for a single-dimer width change
Y.-W. Son et al.
PRL 97, 216803
(2006)
(16,0)
(14,0)
(12,0)
Giuseppe Iannaccone University of Pisa
 DGFET with L = 15 nm, tox = 2 nm
 (12,0) has a width of 1.37 nm
G. Fiori et al., IEEE-EDL 28, 760 (2007)
Giuseppe Iannaccone University of Pisa10
GNR-FETs transfer characteristicsGNR-FETs transfer characteristics
(12,0)
(12,0)
(14,0)
(14,0)
(16,0)
(16,0)
(16,0) with edge
roughness
Giuseppe Iannaccone University of Pisa
GNR intrinsic low-field mobility
 Full band modeling (e- and ph): A. Betti et al. IEDM 2010, APL 2011
 Intrinsic mobility of 1nm GNR ~ 800 cm2
/Vs, mainly due to AC phonons.
≈10 x smaller
μinα1/n2D in graphene
Giuseppe Iannaccone University of Pisa
Option 2: Bilayer graphene
12
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa13
A vertical electric field can open a gap in
bilayer graphene
• E.McCann, V.I.Fal'ko, PRL. 96, 086805 (2006)
• E. McCann, PRB74, 161403(R) (2006)
• J.B. Oostinga et al., Nat. Mat. 7, 151 (2008)
• E. V. Castro et al., PRL, 99, 216802 (2007).
• T. Ohta et al. Science 313, 951 (2008).
Bilayer GrapheneBilayer Graphene
Giuseppe Iannaccone University of Pisa
Bilayer Graphene Tunnel FET
G. Fiori, G. Iannaccone EDL, Nov. 200914
TFET principle of operation
Giuseppe Iannaccone University of Pisa
Tunnel Bilayer graphene FET (III)Tunnel Bilayer graphene FET (III)
 Transfer characteristics as a function of gate overlap
Graphene heterostructures
Giuseppe Iannaccone University of Pisa
Atomic layers of hBN and graphene domains
L. Ci et al.(Rice) Nat. Mat. 9, 430 (2010)
Absorption rate of BN  5.68 eV Egap
18
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa19
Energy gap and the Off stateEnergy gap and the Off state
With a high gap region in the
channel => low Ioff
EFS
EFD
source channel drain
EFS
EFD
source channel drain
Poor off state Good off state
Giuseppe Iannaccone University of Pisa
Lateral
heterostructure FET
20
G. Fiori, G. Iannaccone,
IEDM 2011, ACS Nano 2012
Giuseppe Iannaccone University of Pisa
hBCN Bandstructure (from DFT)
21
Giuseppe Iannaccone University of Pisa
LDOS: graphene FET vs BC2N FET
22
Giuseppe Iannaccone University of Pisa
ID-VGS for different barrier material and length
23
BC2N
tB = 5 nm
Giuseppe Iannaccone University of Pisa
Graphene LHFET - Comparison with ITRS 2012
 Ioff fixed at 100 nA/µm (as for HP) [Low OP has Ioff 5 nA/µm]
24
Giuseppe Iannaccone University of Pisa
Advantages of LH FETs
1. Robust with respect
to fabrication
tolerances (self
aligned gate)
2. Exploit high mobility
graphene for local
interconnects an S/D
extensions
3. Several unexplored
options for the high
gap region
25
Giuseppe Iannaccone University of Pisa
Lateral G-BN Heterostructures
26
M.P. Levendorf
Nature 2012
(Cornell)
Giuseppe Iannaccone University of Pisa27
L. Britnell et al.,
Science v. 335,
p. 947, 2011
Britnell et al. Nano Letters 2011
Britnell et al. Science 2011
Giuseppe Iannaccone University of Pisa
Graphene-base hot electron transistor
28
S. Vaziri et al.
(KTH,U. Siegen, IHP)
Nano Letters 2012
Giuseppe Iannaccone University of Pisa
Graphene Barristor
29
K. Yang, Science 2012
(SAIT,Columbia U.,
Samsung)
Giuseppe Iannaccone University of Pisa
Giuseppe Iannaccone University of Pisa
Transfer characteristics
1 layer
not enough
3-5 layers
ON:
thermionic
OFF:
tunnel
Giuseppe Iannaccone University of Pisa
Gate on lead: poor HF performance
Giuseppe Iannaccone University of Pisa
How about analog? fT gold rush
Jan. 09
fT=26 GHz
Apr. 09
fT=50 GHz
Feb. 10
fT=100 GHz
May 10
fT=100 GHz
Apr. 11
fT=150 GHz
Giuseppe Iannaccone University of Pisa
fT gold rush
Giuseppe Iannaccone University of Pisa
Exploring the design space
Extraction of series
resistance
Y. Wu et al.,
Nature, 472 p. 74, 2011
G. Fiori et al., IEDM 2012
Giuseppe Iannaccone University of Pisa
Bilayer Graphene improves performance
 Optimized structure with tox = 4 nm , tb = 20 nm
Giuseppe Iannaccone University of Pisa
Backgate voltage controls Av0
Giuseppe Iannaccone University of Pisa
fT, fMAX comparable for BGFETs and Si, III-V FETs
be presented at IEDM 2012
Giuseppe Iannaccone University of Pisa
Graphene in microelectronics: no easy solution
 Nanoribbons require prohibitive fabrication
tolerances and are prone to mobility degradation
 Bilayer graphene could be interesting:
 Digital: only TFETs (experiment under way)
 Analog: FET (focus of the GRADE project: main
challenge is reducing contact resistance)
 Lateral Heterostructure FET
 (IMHO) The Most Promising device: Experiments
ongoing
 Vertical Heterostructure FET
 Low on/off ratio, low fT
 Attempts to increase fT within GRADE (GBTs)
39
Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa
Thank youThank you

