This document discusses parallelizing graph algorithms on GPUs for optimization. It summarizes previous work on parallel Breadth-First Search (BFS), All Pair Shortest Path (APSP), and Traveling Salesman Problem (TSP) algorithms. It then proposes implementing BFS, APSP, and TSP on GPUs using optimization techniques like reducing data transfers between CPU and GPU and modifying the algorithms to maximize GPU computing power and memory usage. The paper claims this will improve performance and speedup over CPU implementations. It focuses on optimizing graph algorithms for parallel GPU processing to accelerate applications involving large graph analysis and optimization problems.