More Related Content

What's hot

MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
Amritesh Rai
 
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
Nikhil Jain
 

What's hot (20)

Graphene : Properties and uses
Graphene : Properties and usesGraphene : Properties and uses
Graphene : Properties and uses
 
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
MBE Growth and Characterization of 2D TMDs & Room-Temperature NDR in 2D Heter...
 
MoS2
MoS2MoS2
MoS2
 
GNR FET
GNR FET GNR FET
GNR FET
 
Graphene: its increasing economic feasibility
Graphene: its increasing economic feasibility Graphene: its increasing economic feasibility
Graphene: its increasing economic feasibility
 
Graphene -Applications in Electronics
Graphene -Applications in ElectronicsGraphene -Applications in Electronics
Graphene -Applications in Electronics
 
Graphene applications
Graphene applicationsGraphene applications
Graphene applications
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2
 
GRAPHENE PRESENTATION
GRAPHENE PRESENTATIONGRAPHENE PRESENTATION
GRAPHENE PRESENTATION
 
Graphene
GrapheneGraphene
Graphene
 
Graphene and GO by bhargava
Graphene and GO by bhargavaGraphene and GO by bhargava
Graphene and GO by bhargava
 
Transition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific researchTransition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific research
 
Graphene
GrapheneGraphene
Graphene
 
Presentation
PresentationPresentation
Presentation
 
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
Hexagonal Boron Nitride - Ubiquitous Layered dielectric for Two-Dimensional E...
 
Graphene and its future applications
Graphene and its future applicationsGraphene and its future applications
Graphene and its future applications
 
Graphene
GrapheneGraphene
Graphene
 
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
 
Graphene-based Biosensors
Graphene-based BiosensorsGraphene-based Biosensors
Graphene-based Biosensors
 
Graphene
Graphene   Graphene
Graphene
 

Similar to Graphene transistors and two-dimensional electronics

Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yang
yxy081020
 
Resume-160802-V1
Resume-160802-V1Resume-160802-V1
Resume-160802-V1
Bo-Yuan Su
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Dr. Basanta Kumar Parida
 

Similar to Graphene transistors and two-dimensional electronics (20)

Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag
 
Polymer Materials: from Electrets to Organic Electronics
Polymer Materials: from Electrets to Organic ElectronicsPolymer Materials: from Electrets to Organic Electronics
Polymer Materials: from Electrets to Organic Electronics
 
Research summary for Yi Yang
Research summary for Yi YangResearch summary for Yi Yang
Research summary for Yi Yang
 
Resume-160802-V1
Resume-160802-V1Resume-160802-V1
Resume-160802-V1
 
Winter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectorsWinter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectors
 
2007nninREUcopeland
2007nninREUcopeland2007nninREUcopeland
2007nninREUcopeland
 
LaviniaNistor CV2016
LaviniaNistor CV2016LaviniaNistor CV2016
LaviniaNistor CV2016
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
OFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions ProcessOFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions Process
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
 
Session_B2_Fillion.ppt
Session_B2_Fillion.pptSession_B2_Fillion.ppt
Session_B2_Fillion.ppt
 
curriculum_english_2015
curriculum_english_2015curriculum_english_2015
curriculum_english_2015
 
Extremely efficient photocurrent generation in carbon nanotube photodiodes
Extremely efficient photocurrent generation in carbon nanotube photodiodesExtremely efficient photocurrent generation in carbon nanotube photodiodes
Extremely efficient photocurrent generation in carbon nanotube photodiodes
 
The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)
 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
 
G I N Dec08
G I N  Dec08G I N  Dec08
G I N Dec08
 
A Survey on Architectural Modifications for Improving Performances of Devices...
A Survey on Architectural Modifications for Improving Performances of Devices...A Survey on Architectural Modifications for Improving Performances of Devices...
A Survey on Architectural Modifications for Improving Performances of Devices...
 
The key role of surface in semiconductor nanostructures for photovoltaics and...
The key role of surface in semiconductor nanostructures for photovoltaics and...The key role of surface in semiconductor nanostructures for photovoltaics and...
The key role of surface in semiconductor nanostructures for photovoltaics and...
 

Recently uploaded

Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 

Recently uploaded (20)

НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
UiPath New York Community Day in-person event
UiPath New York Community Day in-person eventUiPath New York Community Day in-person event
UiPath New York Community Day in-person event
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 

Graphene transistors and two-dimensional electronics

  • 1. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa1 Graphene transistorsGraphene transistors andand two dimensional electronicstwo dimensional electronics G. Iannaccone, G. Fiori, S. Bruzzone, A. Betti University of Pisa Acknowledgments: EC FP7 Project GRADE (n. 317839 ) EC FP7 Project GO-NEXTs (n. 309201) EC FP7 Project GRAND (n. 215752) EC FP7 NoE Nanosil (n. 216171) ESF FoNE Project DEWINT – CNR IT PRIN GRANFET (Prot. 2008S2CLJ9)
  • 2. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa2 Graphene as a material for electronicsGraphene as a material for electronics • High mobility at room temperature (>104 cm2 /Vs) • Symmetric properties for electrons and holes • One-atom thin -> promising for scaling • Cheap and CMOS compatible ….but …. … the zero energy gap is a showstopper for use in (digital) electronics …. Graphene Band Structure [nanodevice.fmns.rug.nl]
  • 3. Giuseppe Iannaccone University of Pisa ules of graphene nanoelectronics research Increase gap, fabricate device, but keep mobility high, keep reproducibility high3
  • 4. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa4 Energy gap and the Off stateEnergy gap and the Off state Small energy gap enables leakage via interband tunneling current => high Ioff EFS EFD source channel drain Poor off state
  • 5. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa5 Energy gap and the Off stateEnergy gap and the Off state  Several options to induce a bandgap have been pursued  manufacturability challenges Small energy gap enables interband leakage => high Ioff EFS EFD source channel drain EFS EFD source channel drain Poor off state Good off state
  • 6. Giuseppe Iannaccone University of Pisa Graphene NanoRibbons 6
  • 7. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa7 Impressive GNR ExperimentsImpressive GNR Experiments X. Li et al., Science 319, 1229 (2008) X. Li et al. PRL 100, 206803 (2008)
  • 8. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa8 Device modeling tool: NanoTCAD VIDESDevice modeling tool: NanoTCAD VIDES  3D Non-Equilibrium Green’s Functions (NEGF) solver  Fully coherent transport  Generic 3D structures • CNT and GNR FETs (TB atomistic) • Bilayer graphene FETs (TB atomistic) • Semiconductor NW Transistors (EMA + TB atomistic) • hBCN  New version of the code as a python module – all documentation and code at: http://vides.nanotcad.com and on the nanohub.org
  • 9. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa9 Energy gap of graphene nanoribbonsEnergy gap of graphene nanoribbons  Nanoribbons always have a semiconducting gap  Huge gap variations for a single-dimer width change Y.-W. Son et al. PRL 97, 216803 (2006) (16,0) (14,0) (12,0)
  • 10. Giuseppe Iannaccone University of Pisa  DGFET with L = 15 nm, tox = 2 nm  (12,0) has a width of 1.37 nm G. Fiori et al., IEEE-EDL 28, 760 (2007) Giuseppe Iannaccone University of Pisa10 GNR-FETs transfer characteristicsGNR-FETs transfer characteristics (12,0) (12,0) (14,0) (14,0) (16,0) (16,0) (16,0) with edge roughness
  • 11. Giuseppe Iannaccone University of Pisa GNR intrinsic low-field mobility  Full band modeling (e- and ph): A. Betti et al. IEDM 2010, APL 2011  Intrinsic mobility of 1nm GNR ~ 800 cm2 /Vs, mainly due to AC phonons. ≈10 x smaller μinα1/n2D in graphene
  • 12. Giuseppe Iannaccone University of Pisa Option 2: Bilayer graphene 12
  • 13. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa13 A vertical electric field can open a gap in bilayer graphene • E.McCann, V.I.Fal'ko, PRL. 96, 086805 (2006) • E. McCann, PRB74, 161403(R) (2006) • J.B. Oostinga et al., Nat. Mat. 7, 151 (2008) • E. V. Castro et al., PRL, 99, 216802 (2007). • T. Ohta et al. Science 313, 951 (2008). Bilayer GrapheneBilayer Graphene
  • 14. Giuseppe Iannaccone University of Pisa Bilayer Graphene Tunnel FET G. Fiori, G. Iannaccone EDL, Nov. 200914
  • 15. TFET principle of operation
  • 16. Giuseppe Iannaccone University of Pisa Tunnel Bilayer graphene FET (III)Tunnel Bilayer graphene FET (III)  Transfer characteristics as a function of gate overlap
  • 18. Giuseppe Iannaccone University of Pisa Atomic layers of hBN and graphene domains L. Ci et al.(Rice) Nat. Mat. 9, 430 (2010) Absorption rate of BN  5.68 eV Egap 18
  • 19. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa19 Energy gap and the Off stateEnergy gap and the Off state With a high gap region in the channel => low Ioff EFS EFD source channel drain EFS EFD source channel drain Poor off state Good off state
  • 20. Giuseppe Iannaccone University of Pisa Lateral heterostructure FET 20 G. Fiori, G. Iannaccone, IEDM 2011, ACS Nano 2012
  • 21. Giuseppe Iannaccone University of Pisa hBCN Bandstructure (from DFT) 21
  • 22. Giuseppe Iannaccone University of Pisa LDOS: graphene FET vs BC2N FET 22
  • 23. Giuseppe Iannaccone University of Pisa ID-VGS for different barrier material and length 23 BC2N tB = 5 nm
  • 24. Giuseppe Iannaccone University of Pisa Graphene LHFET - Comparison with ITRS 2012  Ioff fixed at 100 nA/µm (as for HP) [Low OP has Ioff 5 nA/µm] 24
  • 25. Giuseppe Iannaccone University of Pisa Advantages of LH FETs 1. Robust with respect to fabrication tolerances (self aligned gate) 2. Exploit high mobility graphene for local interconnects an S/D extensions 3. Several unexplored options for the high gap region 25
  • 26. Giuseppe Iannaccone University of Pisa Lateral G-BN Heterostructures 26 M.P. Levendorf Nature 2012 (Cornell)
  • 27. Giuseppe Iannaccone University of Pisa27 L. Britnell et al., Science v. 335, p. 947, 2011 Britnell et al. Nano Letters 2011 Britnell et al. Science 2011
  • 28. Giuseppe Iannaccone University of Pisa Graphene-base hot electron transistor 28 S. Vaziri et al. (KTH,U. Siegen, IHP) Nano Letters 2012
  • 29. Giuseppe Iannaccone University of Pisa Graphene Barristor 29 K. Yang, Science 2012 (SAIT,Columbia U., Samsung)
  • 31. Giuseppe Iannaccone University of Pisa Transfer characteristics 1 layer not enough 3-5 layers ON: thermionic OFF: tunnel
  • 32. Giuseppe Iannaccone University of Pisa Gate on lead: poor HF performance
  • 33. Giuseppe Iannaccone University of Pisa How about analog? fT gold rush Jan. 09 fT=26 GHz Apr. 09 fT=50 GHz Feb. 10 fT=100 GHz May 10 fT=100 GHz Apr. 11 fT=150 GHz
  • 34. Giuseppe Iannaccone University of Pisa fT gold rush
  • 35. Giuseppe Iannaccone University of Pisa Exploring the design space Extraction of series resistance Y. Wu et al., Nature, 472 p. 74, 2011 G. Fiori et al., IEDM 2012
  • 36. Giuseppe Iannaccone University of Pisa Bilayer Graphene improves performance  Optimized structure with tox = 4 nm , tb = 20 nm
  • 37. Giuseppe Iannaccone University of Pisa Backgate voltage controls Av0
  • 38. Giuseppe Iannaccone University of Pisa fT, fMAX comparable for BGFETs and Si, III-V FETs be presented at IEDM 2012
  • 39. Giuseppe Iannaccone University of Pisa Graphene in microelectronics: no easy solution  Nanoribbons require prohibitive fabrication tolerances and are prone to mobility degradation  Bilayer graphene could be interesting:  Digital: only TFETs (experiment under way)  Analog: FET (focus of the GRADE project: main challenge is reducing contact resistance)  Lateral Heterostructure FET  (IMHO) The Most Promising device: Experiments ongoing  Vertical Heterostructure FET  Low on/off ratio, low fT  Attempts to increase fT within GRADE (GBTs) 39
  • 40. Giuseppe Iannaccone University of PisaGiuseppe Iannaccone University of Pisa Thank youThank you